1
|
Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, Hutchison JA, Hirai K, Fujita Y, Toyouchi S, Krzyzowska S, Van Zundert I, Rocha S, Uji-I H. SERS Endoscopy for Monitoring Intracellular Drug Dynamics. ACS Sens 2023; 8:2340-2347. [PMID: 37219991 DOI: 10.1021/acssensors.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.
Collapse
Affiliation(s)
- Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Monica Ricci
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000 Lille, France
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - James Andell Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567, Japan
| | - Shuichi Toyouchi
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Sandra Krzyzowska
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hiroshi Uji-I
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
2
|
Wang T, Dong J, Yuan X, Wen H, Wu L, Liu J, Sui H, Deng W. A New Chalcone Derivative C49 Reverses Doxorubicin Resistance in MCF-7/DOX Cells by Inhibiting P-Glycoprotein Expression. Front Pharmacol 2021; 12:653306. [PMID: 33927626 PMCID: PMC8076869 DOI: 10.3389/fphar.2021.653306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: C49 is a chalcone derivative. The aim of the current study is to illuminate the efficacy of C49 in reversing multidrug resistance (MDR) in MCF-7/DOX cells and its underlying molecular mechanism. Methods: The cytotoxic effects of C49 on MCF-7/DOX cells were evaluated by MTT assay using different concentration (0-250 μmol/L) of C49. Cell proliferation was evaluated by colony formation assay. Cell death was examined by morphological analysis using Hoechst 33,258 staining. Flow cytometry and immunofluorescence were utilized to evaluate the intracellular accumulation of doxorubicin (DOX) and cell apoptosis. The differentially expressed genns between MCF-7 and MCF-7/DOX cells were analyzed by GEO database. The expression of PI3K/Akt pathway proteins were assessed by Western blot The activities of C49 combined with DOX was evaluated via xenograft tumor model in female BALB/c nude mice. Results: C49 inhibited the growth of MCF-7 cells (IC50 = 59.82 ± 2.10 μmol/L) and MCF-7/DOX cells (IC50 = 65.69 ± 8.11 μmol/L) with dosage-dependent and enhanced the cellular accumulation of DOX in MCF-7/DOX cells. The combination of C49 and DOX inhibited cell proliferation and promoted cell apoptosis. MCF-7/DOX cells regained drug sensibility with the combination treatment through inhibiting the expression of P-gp, p-PI3K and p-Akt proteins. Meanwhile, C49 significantly increased the anticancer efficacy of DOX in vivo. Conclusion: C49 combined with DOX restored DOX sensitivity in MCF-7/DOX cells through inhibiting P-gp protein.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Dong
- Shanghai Bailijia Health Pharmaceutical Technology, Shanghai, China
| | - Xu Yuan
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haotian Wen
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linguangjin Wu
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanli Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Fortuni B, Inose T, Ricci M, Fujita Y, Van Zundert I, Masuhara A, Fron E, Mizuno H, Latterini L, Rocha S, Uji-I H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep 2019; 9:2666. [PMID: 30804375 PMCID: PMC6389875 DOI: 10.1038/s41598-019-39107-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Most targeting strategies of anticancer drug delivery systems (DDSs) rely on the surface functionalization of nanocarriers with specific ligands, which trigger the internalization in cancer cells via receptor-mediated endocytosis. The endocytosis implies the entrapment of DDSs in acidic vesicles (endosomes and lysosomes) and their eventual ejection by exocytosis. This process, intrinsic to eukaryotic cells, is one of the main drawbacks of DDSs because it reduces the drug bioavailability in the intracellular environment. The escape of DDSs from the acidic vesicles is, therefore, crucial to enhance the therapeutic performance at low drug dose. To this end, we developed a multifunctionalized DDS that combines high specificity towards cancer cells with endosomal escape capabilities. Doxorubicin-loaded mesoporous silica nanoparticles were functionalized with polyethylenimine, a polymer commonly used to induce endosomal rupture, and hyaluronic acid, which binds to CD44 receptors, overexpressed in cancer cells. We show irrefutable proof that the developed DDS can escape the endosomal pathway upon polymeric functionalization. Interestingly, the combination of the two polymers resulted in higher endosomal escape efficiency than the polyethylenimine coating alone. Hyaluronic acid additionally provides the system with cancer targeting capability and enzymatically controlled drug release. Thanks to this multifunctionality, the engineered DDS had cytotoxicity comparable to the pure drug whilst displaying high specificity towards cancer cells. The polymeric engineering here developed enhances the performance of DDS at low drug dose, holding great potential for anticancer therapeutic applications.
Collapse
Affiliation(s)
- Beatrice Fortuni
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Tomoko Inose
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan
| | - Monica Ricci
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Yasuhiko Fujita
- Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga, 520-8567, Japan
| | - Indra Van Zundert
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Akito Masuhara
- Yamagata University, department of Engineering, Yonezawa, Yamagata, 992-8510, Japan
| | - Eduard Fron
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Hideaki Mizuno
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Loredana Latterini
- University of Perugia, department of Chemistry, Biology and Biotechnology, via Elce di sotto 8, Perugia, Italy
| | - Susana Rocha
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Hiroshi Uji-I
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan.
| |
Collapse
|
4
|
Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 2016; 77:1119-25. [DOI: 10.1016/j.bios.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023]
|
5
|
Maass KF, Kulkarni C, Quadir MA, Hammond PT, Betts AM, Wittrup KD. A Flow Cytometric Clonogenic Assay Reveals the Single-Cell Potency of Doxorubicin. J Pharm Sci 2015; 104:4409-4416. [PMID: 26344409 DOI: 10.1002/jps.24631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/05/2023]
Abstract
Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions. We find that a cell's ability to proliferate is a surprisingly conserved function of the number of intracellular doxorubicin molecules, resulting in single-cell IC50 values of 4-12 million intracellular doxorubicin molecules. The developed assay is a straightforward method for understanding a drug's single-cell potency and can be used for any fluorescent or fluorescently labeled drug, including nanoparticles or antibody-drug conjugates.
Collapse
Affiliation(s)
- Katie F Maass
- Department of Chemical Engineering, Massachusetts Institute of Technology; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Chethana Kulkarni
- Oncology Medicinal Chemistry, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development
| | - Mohiuddin A Quadir
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Alison M Betts
- Translational Research Group, Department of Pharmacokinetics Dynamics and Metabolism, Pfizer Worldwide Research and Development
| | - Karl Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Department of Biological Engineering, Massachusetts Institute of Technology.
| |
Collapse
|
6
|
Zhang L, Guo L, Ding J, Lu Y, Zhang Y, Chen Y. Folate-decorated Polysaccharide-doxorubicin Polymer: Synthesis, Characterization, and Activity in HeLa Cells. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Zhang
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Lulu Guo
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Jingna Ding
- Anqing Medical and Pharmaceutical College; Anqing 246052 PR China
| | - Yongming Lu
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Yaping Zhang
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Yan Chen
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| |
Collapse
|
7
|
Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Sci Rep 2014; 3:1949. [PMID: 23739489 PMCID: PMC3674426 DOI: 10.1038/srep01949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/20/2013] [Indexed: 01/17/2023] Open
Abstract
Design and efficacy of bioactive drugs is restricted by their (in)ability to traverse cellular membranes. Therapy resistance, a major cause of ineffective cancer treatment, is frequently due to suboptimal intracellular accumulation of the drug. We report a molecular mechanism that promotes trans-membrane movement of a stereotypical, widely used anti-cancer agent to counteract resistance. Well-defined lipid analogues adapt to the amphiphilic drug doxorubicin, when co-inserted into the cell membrane, and assemble a transient channel that rapidly facilitates the translocation of the drug onto the intracellular membrane leaflet. Molecular dynamic simulations unveiled the structure and dynamics of membrane channel assembly. We demonstrate that this principle successfully addresses multi-drug resistance of genetically engineered mouse breast cancer models. Our results illuminate the role of the plasma membrane in restricting the efficacy of established therapies and drug resistance - and provide a mechanism to overcome ineffectiveness of existing and candidate drugs.
Collapse
|
8
|
de Kort BJ, de Jong GJ, Somsen GW. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis: Detector designs, performance and applications: A review. Anal Chim Acta 2013; 766:13-33. [DOI: 10.1016/j.aca.2012.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
|
9
|
Xiao Y, Jaskula-Sztul R, Javadi A, Xu W, Eide J, Dammalapati A, Kunnimalaiyaan M, Chen H, Gong S. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy. NANOSCALE 2012; 4:7185-93. [PMID: 23070403 PMCID: PMC3495135 DOI: 10.1039/c2nr31853a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.
Collapse
Affiliation(s)
- Yuling Xiao
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel: + 1 6083164321
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Wisconsin–Madison, Madison, USA. Tel.: + 1 608 263 1387
| | - Alireza Javadi
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel: + 1 6083164321
| | - Wenjin Xu
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel: + 1 6083164321
| | - Jacob Eide
- Department of Surgery, University of Wisconsin–Madison, Madison, USA. Tel.: + 1 608 263 1387
| | - Ajitha Dammalapati
- Department of Surgery, University of Wisconsin–Madison, Madison, USA. Tel.: + 1 608 263 1387
| | | | - Herbert Chen
- Department of Surgery, University of Wisconsin–Madison, Madison, USA. Tel.: + 1 608 263 1387
| | - Shaoqin Gong
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel: + 1 6083164321
| |
Collapse
|
10
|
Xu J, Liu Y, Yu Y, Ni Q, Chen Y. Subcellular Quantification of Doxorubicin and Its Metabolite in Cultured Human Leukemia Cells Using Liquid Chromatography-Tandem Mass Spectrometry. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.680056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Analysis of anticancer drugs: a review. Talanta 2011; 85:2265-89. [PMID: 21962644 DOI: 10.1016/j.talanta.2011.08.034] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 01/05/2023]
Abstract
In the last decades, the number of patients receiving chemotherapy has considerably increased. Given the toxicity of cytotoxic agents to humans (not only for patients but also for healthcare professionals), the development of reliable analytical methods to analyse these compounds became necessary. From the discovery of new substances to patient administration, all pharmaceutical fields are concerned with the analysis of cytotoxic drugs. In this review, the use of methods to analyse cytotoxic agents in various matrices, such as pharmaceutical formulations and biological and environmental samples, is discussed. Thus, an overview of reported analytical methods for the determination of the most commonly used anticancer drugs is given.
Collapse
|
12
|
Analysis of doxorubicin uptake in single human leukemia K562 cells using capillary electrophoresis coupled with laser-induced fluorescence detection. Anal Bioanal Chem 2011; 401:2143-52. [DOI: 10.1007/s00216-011-5315-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/30/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
|
13
|
Zheng N, Tsai HN, Zhang X, Rosania GR. The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology. Mol Pharm 2011; 8:1619-28. [PMID: 21805990 DOI: 10.1021/mp200092v] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this review, we survey the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge points to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include (1) development of quantitative, non-fluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; (2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; (3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and (4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
14
|
Zhu L, Tu C, Zhu B, Su Y, Pang Y, Yan D, Wu J, Zhu X. Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery. Polym Chem 2011. [DOI: 10.1039/c1py00161b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Laginha KM, Moase EH, Yu N, Huang A, Allen TM. Bioavailability and therapeutic efficacy of HER2 scFv-targeted liposomal doxorubicin in a murine model of HER2-overexpressing breast cancer. J Drug Target 2008; 16:605-10. [DOI: 10.1080/10611860802229978] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Liu S, Wang H, Song M, Yin J, Jiang G. Study of protein binding and micellar partition of highly hydrophobic molecules in a single system using capillary electrophoresis. Electrophoresis 2008; 29:3038-46. [DOI: 10.1002/elps.200800016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Borland LM, Kottegoda S, Phillips KS, Allbritton NL. Chemical analysis of single cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:191-227. [PMID: 20636079 DOI: 10.1146/annurev.anchem.1.031207.113100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.
Collapse
Affiliation(s)
- Laura M Borland
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
18
|
Castro-Puyana M, Crego AL, Marina ML. Recent advances in the analysis of antibiotics by CE and CEC. Electrophoresis 2008; 29:274-93. [DOI: 10.1002/elps.200700485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
20
|
Navratil M, Poe BG, Arriaga EA. Quantitation of DNA copy number in individual mitochondrial particles by capillary electrophoresis. Anal Chem 2007; 79:7691-9. [PMID: 17877423 DOI: 10.1021/ac0709192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present a direct method for determining mitochondrial DNA (mtDNA) copy numbers in individual mitochondrial particles, isolated from cultured cells, by means of capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. We demonstrate that this method can detect a single molecule of PicoGreen-stained mtDNA in intact DsRed2-labeled mitochondrial particles isolated from human osteosarcoma 143B cells. This ultimate limit of mtDNA detection made it possible to confirm that an individual mitochondrial nucleoid, the genetic unit of mitochondrial inheritance, can contain a single copy of mtDNA. The validation of this approach was achieved via monitoring chemically induced mtDNA depletion and comparing the CE-LIF results to those obtained by quantitative microscopy imaging and multiplex real-time PCR analysis. Owing to its sensitivity, the CE-LIF method may become a powerful tool for investigating the copy number and organization of mtDNA in mitochondrial disease and aging, and in molecular biology techniques requiring manipulation and quantitation of DNA molecules such as plasmids.
Collapse
Affiliation(s)
- Marian Navratil
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
21
|
Liu H, Gao Y, Hu Z. Determination of critical micelle concentration values by capillary electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2007. [DOI: 10.1134/s106193480702013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|