1
|
Wang Y, Skinner EL, Roper MG. Comparison between capillary electrophoresis and fluorescence anisotropy competitive immunoassay for glucagon. Electrophoresis 2024; 45:1692-1700. [PMID: 38984929 PMCID: PMC11502243 DOI: 10.1002/elps.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glucagon plays a crucial role in regulating glucose homeostasis; unfortunately, the mechanisms controlling its release are still unclear. Capillary electrophoresis (CE)- and fluorescence anisotropy (FA)-immunoassays (IA) have been used for online measurements of hormone secretion on microfluidic platforms, although their use in glucagon assays is less common. We set out to compare a glucagon-competitive IA using these two techniques. Theoretical calibration curves were generated for both CE- and FA-IA and results indicated that CE-IA provided higher sensitivity than FA-IA. These results were confirmed in an experiment where both assays showed limits of detection (LOD) of 30 nM, but the CE-IA had ∼300-fold larger sensitivity from 0 to 200 nM glucagon. However, in online experiments where reagents were mixed within the device, the sensitivity of the CE-IA was reduced ∼3-fold resulting in a higher LOD of 70 nM, whereas the FA-IA remained essentially unchanged. This lowered sensitivity in the online CE-IA was likely due to poor sampling by electroosmotic flow from the high salt solution necessary in online experiments, whereas pressure-based sampling used in FA-IA was not affected. We conclude that FA-IA, despite lowered sensitivity, is more suitable for online mixing scenarios due to the ability to use pressure-driven flow and other practical advantages such as the use of larger channels.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Emily L. Skinner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| |
Collapse
|
2
|
Terminal protection of peptides by interactions with proteins: A "signal-on" peptide-templated gold nanocluster beacon for label-free protein detection. Talanta 2021; 233:122566. [PMID: 34215062 DOI: 10.1016/j.talanta.2021.122566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
Characterization of the protein-peptide interactions are a critical for understanding the functions and signal pathways of proteins. Herein, a new finding of universal terminal protection that protein bind specifically with peptide and provide a protective coating to prevent peptide hydrolysis in the presence of peptidase. On the basis of this mechanism, we first reported a novel label-free fluorescence biosensor strategy that utilizes the protection of specific terminal protein on peptide-templated gold nanocluster (AuNCs) beacon for the detection of proteins. The fluorescence quenching of peptide-templated AuNCs can be effectively inhibited with increasing concentration of the specific protein, exhibiting a satisfactory sensitivity and selectivity toward protein with the detection limit of MDM2 and gp120 are 0.0019 U/mL and 0.0012 U/mL, respectively. The developed label-free fluorescence biosensor strategy provides new ideas to detect and screen protein for analyzing protein-peptide interaction in biomedical applications.
Collapse
|
3
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis 2019; 40:625-642. [PMID: 30600537 DOI: 10.1002/elps.201800367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Nearly all processes in living organisms are controlled and regulated by the synergy of many biomolecule interactions involving proteins, peptides, nucleic acids, nucleotides, saccharides, and small molecular weight ligands. There is growing interest in understanding them, not only for the purposes of interactomics as an essential part of system biology, but also in their further elucidation in disease pathology, diagnostics, and treatment. The necessity of detailed investigation of these interactions leads to the requirement of laboratory methods characterized by high efficiency and sensitivity. As a result, many instrumental approaches differing in their fundamental principles have been developed, including those based on capillary electrophoresis. Although capillary electrophoresis offers numerous advantages for such studies, it still has one serious limitation, its poor concentration sensitivity with the most commonly used detection method-ultraviolet-visible spectrometry. However, coupling capillary electrophoresis with a more sensitive detector fulfils the above-mentioned requirement. In this review, capillary electrophoresis combined with fluorescence, mass spectrometry, and several nontraditional detection techniques in affinity interaction studies are summarized and discussed, together with the possibility of conducting these measurements in microchip format.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Thompson S, Pappas D. A fluorescence toolbox: A review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis 2018; 40:606-615. [DOI: 10.1002/elps.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- S. Thompson
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| |
Collapse
|
5
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
6
|
Abstract
The present review covers recent advances and important applications of affinity capillary electrophoresis (ACE). It provides an overview about various ACE types, including ACE-MS, the multiple injection mode, the use of microchips and field-amplified sample injection-ACE. The most common scenarios of the studied affinity interactions are protein-drug, protein-metal ion, protein-protein, protein-DNA, protein-carbohydrate, carbohydrate-drug, peptide-peptide, DNA-drug and antigen-antibody. Approaches for the improvements of ACE in term of precision, rinsing protocols and sensitivity are discussed. The combined use of computer simulation programs to support data evaluation is presented. In conclusion, the performance of ACE is compared with other techniques such as equilibrium dialysis, parallel artificial membrane permeability assay, high-performance affinity chromatography as well as surface plasmon resonance, ultraviolet, circular dichroism, nuclear magnetic resonance, Fourier transform infrared, fluorescence, MS and isothermal titration calorimetry.
Collapse
|
7
|
Kang L, Yang B, Zhang X, Cui L, Meng H, Mei L, Wu C, Ren S, Tan W. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor. Anal Chim Acta 2015; 879:91-6. [PMID: 26002482 DOI: 10.1016/j.aca.2015.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 11/25/2022]
Abstract
Fluorescence polarization (FP) assays incorporated with fluorophore-labeled aptamers have attracted great interest in recent years. However, detecting small molecules through the use of FP assays still remains a challenge because small-molecule binding only results in negligible changes in the molecular weight of the fluorophore-labeled aptamer. To address this issue, we herein report a fluorescence polarization (FP) aptamer assay that incorporates a novel signal amplification strategy for highly sensitive detection of small molecules. In the absence of adenosine, our model target, free FAM-labeled aptamer can be digested by nuclease, resulting in the release of FAM-labeled nucleotide segments from the dT-biotin/streptavidin complex with weak background signal. However, in the presence of target, the FAM-labeled aptamer-target complex protects the FAM-labeled aptamer from nuclease cleavage, allowing streptavidin to act as a molar mass amplifier. The resulting increase in molecular mass and FP intensity of the aptamer-target complex provides improved sensitivity for concentration measurement. The probe could detect adenosine from 0.5 μM to 1000 μM, with a detection limit of 500 nM, showing that the sensitivity of the probe is superior to aptamer-based FP approaches previously reported for adenosine. Importantly, FP could resist environmental interferences, making it useful for complex biological samples without any tedious sample pretreatments. Our results demonstrate that this dual-amplified, aptamer-based strategy can be used to design fluorescence polarization probes for rapid, sensitive, and selective measurement of small molecules in complicated biological environment.
Collapse
Affiliation(s)
- Liping Kang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Bin Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China.
| | - Liang Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Hongmin Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Lei Mei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Cuichen Wu
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA
| | - Songlei Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China; Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
8
|
Zhao Q, Lv Q, Wang H. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A. Anal Chem 2013; 86:1238-45. [PMID: 24354298 DOI: 10.1021/ac4035532] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamer-based fluorescence anisotropy (FA) assay combines the advantages of affinity aptamers in good stability, easy generation, and facile labeling and the benefits of FA in homogeneous analysis, such as robustness, simplicity, and high reproducibility. By using a fluorophore-labeled aptamer, FA detection of a small molecule is not as easy as detection of protein because the binding of a small molecule cannot cause significant increase of molecular weight of the dye-labeled aptamer. The intramolecular interaction between labeled tetramethylrhodamine (TMR) and DNA aptamer bases dramatically affects the local rotation and FA of TMR. This intramolecular interaction can be altered by aptamer conformation change upon target binding, leading to a significant change of FA of TMR. Taking this unique feature of a TMR-labeled aptamer, we described a noncompetitive aptamer-based fluorescence anisotropy assay for detection of small molecules by using ochratoxin A (OTA) as a model. We successfully identified the specific TMR-labeling sites of aptamers with sensitive FA response to OTA from the 5'-end, 3'-end and the internal thymine (T) bases. The aptamer with a TMR labeled on the 10th T base exhibited a remarkable FA reduction response to OTA (Δr = 0.078), without requiring any proteins or nanomaterials as FA signal enhancers. This FA approach for OTA showed high sensitivity with a detection limit of 3 nM, a dynamic range from 3 nM to 3 μM, and good selectivity over the tested compounds with similar structures to OTA. The new strategy allowed the detection of OTA in diluted red wine and urine samples.
Collapse
Affiliation(s)
- Qiang Zhao
- Research Institute of Environmental Science, Shanxi University , Taiyuan, Shanxi Province, 030006, People's Republic of China
| | | | | |
Collapse
|
9
|
Liyanage R, Krylova SM, Krylov SN. Minimizing adsorption of histidine-tagged proteins for the study of protein–deoxyribonucleic acid interactions by kinetic capillary electrophoresis. J Chromatogr A 2013; 1322:90-6. [DOI: 10.1016/j.chroma.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
|
10
|
A data treatment method for detecting fluorescence anisotropy peaks in capillary electropherograms. Anal Chim Acta 2012; 739:99-103. [DOI: 10.1016/j.aca.2012.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/12/2012] [Indexed: 11/21/2022]
|
11
|
Krylova SM, Dove PM, Kanoatov M, Krylov SN. Slow-dissociation and slow-recombination assumptions in nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal Chem 2011; 83:7582-5. [PMID: 21853979 DOI: 10.1021/ac2018876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a kinetic affinity method with both analytical and preparative applications. NECEEM requires that the dissociation of the complexes be negligible in its first phase and the recombination of the dissociated complexes be negligible in its second phase. Here, we introduce a method, which facilitates easy examination of whether or not these requirements are satisfied. We derived expressions for two parameters, termed the slow-dissociation parameter (SDP) and slow-recombination parameter (SRP), which can be used to assess the assumptions. Both parameters should be much less than 1 for the assumptions to be satisfied. We calculated the two parameters for new and previously published NECEEM experiments and found that the assumptions were satisfied in all of them. Finally, we discuss changes to NECEEM conditions that should be done if the assumptions are found not to be satisfied. The SDP/SRP assessment helps to easily validate the results of NECEEM-based analyses and thus makes the NECEEM method more robust.
Collapse
Affiliation(s)
- Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
12
|
Zhang D, Lu M, Wang H. Fluorescence anisotropy analysis for mapping aptamer-protein interaction at the single nucleotide level. J Am Chem Soc 2011; 133:9188-91. [PMID: 21604755 DOI: 10.1021/ja202141y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural characterization of aptamer-protein interactions is challenging and limited despite the tremendous applications of aptamers. Here we for the first time report a fluorescence anisotropy (FA) approach for mapping the interaction of an aptamer and its protein target at the single nucleotide level. Nine fluorescently labeled aptamers, each conjugated to a single tetramethylrhodamine at a specified nucleotide in the aptamer, were used to study their interactions with thrombin. Simultaneous monitoring of both fluorescence anisotropy changes and electrophoretic mobility shifts upon binding of the fluorescently modified aptamer to the protein provides unique information on the specific nucleotide site of binding. T25, T20, T7 and the 3'-end were identified as the close contact sites, and T3, C15T, and the 5'-end were identified as the sites distant from the binding. This approach is highly sensitive and does not require cross-linking reactions. Studies of aptamer-protein interactions using this technique are potentially useful for design, evolution, and modification of functional aptamers for a range of bioanalytical, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | | | | |
Collapse
|
13
|
Musheev MU, Filiptsev Y, Krylov SN. Noncooled capillary inlet: a source of systematic errors in capillary-electrophoresis-based affinity analyses. Anal Chem 2011; 82:8637-41. [PMID: 20845920 DOI: 10.1021/ac1018364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary electrophoresis (CE) serves as a platform for a large family of temperature-sensitive affinity methods. To control the electrolyte temperature, the heat generated during electrophoresis is removed by actively cooling the capillary. Short parts of the capillary, particularly at its inlet, are not actively cooled, however, and the electrolyte in this part is likely to be at an elevated temperature. Owing to their relatively short lengths, the noncooled parts have never been considered as a potential source of artifacts. Here we report for the first time that electrophoresis of the sample through the short noncooled capillary inlet can lead to large systematic errors in quantitative CE-based affinity analyses. Our findings suggest that the noncooled capillary inlet region, in spite of being short, is a source of significant artifacts that must be taken into consideration by developers and users of CE-based affinity methods. We propose a simple solution for this problem: moving the sample through the noncooled inlet into the cooled region by pressure or by a low-strength electric field to save it from exposure to the elevated temperature.
Collapse
Affiliation(s)
- Michael U Musheev
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
14
|
Østergaard J, Moeller EH. Ghrelin-liposome interactions: Characterization of liposomal formulations of an acylated 28-amino acid peptide using CE. Electrophoresis 2010; 31:339-45. [DOI: 10.1002/elps.200900394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Wang X, Song Y, Song M, Wang Z, Li T, Wang H. Fluorescence Polarization Combined Capillary Electrophoresis Immunoassay for the Sensitive Detection of Genomic DNA Methylation. Anal Chem 2009; 81:7885-91. [DOI: 10.1021/ac901681k] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Yuling Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Zhixin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Tao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| |
Collapse
|
16
|
|
17
|
Barua D, Faeder JR, Haugh JM. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases. PLoS Comput Biol 2009; 5:e1000364. [PMID: 19381268 PMCID: PMC2667146 DOI: 10.1371/journal.pcbi.1000364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/17/2009] [Indexed: 01/08/2023] Open
Abstract
Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak) family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2) domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH) receptor/Jak2/SH2-Bβ system. The modeling results suggest that, whereas Jak2-(SH2-Bβ)2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bβ and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar ‘clamp’ that stabilizes the active configuration of two Jak2 molecules in the same macro-complex. Janus kinases (Jaks) interact with and activate receptors on the cell surface that mediate changes in gene expression. How these interactions are promoted and regulated is of central interest in fields such as cellular endocrinology and immunology. Here, detailed computational models of Jak activation are offered at the level of protein modification states and interaction domains, wherein the specification of only a handful of binding/reaction rules can produce networks comprised of thousands of differential equations. Specifically, we investigated the role of an adaptor protein, SH2-B, revealing a novel mechanism whereby it cooperates with receptors to form a stable complex that juxtaposes two Jak molecules for efficient activation. We refer to this mode of molecular assembly as the bipolar clamp mechanism.
Collapse
Affiliation(s)
- Dipak Barua
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - James R. Faeder
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yang P, Mao Y, Lee AWM, Kennedy RT. Measurement of dissociation rate of biomolecular complexes using CE. Electrophoresis 2009; 30:457-64. [PMID: 19148904 DOI: 10.1002/elps.200800397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluorescence anisotropy (FA), non-equilibrium CE of equilibrium mixtures (NECEEM) and high-speed CE were evaluated for measuring dissociation kinetics of peptide-protein binding systems. Fyn-SH3-SH2, a protein construct consisting of the src homology 2 (SH2) and 3 (SH3) domain of the protein Fyn, and a fluorescein-labeled phosphopeptide were used as a model system. All three methods gave comparable half-life of approximately 53 s for Fyn-SH3-SH2:peptide complex. Achieving satisfactory results by NECEEM required columns over 30 cm long. When using Fyn-SH2-SH3 tagged with glutathione S-transferase (GST) as the binding protein, both FA and NECEEM assays gave evidence of two complexes forming with the peptide, yet neither method allowed accurate measurement of dissociation rates for both complexes because of a lack of resolution. High-speed CE, with a 7 s separation time, enabled separation of both complexes and allowed determination of dissociation rate of both complexes independently. The two complexes had half-lives of 22.0+/-2.7 and 58.8+/-6.1 s, respectively. Concentration studies revealed that the GST-Fyn-SH3-SH2 protein formed a dimer so that complexes had binding ratios of 2:1 (protein-to-peptide ratio) and 2:2. Our results demonstrate that although all methods are suitable for 1:1 binding systems, high-speed CE is unique in allowing multiple complexes to be resolved simultaneously. This property allows determination of binding kinetics of complicated systems and makes the technique useful for discovering novel affinity interactions.
Collapse
Affiliation(s)
- Peilin Yang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
Li T, Wang H. Organic Osmolyte Mediated Kinetic Capillary Electrophoresis for Study of Protein−DNA Interactions. Anal Chem 2009; 81:1988-95. [DOI: 10.1021/ac8025256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
21
|
Song M, Zhang Y, Li T, Wang Z, Yin J, Wang H. Highly sensitive detection of human thrombin in serum by affinity capillary electrophoresis/laser-induced fluorescence polarization using aptamers as probes. J Chromatogr A 2008; 1216:873-8. [PMID: 19095238 DOI: 10.1016/j.chroma.2008.11.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 11/19/2022]
Abstract
The detection and quantification of disease-related proteins play critical roles in clinical practice and diagnostic assays. We present an affinity probe capillary electrophoresis/laser-induced fluorescence polarization (APCE/LIFP) assay for detection of human thrombin using a specific aptamer as probe. In the APCE/LIFP assay, the mobility and fluorescence polarization of complex are measured simultaneously during CE analysis. The affinity complex of human thrombin can be well separated from unbound aptamer on CE and clearly identified on the basis of its fluorescence polarization and migration. Because of the binding favorable G-quartet conformation potentially involved in the specific aptamer, it was assumed that monovalent and bivalent cations promoting the formation of a stable G quadruplex conformation in the aptamer may enhance the binding of the aptamer and thrombin. Therefore, we investigated the effects of various metal cations on the binding of human thrombin and the aptamer. Our results show that cations like K(+) and Mg(2+) could not stabilize the affinity complex. Without the use of typical cations, a highly sensitive assay of human thrombin was developed with the corresponding detection limits of 4.38x10(-19) and 2.94x10(-19)mol in mass for standard solution and human serum, respectively.
Collapse
Affiliation(s)
- Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | |
Collapse
|
22
|
Chen Z, Weber SG. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Analyt Chem 2008; 27:738-748. [PMID: 19802330 PMCID: PMC2600677 DOI: 10.1016/j.trac.2008.06.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many methods for determining intermolecular interactions have been described in the literature in the past several decades. Chief among them are methods based on spectroscopic changes, particularly those based on absorption or nuclear magnetic resonance (NMR) [especially proton NMR ((1)H NMR)]. Recently, there have been put forward several new methods that are particularly adaptable, use very small quantities of material, and do not place severe requirements on the spectroscopic properties of the binding partners. This review covers new developments in affinity capillary electrophoresis, electrospray ionization mass spectrometry (ESI-MS) and phasetransfer methods.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
23
|
Liu S, Wang H, Song M, Yin J, Jiang G. Study of protein binding and micellar partition of highly hydrophobic molecules in a single system using capillary electrophoresis. Electrophoresis 2008; 29:3038-46. [DOI: 10.1002/elps.200800016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Yang P, Kennedy RT. High performance liquid chromatography coupled on-line to capillary electrophoresis with laser-induced fluorescence detection for detecting inhibitors of Src homology 2 domain–phosphopeptide binding in mixtures. J Chromatogr A 2008; 1194:225-30. [DOI: 10.1016/j.chroma.2008.04.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/08/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
|
25
|
Abstract
The article brings a comprehensive survey of recent developments and applications of high-performance capillary electromigration methods, zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. New approaches to the theoretical description and experimental verification of electromigration behavior of peptides and to methodology of their separations, such as sample preparation, adsorption suppression, and detection, are presented. Novel developments in individual CE and CEC modes are shown and several types of their applications to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of CE and CEC techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
26
|
Sniehotta M, Schiffer E, Zürbig P, Novak J, Mischak H. CE – a multifunctional application for clinical diagnosis. Electrophoresis 2007; 28:1407-17. [PMID: 17427258 DOI: 10.1002/elps.200600581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CE has been used widely as an analytical tool with high separation power taking advantage of size, charge-to-size ratio, or isoelectric point of various analytes. In combination with detection methods, such as UV absorption, electrochemical detection, fluorescence, or mass spectrometry (MS), it allows the separation and detection of inorganic and organic ions, as well as complex compounds, such as polypeptides, nucleic acids, including PCR amplicons from viruses or bacteria. Recent interest in identification of biomarkers of diseases using body fluids leads to development of CE-MS techniques. These applications allowed identification of new potential biomarkers for clinical diagnosis and monitoring of therapeutic interventions. In this report, we present a technical overview of various CE techniques and discuss their applications in clinical medicine.
Collapse
Affiliation(s)
- Maike Sniehotta
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
Kinetic capillary electrophoresis (KCE) is defined as capillary electrophoresis of species that interact during electrophoresis. KCE can serve as a conceptual platform for development of homogeneous kinetic affinity methods for affinity measurements (measurements of binding parameters and quantitative measurements) and affinity purification (purification of known molecules and search of unknown molecules). A number of different KCE methods can be designed by varying initial and boundary conditions - the way interacting species enter and exit the capillary. KCE methods will find multiple practical applications in the designing of biomedical diagnostics and the development of drug candidates. Here, the concept of KCE, its up-to-date applications, and future prospective are reviewed.
Collapse
Affiliation(s)
- Sergey N Krylov
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Ostergaard J, Heegaard NHH. Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis. Electrophoresis 2006; 27:2590-608. [PMID: 16732622 DOI: 10.1002/elps.200600047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The versatility of CE is beneficial for the study of many types of molecular interactions, because different experimental designs can be made to suit the characteristics of a particular interaction. A very versatile starting point is the preequilibration type of affinity CE that has been used extensively for characterizing biomolecular interactions in the last 15 years. We review this field here and include a comprehensive overview of the existing preincubation ACE modes including their advantages and limitations as well as the methodological developments and applications within the bioanalytical field.
Collapse
Affiliation(s)
- Jesper Ostergaard
- Department of Pharmaceutics and Analytical Chemistry, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark.
| | | |
Collapse
|
29
|
Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 2006; 27:142-75. [PMID: 16307429 DOI: 10.1002/elps.200500527] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The article gives a comprehensive review on the recent developments in the applications of high-performance capillary electromigration methods, zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. The article presents new approaches to the theoretical description and experimental verification of electromigration behavior of peptides, covers the methodological aspects of capillary electroseparations of peptides, such as rational selection of separation conditions, sample preparation, suppression of peptide adsorption, new developments in individual separation modes, and new designs of detection systems. Several types of applications of capillary electromigration methods to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of capillary electromigration techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
30
|
Abstract
Systems biology depends on a comprehensive assignment and characterization of the interactions of proteins and polypeptides (functional proteomics) and of other classes of biomolecules in a given organism. High‐capacity screening methods are in place for ligand capture and interaction screening, but a detailed dynamic characterization of molecular interactions under physiological conditions in efficiently separated mixtures with minimal sample consumption is presently provided only by electrophoretic interaction analysis in capillaries, affinity CE (ACE). This has been realized in different fields of biology and analytical chemistry, and the resulting advances and uses of ACE during the last 2.5 years are covered in this review. Dealing with anything from small divalent metal ions to large supramolecular assemblies, the applications of ACE span from low‐affinity binding of broad specificity being exploited in optimizing selectivity, e.g., in enantiomer analysis to miniaturized affinity technologies, e.g., for fast processing immunoassay. Also, approaches that provide detailed quantitative characterization of analyte–ligand interaction for drug, immunoassay, and aptamer development are increasingly important, but various approaches to ACE are more and more generally applied in biological research. In addition, the present overview emphasizes that distinct challenges regarding sensitivity, parallel processing, information‐rich detection, interfacing with MS, analyte recovery, and preparative capabilities remain. This will be addressed by future technological improvements that will ensure continuing new applications of ACE in the years to come.
Collapse
Affiliation(s)
- Christian Schou
- Department of Autoimmunology, Statens Serum Institute, Copenhagen, Denmark
| | | |
Collapse
|
31
|
Musheev MU, Krylov SN. Selection of aptamers by systematic evolution of ligands by exponential enrichment: Addressing the polymerase chain reaction issue. Anal Chim Acta 2006; 564:91-6. [PMID: 17723366 DOI: 10.1016/j.aca.2005.09.069] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/26/2005] [Accepted: 09/29/2005] [Indexed: 11/22/2022]
Abstract
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.
Collapse
Affiliation(s)
- Michael U Musheev
- Department of Chemistry, York University, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
32
|
Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM): A novel method for biomolecular screening. ACTA ACUST UNITED AC 2006; 11:115-22. [PMID: 16418314 DOI: 10.1177/1087057105284339] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a new separation-based affinity method. It has kinetic capabilities exceeding those of surface plasmon resonance (SPR) and does not require immobilization of molecules on the surface. Another distinctive feature of NECEEM is that--if it is combined with an advanced method for the mixing solutions inside a capillary, termed transverse diffusion of laminar flow profiles (TDLFP)--it requires only nanoliter volumes of solutions. The proven applications of NECEEM to biomolecular screening include 1) measuring kinetic and thermodynamic parameters of protein-ligand interactions, 2) quantitative affinity analyses of proteins and hybridization analyses of DNA and RNA, and 3) selection of binding ligands from combinatorial libraries. NECEEM is easy to automate and parallelize. Because of its simplicity and analytical power, NECEEM has the potential to become a workhorse in studies of biomolecular interactions. The author reviews theoretical bases of NECEEM and its applications to biomolecular screening.
Collapse
Affiliation(s)
- Sergey N Krylov
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| |
Collapse
|