1
|
Dou B, Zhou H, Han X, Wang P. Wedged DNA Walker Coupled with a Bimetallic Metal-Organic Framework Electrocatalyst for Rapid and Sensitive Monitoring of DNA Methylation. Anal Chem 2023; 95:994-1001. [PMID: 36601781 DOI: 10.1021/acs.analchem.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dissociation of the walking strand from the track gives rise to decreased efficiency and long reaction time of DNA walkers. In this work, we constructed a DNA walker combining the introduction of a wedge segment with a bimetallic metal-organic framework (MOF) electrocatalyst to solve this problem. The target methylated DNA acted as a single-legged walker, and the immobilization probe assembled on the track contained a wedge segment that was complementary to the target methylated DNA persistently, inhibiting its dissociation from the track. The fuel strand modified with a bimetallic MOF would drive the target strand to conduct branch migration and move processively along the track. The stepwise movement of the target strand resulted in the loading of numerous bimetallic MOF catalysts to reduce H2O2 at the electrode interface, thereby a significantly increased current response would be obtained for the detection of methylated DNA. This DNA walker achieved a detection limit of 200 aM within 20 min and effectively distinguished DNA with different methylation statuses, which would pave a way for rapid and sensitive monitoring of DNA methylation.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hui Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiguang Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
A Cautionary Tale of Sexing by Methylation: Hybrid Bisulfite-Conversion Sequencing of Immunoprecipitated Methylated DNA in Chrysemys picta Turtles with Temperature-Dependent Sex Determination Reveals Contrasting Patterns of Somatic and Gonadal Methylation, but No Unobtrusive Sex Diagnostic. Animals (Basel) 2022; 13:ani13010117. [PMID: 36611726 PMCID: PMC9817949 DOI: 10.3390/ani13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The gonads of Chrysemys picta, a turtle with temperature-dependent sex determination (TSD), exhibit differential DNA methylation between males and females, but whether the same is true in somatic tissues remains unknown. Such differential DNA methylation in the soma would provide a non-lethal sex diagnostic for TSD turtle hatchings who lack visually detectable sexual dimorphism when young. Methods: Here, we tested multiple approaches to study DNA methylation in tail clips of Chrysemys picta hatchlings, to identify differentially methylated candidate regions/sites that could serve as molecular sex markers To detect global differential methylation in the tails we used methylation-sensitive ELISA, and to test for differential local methylation we developed a novel hybrid method by sequencing immunoprecipitated and bisulfite converted DNA (MeDIP-BS-seq) followed by PCR validation of candidate regions/sites after digestion with a methylation-sensitive restriction enzyme. Results: We detected no global differences in methylation between males and females via ELISA. While we detected inter-individual variation in DNA methylation in the tails, this variation was not sexually dimorphic, in contrast with hatchling gonads. Conclusions: Results highlight that differential DNA methylation is tissue-specific and plays a key role in gonadal formation (primary sexual development) and maintenance post-hatching, but not in the somatic tail tissue.
Collapse
|
3
|
Epigenetic effects of insecticides on early differentiation of mouse embryonic stem cells. Toxicol In Vitro 2021; 75:105174. [PMID: 33865946 DOI: 10.1016/j.tiv.2021.105174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates that many insecticides produce significant epigenetic changes during embryogenesis, leading to developmental toxicities. However, the effects of insecticides on DNA methylation status during early development have not been well studied. We developed a novel nuclear phenotypic approach using mouse embryonic stem cells harboring enhanced green fluorescent protein fused with methyl CpG-binding protein to evaluate global DNA methylation changes via high-content imaging analysis. Exposure to imidacloprid, carbaryl, and o,p'-DDT increased the fluorescent intensity of granules in the nuclei, indicating global DNA methylating effects. However, DNA methylation profiling in cell-cycle-related genes, such as Cdkn2a, Dapk1, Cdh1, Mlh1, Timp3, and Rarb, decreased in imidacloprid treatments, suggesting the potential influence of DNA methylation patterns on cell differentiation. We developed a rapid method for evaluating global DNA methylation and used this approach to show that insecticides pose risks of developmental toxicity through DNA methylation.
Collapse
|
4
|
Wang ZY, Li P, Cui L, Xu Q, Zhang CY. Construction of a Universal and Label-Free Chemiluminescent Sensor for Accurate Quantification of Both Bacteria and Human Methyltransferases. Anal Chem 2020; 92:13573-13580. [DOI: 10.1021/acs.analchem.0c03303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zi-yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Peng Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
5
|
|
6
|
Hu J, Chen Y, Xu X, Wu F, Xing X, Xu Z, Xu J, Weng X, Zhou X. Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine in DNA by selective chemical labeling. Bioorg Med Chem Lett 2014; 24:294-7. [DOI: 10.1016/j.bmcl.2013.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/17/2013] [Accepted: 11/09/2013] [Indexed: 12/14/2022]
|
7
|
Direct determination of 5-methylcytosine based on electrochemical activation of surfactant functionalized graphene modified pyrolytic graphite electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Serpi C, Voulgaropoulos A, Girousi S. Use of Mercury Film Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes in Electrochemical Analysis of DNA. ELECTROANAL 2013. [DOI: 10.1002/elan.201200610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Li W, Wu P, Zhang H, Cai C. Signal Amplification of Graphene Oxide Combining with Restriction Endonuclease for Site-Specific Determination of DNA Methylation and Assay of Methyltransferase Activity. Anal Chem 2012; 84:7583-90. [DOI: 10.1021/ac301990f] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
10
|
Kato D, Goto K, Fujii SI, Takatsu A, Hirono S, Niwa O. Electrochemical DNA methylation detection for enzymatically digested CpG oligonucleotides. Anal Chem 2011; 83:7595-9. [PMID: 21905720 DOI: 10.1021/ac201761c] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the electrochemical detection of DNA methylation through the direct oxidation of both 5-methylcytosine (mC) and cytosine (C) in 5'-CG-3' sequence (CpG) oligonucleotides using a sputtered nanocarbon film electrode after digesting a longer CpG oligonucleotide with endonuclease P1. Direct electrochemistry of the longer CpG oligonucleotides was insufficient for obtaining the oxidation currents of these bases because the CG rich sequence inhibited the direct oxidation of each base in the longer CpG oligonucleotides, owing to the conformational structure and its very low diffusion coefficient. To detect C methylation with better quantitativity and sensitivity in the relatively long CpG oligonucleotides, we successfully used an endonuclease P1 to digest the target CpG oligonucleotide and yield an identical mononucleotide 2'-deoxyribonucleoside 5'-monophosphate (5'-dNMP). Compared with results obtained without P1 treatment, we achieved 4.4 times higher sensitivity and a wider concentration range for mC detection with a resolution capable of detecting a subtle methylated cytosine difference in the CpG oligonucleotides (60mer).
Collapse
Affiliation(s)
- Dai Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Andraos C, Koorsen G, Knight JC, Bornman L. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol 2010; 72:262-8. [PMID: 21168462 DOI: 10.1016/j.humimm.2010.12.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/23/2010] [Accepted: 12/08/2010] [Indexed: 12/24/2022]
Abstract
The Vitamin D receptor (VDR) gene encodes a transcription factor which, on activation by vitamin D, modulates diverse biologic processes, including calcium homeostasis and immune function. Genetic variation involving VDR shows striking differences in allele frequency between populations and has been associated with disease susceptibility, including tuberculosis and autoimmunity, although results have often been conflicting. We hypothesized that methylation of VDR may be population specific and that the combination of differential methylation and genetic variation may characterize tuberculosis (TB) predisposition. We use bisulfite conversion and/or pyrosequencing to analyze the methylation status of 17 CpGs of VDR and to genotype 7 SNPs in the 3' CpG Island (CpG island [CGI] 1060), including the commonly studied SNPs ApaI (rs7975232) and TaqI (rs731236). We show that, for lymphoblastoid cell lines from two ethnically diverse populations (Yoruba from HapMap, n = 30 and Caucasians, n = 30) together with TB cases (n = 32) and controls (n = 29) from the Venda population of South Africa, there are methylation variable positions in the 3' end that significantly distinguish ethnicity (9/17 CpGs) and TB status (3/17 CpGs). Moreover, methylation status shows complex association with TaqI genotype highlighting the need to consider both genetic and epigenetic variants in genetic studies of VDR association with disease.
Collapse
Affiliation(s)
- Charlene Andraos
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | | | | | | |
Collapse
|
12
|
Quantitative detection of DNA methylation states in minute amounts of DNA from body fluids. Methods 2010; 52:242-7. [DOI: 10.1016/j.ymeth.2010.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/20/2010] [Accepted: 03/28/2010] [Indexed: 12/17/2022] Open
|
13
|
Direct electrochemical detection of DNA methylation for retinoblastoma and CpG fragments using a nanocarbon film. Anal Biochem 2010; 405:59-66. [DOI: 10.1016/j.ab.2010.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/13/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
14
|
Burke DG, Griffiths K, Kassir Z, Emslie K. Accurate Measurement of DNA Methylation That Is Traceable to the International System of Units. Anal Chem 2009; 81:7294-301. [DOI: 10.1021/ac901116f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel G. Burke
- National Measurement Institute, Australia, 1 Suakin Street, Pymble, NSW 2073, Australia
| | - Kate Griffiths
- National Measurement Institute, Australia, 1 Suakin Street, Pymble, NSW 2073, Australia
| | - Zena Kassir
- National Measurement Institute, Australia, 1 Suakin Street, Pymble, NSW 2073, Australia
| | - Kerry Emslie
- National Measurement Institute, Australia, 1 Suakin Street, Pymble, NSW 2073, Australia
| |
Collapse
|
15
|
Schumacher A, Petronis A. Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments. Curr Top Microbiol Immunol 2006; 310:81-115. [PMID: 16909908 DOI: 10.1007/3-540-31181-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases.
Collapse
Affiliation(s)
- A Schumacher
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, ON, Toronto, Canada
| | | |
Collapse
|