1
|
Thompson S, Pappas D. A fluorescence toolbox: A review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis 2018; 40:606-615. [DOI: 10.1002/elps.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- S. Thompson
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| |
Collapse
|
2
|
A data treatment method for detecting fluorescence anisotropy peaks in capillary electropherograms. Anal Chim Acta 2012; 739:99-103. [DOI: 10.1016/j.aca.2012.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/12/2012] [Indexed: 11/21/2022]
|
3
|
Picou RA, Schrum DP, Ku G, Cerqua RA, Kheterpal I, Gilman SD. Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 2012; 425:104-12. [DOI: 10.1016/j.ab.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 12/28/2022]
|
4
|
Musheev MU, Filiptsev Y, Krylov SN. Noncooled capillary inlet: a source of systematic errors in capillary-electrophoresis-based affinity analyses. Anal Chem 2011; 82:8637-41. [PMID: 20845920 DOI: 10.1021/ac1018364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary electrophoresis (CE) serves as a platform for a large family of temperature-sensitive affinity methods. To control the electrolyte temperature, the heat generated during electrophoresis is removed by actively cooling the capillary. Short parts of the capillary, particularly at its inlet, are not actively cooled, however, and the electrolyte in this part is likely to be at an elevated temperature. Owing to their relatively short lengths, the noncooled parts have never been considered as a potential source of artifacts. Here we report for the first time that electrophoresis of the sample through the short noncooled capillary inlet can lead to large systematic errors in quantitative CE-based affinity analyses. Our findings suggest that the noncooled capillary inlet region, in spite of being short, is a source of significant artifacts that must be taken into consideration by developers and users of CE-based affinity methods. We propose a simple solution for this problem: moving the sample through the noncooled inlet into the cooled region by pressure or by a low-strength electric field to save it from exposure to the elevated temperature.
Collapse
Affiliation(s)
- Michael U Musheev
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
5
|
|
6
|
Li T, Wang H. Organic Osmolyte Mediated Kinetic Capillary Electrophoresis for Study of Protein−DNA Interactions. Anal Chem 2009; 81:1988-95. [DOI: 10.1021/ac8025256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
7
|
Chen Z, Weber SG. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Analyt Chem 2008; 27:738-748. [PMID: 19802330 PMCID: PMC2600677 DOI: 10.1016/j.trac.2008.06.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many methods for determining intermolecular interactions have been described in the literature in the past several decades. Chief among them are methods based on spectroscopic changes, particularly those based on absorption or nuclear magnetic resonance (NMR) [especially proton NMR ((1)H NMR)]. Recently, there have been put forward several new methods that are particularly adaptable, use very small quantities of material, and do not place severe requirements on the spectroscopic properties of the binding partners. This review covers new developments in affinity capillary electrophoresis, electrospray ionization mass spectrometry (ESI-MS) and phasetransfer methods.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Yang P, Whelan RJ, Mao Y, Lee AWM, Carter-Su C, Kennedy RT. Multiplexed Detection of Protein−Peptide Interaction and Inhibition Using Capillary Electrophoresis. Anal Chem 2006; 79:1690-5. [PMID: 17297974 DOI: 10.1021/ac061936e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-speed capillary electrophoresis (CE) was employed to detect binding and inhibition of SH2 domain proteins using fluorescently labeled phosphopeptides as affinity probes. Single SH2 protein-phosphopeptide complexes were detected and confirmed by competition and fluorescence anisotropy. The assay was then extended to a multiplexed system involving separation of three SH2 domain proteins: Src, SH2-Bbeta, and Fyn. The selectivity of the separation was improved by altering the charge of the peptide binding partners used, thus demonstrating a convenient way to control resolution for the multiplexed assay. The separation was completed within 6 s, allowing rapidly dissociating complexes to be detected. Two low molecular weight inhibitors were tested for inhibition selectivity and efficacy. One inhibitor interrupted binding interaction of all three proteins, while the other selectively inhibited Src only leaving SH2-Bbeta and Fyn complex barely affected. IC(50) of both selective and nonselective inhibitors were determined and compared for different proteins. The IC(50) of the nonselective inhibitor was 49 +/- 9, 323 +/- 42, and 228 +/- 19 microM (n = 3) for Src, SH2-Bbeta, and Fyn, respectively, indicating different efficacy of the nonselective inhibitor for different SH2 domain protein. It is concluded that high-speed CE has the potential for multiplexed screening of drugs that disrupt protein-protein interactions.
Collapse
Affiliation(s)
- Peilin Yang
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kraly J, Fazal MA, Schoenherr RM, Bonn R, Harwood MM, Turner E, Jones M, Dovichi NJ. Bioanalytical Applications of Capillary Electrophoresis. Anal Chem 2006; 78:4097-110. [PMID: 16771542 DOI: 10.1021/ac060704c] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James Kraly
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Systems biology depends on a comprehensive assignment and characterization of the interactions of proteins and polypeptides (functional proteomics) and of other classes of biomolecules in a given organism. High‐capacity screening methods are in place for ligand capture and interaction screening, but a detailed dynamic characterization of molecular interactions under physiological conditions in efficiently separated mixtures with minimal sample consumption is presently provided only by electrophoretic interaction analysis in capillaries, affinity CE (ACE). This has been realized in different fields of biology and analytical chemistry, and the resulting advances and uses of ACE during the last 2.5 years are covered in this review. Dealing with anything from small divalent metal ions to large supramolecular assemblies, the applications of ACE span from low‐affinity binding of broad specificity being exploited in optimizing selectivity, e.g., in enantiomer analysis to miniaturized affinity technologies, e.g., for fast processing immunoassay. Also, approaches that provide detailed quantitative characterization of analyte–ligand interaction for drug, immunoassay, and aptamer development are increasingly important, but various approaches to ACE are more and more generally applied in biological research. In addition, the present overview emphasizes that distinct challenges regarding sensitivity, parallel processing, information‐rich detection, interfacing with MS, analyte recovery, and preparative capabilities remain. This will be addressed by future technological improvements that will ensure continuing new applications of ACE in the years to come.
Collapse
Affiliation(s)
- Christian Schou
- Department of Autoimmunology, Statens Serum Institute, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Fu H, Guthrie JW, Le XC. Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis 2006; 27:433-41. [PMID: 16331583 DOI: 10.1002/elps.200500460] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding stoichiometries between four DNA aptamers (RT12, RT26, RTlt49, and ODN93) and the reverse transcriptase (RT) of the type 1 human immunodeficiency virus (HIV-1) were studied using affinity CE (ACE) coupled with LIF polarization and fluorescence polarization (FP). The ACE/LIF study showed evidence of two binding stoichiometries between the HIV-1 RT protein and aptamers RT12, RT26, and ODN93, suggesting that these aptamers can bind to both the p66 and p51 subunits of the HIV-1 RT. Only one binding stoichiometry for aptamer RTlt49 was found. The affinity complexes were easily separated from the unbound aptamers; however, the different stoichiometries were not well resolved. A complementary technique, FP, was able to provide additional information about the binding and supporting evidence for the ACE/LIF results. The ACE/LIFP study also revealed that the FP values of the 1:1 complexes of the HIV-1 RT protein with aptamers RT12, RT26, and ODN93 were always much greater than those of the 1:2 complexes. This was initially surprising because the larger molecular size of the 1:2 complexes was expected to result in higher FP values than the corresponding 1:1 complexes. This phenomenon was probably a result of fluorescence resonance energy transfer between the two fluorescent molecules bound to the HIV-1 RT protein.
Collapse
Affiliation(s)
- Hao Fu
- Environmental Health Sciences, Department of Public Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
Abstract
This review article with 304 references describes recent developments in CE of proteins, and covers the two years since the previous review (Hutterer, K., Dolník, V., Electrophoresis 2003, 24, 3998-4012) through Spring 2005. It covers topics related to CE of proteins, including modeling of the electrophoretic migration of proteins, sample pretreatment, wall coatings, improving separation, various forms of detection, special electrophoretic techniques such as affinity CE, CIEF, and applications of CE to the analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals, and recombinant protein preparations.
Collapse
|
13
|
Yang P, Whelan RJ, Jameson EE, Kurzer JH, Argetsinger LS, Carter-Su C, Kabir A, Malik A, Kennedy RT. Capillary Electrophoresis and Fluorescence Anisotropy for Quantitative Analysis of Peptide−Protein Interactions Using JAK2 and SH2-Bβ as a Model System. Anal Chem 2005; 77:2482-9. [PMID: 15828784 DOI: 10.1021/ac048307u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence anisotropy capillary electrophoresis (FACE) and affinity probe capillary electrophoresis (APCE) with laser-induced fluorescence detection were evaluated for analysis of peptide-protein interactions with rapid binding kinetics. The Src homology 2 domain of protein SH2-Bbeta (SH2-Bbeta (525-670)) and a tyrosine-phosphorylated peptide corresponding to the binding sequence of JAK2 were used as a model system. For peptide labeled with fluorescein, the K(d) = 82 +/- 7 nM as measured by fluorescence anisotropy (FA). APCE assays had a limit of detection (LOD) of 100 nM or 12 amol injected for SH2-Bbeta (525-670). The separation time of 4 s, achieved using an electric field of 2860 V/cm on 7-cm-long capillaries, was on the same time scale as complex dissociation allowing K(d) (101 +/- 12 nM in good agreement with FA measurements) and dissociation rate (k(off) = 0.95 +/- 0.02 s(-)(1) corresponding to a half-life of 0.73 s) to be determined. This measurement represents a 30-fold higher rate of complex dissociation than what had previously been measurable by nonequilibrium CE analysis of equilibrium mixtures. Using FACE, the protein was detected with an LOD of 300 nM or 7.5 fmol injected. FACE was not used for determining K(d) or k(off); however, this method provided better separation resolution for multiple forms of the protein than APCE. Both methods were found suitable for analysis of cell lysate. These results demonstrate that FACE and APCE may be useful complements to existing techniques for exploring binding interactions with rapid kinetics.
Collapse
Affiliation(s)
- Peilin Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|