1
|
Breger JC, Ellis GA, Walper SA, Susumu K, Medintz IL. Implementing Multi-Enzyme Biocatalytic Systems Using Nanoparticle Scaffolds. Methods Mol Biol 2022; 2487:227-262. [PMID: 35687240 DOI: 10.1007/978-1-0716-2269-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interest in multi-enzyme synthesis outside of cells (in vitro) is becoming far more prevalent as the field of cell-free synthetic biology grows exponentially. Such synthesis would allow for complex chemical transformations based on the exquisite specificity of enzymes in a "greener" manner as compared to organic chemical transformations. Here, we describe how nanoparticles, and in this specific case-semiconductor quantum dots, can be used to both stabilize enzymes and further allow them to self-assemble into nanocomplexes that facilitate high-efficiency channeling phenomena. Pertinent protocol information is provided on enzyme expression, choice of nanoparticulate material, confirmation of enzyme attachment to nanoparticles, assay format and tracking, data analysis, and optimization of assay formats to draw the best analytical information from the underlying processes.
Collapse
Affiliation(s)
- Joyce C Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA.
| |
Collapse
|
2
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
3
|
Breger JC, Muttenthaler M, Delehanty JB, Thompson DA, Oh E, Susumu K, Deschamps JR, Anderson GP, Field LD, Walper SA, Dawson PE, Medintz IL. Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. NANOSCALE 2017; 9:10447-10464. [PMID: 28703833 DOI: 10.1039/c7nr03362a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Significant efforts are being undertaken to optimize the cargo carrying capacity and especially the cellular delivery efficiency of functionalized nanoparticles for applications in biological research and pharmacological delivery. One approach to increasing nanoparticle surface cargo display capacity is to decrease the number of moieties required for mediating cellular delivery by improving their efficiency. We describe a series of multivalent cell penetrating peptide (CPP) dendrimers that facilitate rapid cellular delivery of prototypical nanoparticle-semiconductor quantum dots (QDs). The modular CPP dendrimers were assembled through an innovative convergent oxime ligation strategy between (Arg9)n motifs and a dendritic QD-coordination scaffold. Dendrimeric peptides sequentially incorporate a terminal (His)6 motif for metal-affinity QD coordination, a Pro9 spacer, a branching poly-lysine scaffold, and wedged display of (Arg9)n binding motifs with n = 1×, 2×, 4×, 8×, 16× multivalency. QD dendrimer display capacity was estimated using structural simulations and QD-(Arg9)1-16 conjugates characterized by dynamic light scattering along with surface plasmon resonance-based binding assays to heparan sulfate proteoglycan surfaces. Cellular uptake via endocytosis was confirmed and peptide delivery kinetics investigated as a function of QD-(Arg9)1-16 conjugate exposure time and QD assembly ratio where cellular viability assays reflected no overt cytotoxicity. The ability of single dendrimer conjugates to facilitate cellular uptake was confirmed for QD-(Arg9)2-16 repeats along with the ability to deliver >850 kDa of protein cargo per QD. Minimizing the number of CPPs required for cellular uptake is critical for expanding nanoparticle cargo carrying capacity and can allow for inclusion of additional sensors, therapeutics and contrast agents on their surface.
Collapse
Affiliation(s)
- Joyce C Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and American Society for Engineering Education, Washington, DC 20036, USA
| | - Markus Muttenthaler
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA and Institute for Molecular Bioscience, The University of Queensland, 4072 St Lucia, Brisbane, Australia
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Darren A Thompson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA and University of Idaho, Coeur d'Alene, ID 83814, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA and Sotera Defense Solutions, Inc., Columbia, MD 21046, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA and Sotera Defense Solutions, Inc., Columbia, MD 21046, USA
| | - Jeffrey R Deschamps
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
4
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
5
|
Ueda H, Dong J. From fluorescence polarization to Quenchbody: Recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1951-1959. [PMID: 24931832 DOI: 10.1016/j.bbapap.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
Abstract
Recently, antibody-based fluorescent biosensors are receiving considerable attention as a suitable biomolecule for diagnostics, namely, homogeneous immunoassay and also as an imaging probe. To date, several strategies for "reagentless biosensors" based on antibodies and natural and engineered binding proteins have been described. In this review, several approaches are introduced including a recently described fluorescent antibody-based biosensor Quenchbody, which works on the principle of fluorescence quenching of attached dye and its antigen-dependent release. The merits and possible demerits of each approach are discussed. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| | - Jinhua Dong
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| |
Collapse
|
6
|
Ngundi MM, Kulagina NV, Anderson GP, Taitt CR. Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Rev Proteomics 2014; 3:511-24. [PMID: 17078765 DOI: 10.1586/14789450.3.5.511] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunoassays have been well established for many years as the cornerstone of detection technologies. These assays are sensitive, selective and, in general, highly resistant to interference from complex sample matrices when compared with nucleic acid-based tests. However, both antibody- and nucleic acid-based detection systems require a priori knowledge of the target and development of specific reagents; multiplexed assays can become increasingly problematic when attempting to detect a plethora of different targets, the identities of which are unknown. In an effort to circumvent many of the limitations inherent in these conventional assays, other recognition reagents are being explored as alternatives, or indeed as adjuncts, to antibodies for pathogen and toxin detection. This article will review a number of different recognition systems ranging in complexity from small molecules, such as nucleic-acid aptamers, carbohydrates and peptides, to systems as highly complicated as whole cells and organisms. All of these alternative systems have tremendous potential to achieve superior sensitivity, selectivity, and stability, but are also subject to their own limitations, which are also discussed. In short, while in its infancy, this field holds great promise for the development of rapid, fieldable assays that are highly complementary to existing antibody- and nucleic acid-based technologies.
Collapse
Affiliation(s)
- Miriam M Ngundi
- US Food and Drug Administration, N29 RM418 HFM-434 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Fluorometric enzymatic autoindicating biosensor for H2O2 determination based on modified catalase. Biosens Bioelectron 2013; 41:150-6. [DOI: 10.1016/j.bios.2012.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/20/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022]
|
8
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu W, Wang L, Jiang R. Specific Enzyme Immobilization Approaches and Their Application with Nanomaterials. Top Catal 2012. [DOI: 10.1007/s11244-012-9893-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 2011; 22:825-58. [PMID: 21585205 DOI: 10.1021/bc200065z] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.
Collapse
Affiliation(s)
- W Russ Algar
- Center for Bio/Molecular Science and Engineering, Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, DC 20375, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Kuzuya A, Ohnishi T, Yamazaki T, Komiyama M. Dethreading of deoxyribonucleotides through α-cyclodextrin. Chem Asian J 2011; 5:2177-80. [PMID: 20715189 DOI: 10.1002/asia.201000289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
12
|
Pukin AV, Florack DEA, Brochu D, van Lagen B, Visser GM, Wennekes T, Gilbert M, Zuilhof H. Chemoenzymatic synthesis of biotin-appended analogues of gangliosides GM2, GM1, GD1a and GalNAc-GD1a for solid-phase applications and improved ELISA tests. Org Biomol Chem 2011; 9:5809-15. [DOI: 10.1039/c1ob00009h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Terazima M. Time-dependent intermolecular interaction during protein reactions. Phys Chem Chem Phys 2011; 13:16928-40. [DOI: 10.1039/c1cp21868a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Paau MC, Lo CK, Yang X, Choi MM. Capillary electrophoretic study of thiolated α-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions. J Chromatogr A 2009; 1216:8557-62. [DOI: 10.1016/j.chroma.2009.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 11/28/2022]
|
15
|
Brun MA, Tan KT, Nakata E, Hinner MJ, Johnsson K. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. J Am Chem Soc 2009; 131:5873-84. [PMID: 19348459 DOI: 10.1021/ja900149e] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetically encoded fluorescent sensor proteins offer the possibility to probe the concentration of key metabolites in living cells. The approaches currently used to generate such fluorescent sensor proteins lack generality, as they require a protein that undergoes a conformational change upon metabolite binding. Here we present an approach that overcomes this limitation. Our biosensors consist of SNAP-tag, a fluorescent protein and a metabolite-binding protein. SNAP-tag is specifically labeled with a synthetic molecule containing a ligand of the metabolite-binding protein and a fluorophore. In the labeled sensor, the metabolite of interest displaces the intramolecular ligand from the binding protein, thereby shifting the sensor protein from a closed to an open conformation. The readout is a concomitant ratiometric change in the fluorescence intensities of the fluorescent protein and the tethered fluorophore. The observed ratiometric changes compare favorably with those achieved in genetically encoded fluorescent sensor proteins. Furthermore, the modular design of our sensors permits the facile generation of ratiometric fluorescent sensors at wavelengths not covered by autofluorescent proteins. These features should allow semisynthetic fluorescent sensor proteins based on SNAP-tag to become important tools for probing previously inaccessible metabolites.
Collapse
Affiliation(s)
- Matthias A Brun
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Kuzuya A, Ohnishi T, Komiyama M. DNA/α-Cyclodextrin–Rotaxane Conjugate as a New Supramolecular Material. CHEM LETT 2008. [DOI: 10.1246/cl.2008.996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Poon KHN, Cheng YL. A quartz crystal microbalance study of β-cyclodextrin self assembly on gold and complexation of immobilized β-cyclodextrin with adamantane derivatives. J INCL PHENOM MACRO 2007. [DOI: 10.1007/s10847-007-9380-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Villalonga R, Cao R, Fragoso A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chem Rev 2007; 107:3088-116. [PMID: 17590054 DOI: 10.1021/cr050253g] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Sanz V, de Marcos S, Galbán J. A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Biosens Bioelectron 2007; 22:956-64. [PMID: 16750620 DOI: 10.1016/j.bios.2006.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/16/2006] [Accepted: 04/03/2006] [Indexed: 11/25/2022]
Abstract
During the reversible reaction between peroxidase (HRP) and H(2)O(2), several peroxidase intermediate species, showing different molecular absorption spectra, are formed which can be used for H(2)O(2) determination; when H(2)O(2) is generated in a previous enzymatic reaction, the substrate involved in this reaction can also be determined. On this basis, a new family of fully reversible reagentless optical biosensors containing HRP is presented; glucose determination is used as a model. The biosensor (which can be used for at least 6 months and/or more than 750 measurements) is prepared by HRP and glucose oxidase entrapment in a polyacrylamide gel matrix. A mathematical model (in which optical, kinetic and transport aspects are considered) relating the measured absorbance with the substrate concentration is also presented together with a simple methodology for characterization of this kind of biosensor. Regarding the optical model, the Kubelka-Mulk theory of reflectance does not give good results and the biosensors are better described by the Rayleigh theory of polymer solutions. Under working conditions, linear response ranges from 1.5x10(-6) to 3.0x10(-4)M glucose and CV was about 4%. This biosensor has been applied for glucose determination in fruit juices and synthetic serum samples without sample pretreatment.
Collapse
Affiliation(s)
- Vanesa Sanz
- Analytical Biosensors Group, Institute of Nanotechnology of Aragón, Analytical Chemistry Department, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | |
Collapse
|
20
|
Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl 2006; 44:6054-7. [PMID: 16118828 DOI: 10.1002/anie.200501907] [Citation(s) in RCA: 551] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Leyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR. Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 2006; 575:9-15. [PMID: 17723565 DOI: 10.1016/j.aca.2006.05.082] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/12/2006] [Accepted: 05/22/2006] [Indexed: 11/23/2022]
Abstract
Numerous bacteria, plants, and higher organisms produce antimicrobial peptides (AMPs) as part of their innate immune system, providing a chemical defense mechanism against microbial invasion. Many AMPs exert their antimicrobial activity by binding to components of the microbe's surface and disrupting the membrane. The goal of this study was to incorporate AMPs into screening assays for detection of pathogenic species. Surface-immobilized AMPs such as polymyxins B and E could be used to detect Salmonella typhimurium and Escherichia coli O157:H7 in two assay formats: direct and sandwich. Both types of assay confirmed that the peptides were immobilized in active form and could bind cells in a concentration-dependent manner. Cell binding to the AMPs was peptide-density dependent. This method for monitoring pathogen binding was extended to include other cationic AMPs such as cecropin A, magainin I and parasin. Detection limits (LODs) for E. coli O157:H7 and S. typhimurium obtained with AMPs during sandwich assays were in the ranges of 5x10(4) to 5x10(5) and 1x10(5) to 5x10(6)cells mL(-1), respectively. The different AMPs showed significantly different affinities for the two bacterial species; the potential for classification of pathogens based on different binding patterns to AMPs is discussed.
Collapse
Affiliation(s)
- Nadezhda V Kulagina
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC 20375-5348, USA
| | | | | | | | | |
Collapse
|
22
|
Ma G, Cheng Q. Manipulating FRET with polymeric vesicles: development of a "mix-and-detect" type fluorescence sensor for bacterial toxin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6743-5. [PMID: 16863214 DOI: 10.1021/la0613070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A simple "mix-and-detect" type of fluorescence sensor for cholera toxin (CT) is reported. The sensor consists of a BODIPY lipid dye and polydiacetylene (PDA) vesicles and utilizes the lipid insertion and FRET mechanism to offer a direct and fluorescence "turn-on" detection of the analyte. BODIPY conjugated GM1, dissolved in a Tris buffer through aggregate formation, demonstrated substantial fluorescence quenching with addition of PDA vesicle solution. The close proximity of the dye molecules to the conjugated chains as a result of lipid insertion enables energy transfer from dye to the polymer backbone, yielding the observed phenomenon. When CT is present, the binding of BO-GM1 to CT results in formation of a complex that prohibits it from membrane insertion, leading to the blocking of the quenching process. The fluorescence signal was found to be proportional to the CT concentration. The method is very simple and allows specific and sensitive detection of the protein toxin with just a few mixing steps. It can be further developed into a general sensing strategy for detection of other proteins with amplified FRET mechanism.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
23
|
Medintz IL, Deschamps JR. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 2006; 17:17-27. [PMID: 16413768 DOI: 10.1016/j.copbio.2006.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The bacterial periplasmic-binding protein (PBP) superfamily members, in particular the maltose-binding protein, have been used extensively to prototype a variety of biosensing platforms. Although quite diverse at the primary sequence level, this protein superfamily retains the same basic two-domain structure, and upon binding a recognized ligand almost all PBPs undergo a conformational change to a closed structure. This process forms the basis for most, but not all, PBP-based biosensor signal transduction. Many direct detection or reagentless sensing modalities have been utilized with maltose-binding protein for both in vitro and in vivo detection of target compounds. Signal transduction modalities developed to date include direct fluorescence, electrochemical detection, fluorescence resonance energy transfer (FRET)-based detection, surface-tethered FRET sensing, hybrid quantum dot FRET sensing, and enzymatic detection, each of which have different benefits, potential applications and limitations.
Collapse
Affiliation(s)
- Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, Laboratory for the Structure of Matter, Code 6812, US Naval Research Laboratory, WA 20375-5320, USA.
| | | |
Collapse
|
24
|
Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501907] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors. Biosens Bioelectron 2005; 20:2470-87. [PMID: 15854820 DOI: 10.1016/j.bios.2004.10.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 10/24/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
Since discovery and first use in the mid-1970s, evanescent wave fluorescence biosensors have developed into a diverse range of instruments, each designed to meet a particular detection need. In this review, we provide a brief synopsis of what evanescent wave fluorescence biosensors are, how they work, and how they are used. In addition, we have summarized the important patents that have impacted the evolution from laboratory curiosities to fully automated commercial products. Finally, we address the critical issues that evanescent wave fluorescence biosensors will face in the coming years.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375-5348, USA
| | | | | |
Collapse
|
26
|
Medintz IL, Goldman ER, Lassman ME, Hayhurst A, Kusterbeck AW, Deschamps JR. Self-Assembled TNT Biosensor Based on Modular Multifunctional Surface-Tethered Components. Anal Chem 2004; 77:365-72. [PMID: 15649029 DOI: 10.1021/ac048485n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate a self-assembled reagentless biosensor based on a modular design strategy that functions in the detection of TNT and related explosive compounds. The sensor consists of a dye-labeled anti-TNT antibody fragment that interacts with a cofunctional surface-tethered DNA arm. The arm consists of a flexible biotinylated DNA oligonucleotide base specifically modified with a dye and terminating in a TNB recognition element, which is an analogue of TNT. Both of these elements are tethered to a Neutravidin surface with the TNB recognition element bound in the antibody fragment binding site, bringing the two dyes into proximity and establishing a baseline level of fluorescence resonance energy transfer (FRET). Addition of TNT, or related explosive compounds, to the sensor environment alters FRET in a concentration-dependent manner. The sensor can be regenerated repeatedly through washing away of analyte and specific reformation of the sensor assembly, allowing for subsequent detection events. Sensor dynamic range can be usefully altered through the addition of a DNA oligonucleotide that hybridizes to a portion of the cofunctional arm. The modular design of the sensor demonstrates that it can be easily adapted to detect a variety of different analytes.
Collapse
Affiliation(s)
- Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington DC 20375, USA.
| | | | | | | | | | | |
Collapse
|