1
|
Kang YE, Seong KY, Yim SG, Lee Y, An SM, Kim SC, Kim K, An BS, Lee KS, Yang SY. Nanochannel-driven rapid capture of sub-nanogram level biomarkers for painless preeclampsia diagnosis. Biosens Bioelectron 2020; 163:112281. [PMID: 32568694 DOI: 10.1016/j.bios.2020.112281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity and mortality worldwide. Painful blood-collection procedures or low accuracy of non-invasive approaches require faster, patient-friendly, and more sensitive diagnostic technologies. Here we report a painless, highly sensitive detection platform using nanoporous microneedles (nMNs) that enables rapid capture of biomarkers present at sub-nanogram levels. The highly porous nanostructures on the nMN surface were prepared by anodization of aluminum MN and then functionalized by immobilization of capture antibodies to detect target biomarkers based on an immunoassay method. The immuno-functionalized nMN array demonstrated rapid capture of an estrogen (E2) biomarker for PE following a 1-min incubation and exhibited a concentration-dependent change in fluorescence intensity over the E2 range of 0.5 ng mL-1 to 1000 ng mL-1 after treatment with fluorescence-detection antibodies. Remarkably, the nMN patch selectively detected sub-nanogram-levels of E2 in subcutaneous interstitial fluid from rats with increased diagnostic accuracy as compared with commercial immunoassay kits. This bio-functionalized nMN platform showed improved biosensing capability for multiple PE-related biomarkers, including hormones and proteins. Furthermore, this painless method demonstrated efficacy as a point-of-need diagnostic platform using portable smartphone-based fluorescence microscope to obtain fluorescence images of biomarker-captured nMN arrays.
Collapse
Affiliation(s)
- Ye-Eun Kang
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Yechan Lee
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, 49241, Republic of Korea
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Kyu-Sup Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, 49241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Pusan National University, Miryang, 50463, Republic of Korea.
| |
Collapse
|
2
|
Gong D, Hui X, Guo Z, Zheng X. The synthesis of PEI core@silica shell nanoparticles and its application for sensitive electrochemical detecting mi-RNA. Talanta 2019; 198:534-541. [PMID: 30876596 DOI: 10.1016/j.talanta.2019.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/19/2023]
Abstract
Although the silica-based nanoparticles (NPs) have been widely explored as the labels for sensing different targets, the simple and novel scheme, to impose a large number of signal molecules inside silica NPs, is challenge. Herein, a new scheme for this purpose was developed. This new strategy was based on densely doped polyethyleneimine (PEI) inside silica nanoparticles and forming the PEI@silica nanoparticles. Then, the Cu2+ was selected as the electrochemical signal molecule model to be loaded in PEI@silica nanoparticles the based on the strong coordination reaction of Cu2+ with PEI and test its signal amplification ability. Our results showed that 7.6 × 105 Cu2+signal ions could be loaded in a single PEI@silica nanoparticles. Thereafter, based on the discriminating interaction of this PEI/Cu2+/SiO2 NPs towards both ssDNA probes and ssDNA probe/mi-RNA complex, as well as the specific adsorption effect of this NPs on chemically modified electrode, a highly sensitive electrochemical method for detecting mi-RNA was developed and successfully used to detect mi-RNA in the human serum samples.
Collapse
Affiliation(s)
- Dandan Gong
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaoning Hui
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Zhihui Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
3
|
Liu Y, Turner AP, Zhao M, Mak WC. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing. Biosens Bioelectron 2018; 100:374-381. [DOI: 10.1016/j.bios.2017.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
4
|
|
5
|
Yu Y, Zhang Q, Buscaglia J, Chang CC, Liu Y, Yang Z, Guo Y, Wang Y, Levon K, Rafailovich M. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst 2016; 141:4424-31. [DOI: 10.1039/c6an00375c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a real time potentiometric biosensor based on the 3D surface molecular imprinting was developed for CEA detection.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Jonathan Buscaglia
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | | | - Ying Liu
- ThINC Facility
- Advanced Energy Center
- Stony Brook
- USA
| | - Zhenhua Yang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yichen Guo
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yantian Wang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
6
|
Sharma A, Rao VK, Kamboj DV, Gaur R, Shaik M, Shrivastava AR. Enzyme free detection of staphylococcal enterotoxin B (SEB) using ferrocene carboxylic acid labeled monoclonal antibodies: an electrochemical approach. NEW J CHEM 2016. [DOI: 10.1039/c5nj03460d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a ferrocene based electrochemical immunosensor for staphylococcal enterotoxin B.
Collapse
Affiliation(s)
- Arun Sharma
- Defence Research and Development Establishment
- Gwalior
- India
| | | | | | - Ritu Gaur
- Defence Research and Development Establishment
- Gwalior
- India
| | - Mahabul Shaik
- Defence Research and Development Establishment
- Gwalior
- India
| | | |
Collapse
|
7
|
Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016. [DOI: 10.1039/c6ra00333h] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, tremendous advances have been made in biosensors based on nanoscale electrochemical immunosensors for use in the fields of agriculture, food safety, biomedicine, quality control, and environmental and industrial monitoring.
Collapse
Affiliation(s)
- Syazana Abdullah Lim
- Environmental and Life Sciences Programme
- Faculty of Science
- Universiti Brunei Darussalam
- Gadong
- Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory
- Chemical Science Programme
- Faculty of Science
- Universiti Brunei Daruusalam
- Gadong
| |
Collapse
|
8
|
Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal Chim Acta 2015; 877:19-32. [DOI: 10.1016/j.aca.2015.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
9
|
Deng W, Liu F, Ge S, Yu J, Yan M, Song X. A dual amplification strategy for ultrasensitive electrochemiluminescence immunoassay based on a Pt nanoparticles dotted graphene–carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 2014; 139:1713-20. [DOI: 10.1039/c3an02084c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and sensitive ECL immunosensor has been designed using Pt/Gr–CNTs as a platform and Pt/Fe@CDs as bionanolabels.
Collapse
Affiliation(s)
- Wenping Deng
- Key Laboratory of Chemical Sensing & Analysis in the University of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Fang Liu
- Key Laboratory of Chemical Sensing & Analysis in the University of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Shenguang Ge
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022, P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in the University of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in the University of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Xianrang Song
- Cancer Research Center
- Shandong Tumor Hospital
- Jinan 250012, P.R. China
| |
Collapse
|
10
|
Ding Y, Li D, Li B, Zhao K, Du W, Zheng J, Yang M. A water-dispersible, ferrocene-tagged peptide nanowire for amplified electrochemical immunosensing. Biosens Bioelectron 2013; 48:281-6. [DOI: 10.1016/j.bios.2013.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
|
11
|
Chan CPY, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R. Evidence-based point-of-care diagnostics: current status and emerging technologies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:191-211. [PMID: 23527548 DOI: 10.1146/annurev-anchem-062012-092641] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Point-of-care (POC) diagnostics brings tests nearer to the site of patient care. The turnaround time is short, and minimal manual interference enables quick clinical management decisions. Growth in POC diagnostics is being continuously fueled by the global burden of cardiovascular and infectious diseases. Early diagnosis and rapid initiation of treatment are crucial in the management of such patients. This review provides the rationale for the use of POC tests in acute coronary syndrome, heart failure, human immunodeficiency virus, and tuberculosis. We also consider emerging technologies that are based on advanced nanomaterials and microfluidics, improved assay sensitivity, miniaturization in device design, reduced costs, and high-throughput multiplex detection, all of which may shape the future development of POC diagnostics.
Collapse
Affiliation(s)
- Cangel Pui Yee Chan
- Accident and Emergency Medicine Academic Unit, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
12
|
Lai KK, Renneberg R, Mak WC. Multifunctional protein particles with dual analytical channels for colorimetric enzymatic bioassays and fluorescent immunoassays. Biosens Bioelectron 2012; 32:169-76. [PMID: 22204780 DOI: 10.1016/j.bios.2011.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/19/2022]
Abstract
Advanced multifunctional protein particles encapsulated enzymes and antibodies were developed for enzymatic bioassays and immunoassays with colorimetric and fluorescent channels. A colorimetric channel based on color-substrate precipitation was assigned for enzymatic bioassays for the measurement of hydrogen peroxide with the lowest detectable concentration of 10 μM. A fluorescent channel based on fluorescent labeled antibodies was assigned for immunoassays for the measurement of mouse immunoglobulin G (M IgG) with the lowest detectable concentration of 1.25 μgL(-1). The protein microparticles were fabricated with a template-assisted self-assembly technique termed "Protein Activation Spontaneous Self-assemble" (PASS). The multifunctional protein particles prepared with the PASS method have the advantages of high loading of analytical biomolecules, integrated biological functions, porous structure, and more importantly, they are optically transparent and fluorescence inactive. These unique features make our protein particles a new generation of bead-based platforms to perform enzyme bioassays and immunoassays.
Collapse
Affiliation(s)
- Kwok Kei Lai
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
13
|
Zhang Y, Ge S, Wang S, Yan M, Yu J, Song X, Liu W. Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels. Analyst 2012; 137:2176-82. [DOI: 10.1039/c2an16170b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wan Y, Deng W, Su Y, Zhu X, Peng C, Hu H, Peng H, Song S, Fan C. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens Bioelectron 2011; 30:93-9. [DOI: 10.1016/j.bios.2011.08.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
|
15
|
Mak W, Sin K, Chan C, Wong L, Renneberg R. Biofunctionalized indigo-nanoparticles as biolabels for the generation of precipitated visible signal in immunodipsticks. Biosens Bioelectron 2011; 26:3148-53. [DOI: 10.1016/j.bios.2010.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/22/2010] [Accepted: 12/08/2010] [Indexed: 11/16/2022]
|
16
|
Hu W, Li CM. Nanomaterial-based advanced immunoassays. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:119-133. [DOI: 10.1002/wnan.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Qian J, Zhang C, Cao X, Liu S. Versatile Immunosensor Using a Quantum Dot Coated Silica Nanosphere as a Label for Signal Amplification. Anal Chem 2010; 82:6422-9. [DOI: 10.1021/ac100558t] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Qian
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| | - Chunyan Zhang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| | - Xiaodong Cao
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| |
Collapse
|
18
|
Lai G, Yan F, Ju H. Dual Signal Amplification of Glucose Oxidase-Functionalized Nanocomposites as a Trace Label for Ultrasensitive Simultaneous Multiplexed Electrochemical Detection of Tumor Markers. Anal Chem 2009; 81:9730-6. [DOI: 10.1021/ac901996a] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guosong Lai
- Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China and Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R. China
| | - Feng Yan
- Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China and Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R. China
| | - Huangxian Ju
- Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China and Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R. China
| |
Collapse
|
19
|
Warsinke A. Point-of-care testing of proteins. Anal Bioanal Chem 2009; 393:1393-405. [PMID: 19130044 DOI: 10.1007/s00216-008-2572-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/25/2022]
Abstract
Point-of-care testing (POCT) is a fast developing area in clinical diagnostics that is considered to be one of the main driving forces for the future in vitro diagnostic market. POCT means decentralized testing at the site of patient care. The most important POCT devices are handheld blood glucose sensors. In some of these sensors, after the application of less than 1 microl whole blood, the results are displayed in less than 10 s. For protein determination, the most commonly used devices are based on lateral flow technology. Although these devices are convenient to use, the results are often only qualitative or semiquantitative. The review will illuminate some of the current methods employed in POCT for proteins and will discuss the outlook for techniques (e.g., electrochemical immunosensors) that could have a great impact on future POCT of proteins.
Collapse
Affiliation(s)
- Axel Warsinke
- iPOC Research Group, University of Potsdam, Institute of Biochemistry and Biology, Building 25, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany.
| |
Collapse
|
20
|
Sadik OA, Aluoch AO, Zhou A. Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 2008; 24:2749-65. [PMID: 19054662 DOI: 10.1016/j.bios.2008.10.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 11/16/2022]
Abstract
The use of nanoscale materials (e.g., nanoparticles, nanowires, and nanorods) for electrochemical biosensing has seen explosive growth in recent years following the discovery of carbon nanotubes by Sumio Ijima in 1991. Although the resulting label-free sensors could potentially simplify the molecular recognition process, there are several important hurdles to be overcome. These include issues of validating the biosensor on statistically large population of real samples rather than the commonly reported relatively short synthetic oligonucleotides, pristine laboratory standards or bioreagents; multiplexing the sensors to accommodate high-throughput, multianalyte detection as well as application in complex clinical and environmental samples. This article reviews the status of biomolecular recognition using electrochemical detection by analyzing the trends, limitations, challenges and commercial devices in the field of electrochemical biosensors. It provides a survey of recent advances in electrochemical biosensors including integrated microelectrode arrays with microfluidic technologies, commercial multiplex electrochemical biosensors, aptamer-based sensors, and metal-enhanced electrochemical detection (MED), with limits of detection in the attomole range. Novel applications are also reviewed for cancer monitoring, detection of food pathogens, as well as recent advances in electrochemical glucose biosensors.
Collapse
Affiliation(s)
- Omowunmi A Sadik
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring, State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902, United States.
| | | | | |
Collapse
|
21
|
Cai W, Gentle IR, Lu GQ, Zhu JJ, Yu A. Mesoporous Silica Templated Biolabels with Releasable Fluorophores for Immunoassays. Anal Chem 2008; 80:5401-6. [DOI: 10.1021/ac800430m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyi Cai
- ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland, St. Lucia, 4072, Australia, School of Chemical and Mathematical Science, Murdoch University, Murdoch 6150, Australia, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ian R. Gentle
- ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland, St. Lucia, 4072, Australia, School of Chemical and Mathematical Science, Murdoch University, Murdoch 6150, Australia, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Gao Qing Lu
- ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland, St. Lucia, 4072, Australia, School of Chemical and Mathematical Science, Murdoch University, Murdoch 6150, Australia, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jun-Jie Zhu
- ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland, St. Lucia, 4072, Australia, School of Chemical and Mathematical Science, Murdoch University, Murdoch 6150, Australia, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Aimin Yu
- ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland, St. Lucia, 4072, Australia, School of Chemical and Mathematical Science, Murdoch University, Murdoch 6150, Australia, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
22
|
Warsinke A. Electrochemical biochips for protein analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:155-93. [PMID: 17928973 DOI: 10.1007/10_2007_079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Proteins bear important functions for most life processes. It is estimated that the human proteome comprises more than 250,000 proteins. Over the last years, highly sophisticated and powerful instruments have been developed that allow their detection and characterization with great precision and sensitivity. However, these instruments need well-equipped laboratories and a well-trained staff. For the determination of proteins in a hospital, in a doctor's office, or at home, low-budget protein analysis methods are needed that are easy to perform. In addition, for a proteomic approach, highly parallel measurements with small sample sizes are required. Biochips are considered as promising tools for such applications. The following chapter describes electrochemical biochips for protein analysis that use antibodies or aptamers as recognition elements.
Collapse
Affiliation(s)
- Axel Warsinke
- University of Potsdam, Institute of Biochemistry and Biology, iPOC Research Group, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany.
| |
Collapse
|
23
|
Wang J. Amplified transduction of biomolecular interactions based on the use of nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:239-254. [PMID: 17987277 DOI: 10.1007/10_2007_074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The achievement of very high sensitivity is a major goal in biological assays such as the monitoring of DNA hybridization or protein interactions. This chapter reviews progress in the development of nanomaterials for amplified biosensing and discusses different nanomaterial-based bioamplification strategies. The emergence of nanotechnology is opening new horizons for highly sensitive bioassays and for novel biosensor protocols that employ electronic, optical, or microgravimetric signal transduction. Antibodies or nucleic acids functionalized with metal or semiconductor nanoparticles have been employed as amplifying tags for the biodetection of proteins and DNA. The coupling of different nanomaterial-based amplification platforms and amplification processes dramatically enhances the intensity of the analytical readout and leads to ultrasensitive bioassays. The remarkable sensitivity of the new nanomaterial-based sensing protocols opens up the possibility of detecting disease markers, biothreat agents, or infectious agents that cannot be measured by conventional methods.
Collapse
Affiliation(s)
- Joseph Wang
- Biodesign Institute, Department of Chemical Engineering, Arizona State University, Tempe 85287-5801, USA.
| |
Collapse
|
24
|
Reusable optical bioassay platform with permeability-controlled hydrogel pads for selective saccharide detection. Anal Chim Acta 2008; 607:204-10. [DOI: 10.1016/j.aca.2007.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
|
25
|
Liu G, Lin Y. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 2007; 74:308-17. [PMID: 18371644 PMCID: PMC2819410 DOI: 10.1016/j.talanta.2007.10.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 09/24/2007] [Accepted: 10/01/2007] [Indexed: 11/20/2022]
Abstract
This article reviews recent advances in nanomaterial labels in electrochemical immunosensors and immunoassays. Various nanomaterial labels are discussed, including colloidal gold/silver, semiconductor nanoparticles, and markers loaded nanocarriers (carbon nanotubes, apoferritin, silica nanoparticles, and liposome beads). The enormous signal enhancement associated with the use of nanomaterial labels and with the formation of nanomaterial-antibody-antigen assemblies provides the basis for ultrasensitive electrochemical detection of disease-related protein biomarkers, biothreat agents, or infectious agents. In general, all endeavors cited here are geared to achieve one or more of the following goals: signal amplification by several orders of magnitude, lower detection limits, and detecting multiple targets.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND, 58105-5516
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, WA, 99352
| |
Collapse
|
26
|
Viswanathan S, Ho JAA. Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules. Biosens Bioelectron 2007; 22:1147-53. [PMID: 16950610 DOI: 10.1016/j.bios.2006.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/24/2022]
Abstract
Dual electrochemical determination of glucose and insulin has been developed, based on enzymatic reaction and immunoassay with utilization of ferrocene microcapsules, respectively. Glucose was determined through electrochemical oxidation of formed product, hydrogen peroxide, by the action of glucose oxidase (GOx). The layer-by-layer (LbL) films on the ferrocene microcrystal followed by anti-insulin antibody sensitization were employed for the biolabled ferrocene microcapsules production. The antibody sensitized ferrocene microcapsules worked as a probe in the proposed system. The microcapsules provided a higher signal generating molecule to antibody (S/P) ratio of 4.52x10(6) to 12.4x10(6). Microcapsules with different antibody loads (388-1070 antibody molecules per capsule) were subjected to a solid-phase immunoassay for the detection of insulin. The microcapsule having 1030 anti-insulin antibody molecules per capsule demonstrated good performance for insulin determination. The calibration curve for insulin had a linear range of 10(-10) to 10(-7) g mL(-1) with R(2)=0.990, 3.9% R.S.D. The limit of detection for insulin was 10 pg mL(-1) of 100 microL sample (equivalent to 10(-12)g of insulin). The determination range for the glucose was 0.5 and 40 mM with R(2)=0.996 and 4.1% R.S.D.
Collapse
Affiliation(s)
- Subramanian Viswanathan
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, No. 1, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan
| | | |
Collapse
|
27
|
A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer. Electrochem commun 2006. [DOI: 10.1016/j.elecom.2006.08.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Warsinke A, Nagel B. Towards Separation‐Free Electrochemical Affinity Sensors by Using Antibodies, Aptamers, and Molecularly Imprinted Polymers—A Review. ANAL LETT 2006. [DOI: 10.1080/00032710600853903] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Affiliation(s)
- Eric Bakker
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
30
|
Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 2005; 21:1887-92. [PMID: 16330202 DOI: 10.1016/j.bios.2005.10.027] [Citation(s) in RCA: 781] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/20/2005] [Accepted: 10/27/2005] [Indexed: 11/16/2022]
Abstract
Wide-scale point-of-care diagnostic systems hold great promise for early detection of cancer at a curable stage of the disease. This review discusses the prospects and challenges of electrochemical biosensors for next-generation cancer diagnostics. Electrochemical biosensors have played an important significant role in the transition towards point-of-care diagnostic devices. Such electrical devices are extremely useful for delivering the diagnostic information in a fast, simple, and low cost fashion in connection to compact (hand-held) analyzers. Modern electrochemical bioaffinity sensors, such as DNA- or immunosensors, offer remarkable sensitivity essential for early cancer detection. The coupling of electrochemical devices with nanoscale materials offers a unique multiplexing capability for simultaneous measurements of multiple cancer markers. The attractive properties of electrochemical devices are extremely promising for improving the efficiency of cancer diagnostics and therapy monitoring. With further development and resources, such portable devices are expected to speed up the diagnosis of cancer, making analytical results available at patient bedside or physician office within few minutes.
Collapse
Affiliation(s)
- Joseph Wang
- Department of Chemical & Materials Engineering and Chemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801, USA.
| |
Collapse
|
31
|
Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:1036-43. [PMID: 17193390 DOI: 10.1002/smll.200500214] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article reviews progress in the development of nanomaterials for amplified biosensing and discusses different nanomaterial-based bioamplification strategies. Signal amplification has attracted considerable attention for ultrasensitive detection of disease markers and biothreat agents. The emergence of nanotechnology is opening new horizons for highly sensitive bioaffinity and biocatalytic assays and for novel biosensor protocols that employ electronic, optical, or microgravimetric signal transduction. Nucleic acids and antibodies functionalized with metal or semiconductor nanoparticles have been employed as amplifying tags for the detection of DNA and proteins. The coupling of different nanomaterial-based amplification platforms and amplification processes dramatically enhances the intensity of the analytical signal and leads to ultrasensitive bioassays. The successful realization of the new nanoparticle-based signal amplification strategies requires proper attention to nonspecific adsorption issues. The implications of such nanoscale materials on amplified biodetection protocols and on the development of modern biosensors are discussed.
Collapse
Affiliation(s)
- Joseph Wang
- Departments of Chemical & Materials Engineering and Chemistry and Biochemistry, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
| |
Collapse
|