1
|
Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
von Schantz L, Schagerlöf H, Nordberg Karlsson E, Ohlin M. Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules. BMC Biotechnol 2014; 14:113. [PMID: 25540113 PMCID: PMC4302574 DOI: 10.1186/s12896-014-0113-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Derivatized celluloses, such as methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), are of pharmaceutical importance and extensively employed in tablet matrices. Each batch of derivatized cellulose is thoroughly characterized before utilized in tablet formulations as batch-to-batch differences can affect drug release. The substitution pattern of the derivatized cellulose polymers, i.e. the mode on which the substituent groups are dispersed along the cellulose backbone, can vary from batch-to-batch and is a factor that can influence drug release. RESULTS In the present study an analytical approach for the characterization of the substitution pattern of derivatized celluloses is presented, which is based on the use of carbohydrate-binding modules (CBMs) and affinity electrophoresis. CBM4-2 from Rhodothermus marinus xylanase 10A is capable of distinguishing between batches of derivatized cellulose with different substitution patterns. This is demonstrated by a higher migration retardation of the CBM in acrylamide gels containing batches of MC and HPMC with a more heterogeneous distribution pattern. CONCLUSIONS We conclude that CBMs have the potential to characterize the substitution pattern of cellulose derivatives and anticipate that with use of CBMs with a very selective recognition capacity it will be possible to more extensively characterize and standardize important carbohydrates used for instance in tablet formulation.
Collapse
|
3
|
Vlakh EG, Tennikova TB. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J Sep Sci 2013; 36:1149-67. [DOI: 10.1002/jssc.201201090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Evgenia G. Vlakh
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
4
|
|
5
|
Effect of alkylamine on activity and stability of immobilized angiotensin converting enzyme. CATAL COMMUN 2012. [DOI: 10.1016/j.catcom.2012.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Ponomareva E, Kartuzova V, Vlakh E, Tennikova T. Monolithic bioreactors: Effect of chymotrypsin immobilization on its biocatalytic properties. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:567-74. [DOI: 10.1016/j.jchromb.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
7
|
Adden R, Melander C, Brinkmalm G, Knarr M, Engelhardt J, Mischnick P. The Applicability of Enzymes in Cellulose Ether Analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/masy.200950605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Laiwattanapaisal W, Yakovleva J, Bengtsson M, Laurell T, Wiyakrutta S, Meevootisom V, Chailapakul O, Emnéus J. On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate. BIOMICROFLUIDICS 2009; 3:14104. [PMID: 19693397 PMCID: PMC2717601 DOI: 10.1063/1.3098319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/18/2009] [Indexed: 05/13/2023]
Abstract
Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of 235 mum depth and 25 mum width and (ii) polystyrene Poros beads with a particle size of 20 mum. The immobilized enzymes recycle L-glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH, which was monitored by fluorescence detection (epsilon(ex)=340 nm, epsilon(em)=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1-50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for L-glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where L-glutamate recoveries were between 91% and 108% in the presence of six other L-amino acids tested.
Collapse
|
9
|
Bindila L, Peter-Katalinić J. Chip-mass spectrometry for glycomic studies. MASS SPECTROMETRY REVIEWS 2009; 28:223-253. [PMID: 19145581 DOI: 10.1002/mas.20197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The introduction of micro- and nanochip front end technologies for electrospray mass spectrometry addressed a major challenge in carbohydrate analysis: high sensitivity structural determination and heterogeneity assessment in high dynamic range mixtures of biological origin. Chip-enhanced electrospray ionization was demonstrated to provide reproducible performance irrespective of the type of carbohydrate, while the amenability of chip systems for coupling with different mass spectrometers greatly advance the chip/MS technique as a versatile key tool in glycomic studies. A more accurate representation of the glycan repertoire to include novel biologically-relevant information was achieved in different biological sources, asserting this technique as a valuable tool in glycan biomarker discovery and monitoring. Additionally, the integration of various analytical functions onto chip devices and direct hyphenation to MS proved its potential for glycan analysis during the recent years, whereby a new analytical tool is on the verge of maturation: lab-on-chip MS glycomics. The achievements until early beginning of 2007 on the implementation of chip- and functional integrated chip/MS in systems glycobiology studies are reviewed here.
Collapse
Affiliation(s)
- Laura Bindila
- Institute for Medical Physics and Biophysics, University of Münster, Robert Koch Str. 31, 48149 Münster, Germany.
| | | |
Collapse
|
10
|
Grandori R, Santambrogio C, Brocca S, Invernizzi G, Lotti M. Electrospray-ionization mass spectrometry as a tool for fast screening of protein structural properties. Biotechnol J 2009; 4:73-87. [DOI: 10.1002/biot.200800250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Blanes L, Mora M, do Lago C, Ayon A, García C. Lab-on-a-Chip Biosensor for Glucose Based on a Packed Immobilized Enzyme Reactor. ELECTROANAL 2007. [DOI: 10.1002/elan.200704001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Nilsson C, Asplund A, Schagerlöf H, Melander C, Andersen A, Tjerneld F, Cohen A, Gorton L. Studies of the separation and characterisation of mixtures of starch and cellulose derivatives by use of chromatography and mass spectrometry. Anal Bioanal Chem 2007; 387:2045-55. [PMID: 17252221 DOI: 10.1007/s00216-006-1094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/04/2006] [Accepted: 12/12/2006] [Indexed: 11/26/2022]
Abstract
In this work a method was developed for characterisation of commercially available polymers consisting of mixtures of substituted cellulose and starch. Selective hydrolysis with specific enzymes was used to achieve separation of the two polymers in the mixture. Enzymes hydrolysing (1-->4)-alpha-D and (1-->6)-alpha-D-glycosidic bonds were used for the starch part and enzymes hydrolysing (1-->4)-beta-D-glycosidic bonds for the cellulose part. The hydrolysed fraction was separated from the unhydrolysed fraction and characterised by use of size-exclusion chromatography (SEC), to confirm that enzyme hydrolysis of the different polymers had occurred. High-performance anion-exchange chromatography (HPAEC) was performed to determine the amount of unmodified glucose units (UGU) in the fractions. Electrospray ionisation mass spectrometry (ESIMS) was used for determination of the substituents. All products were converted to monomers by acid hydrolysis to simplify mass spectral identification of the substituents. The monomers were further subjected to acetylation with acetic acid anhydride to facilitate identification of the substituents. By combining the results from the different analytical techniques a picture of the samples was obtained.
Collapse
Affiliation(s)
- C Nilsson
- Department of Analytical Chemistry, Lund University, and Department of Occupational and Environmental Medicine, Institute of Laboratory Medicine, University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ressine A, Marko-Varga G, Laurell T. Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:149-200. [PMID: 17875477 DOI: 10.1016/s1387-2656(07)13007-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One attractive method for monitoring biomolecular interactions in a highly parallel fashion is the use of microarrays. Protein microarray technology is an emerging and promising tool for protein analysis, which ultimately may have a large impact in clinical diagnostics, drug discovery studies and basic protein research. This chapter is based upon several original papers presenting our effort in the development of new protein microarray chip technology. The work describes a novel 3D surface/platform for protein characterization based on porous silicon. The simple adjustment of pore morphology and geometry offers a convenient way to control wetting behavior of the microarray substrates. In this chapter, an interesting insight into the surface role in bioassays performance is made. The up-scaled fabrication of the novel porous chips is demonstrated and stability of the developed supports as well as the fluorescent bioassay reproducibility and data quality issues are addressed. We also describe the efforts made by our group to link protein microarrays to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), suggesting porous silicon as a convenient platform for fast on-surface protein digestion protocols linked to MS-readout. The fabrication of ultra- and superhydrophobic states on porous silicon is also described and the utilization of these water-repellent properties for a new microscaled approach to superhydrophobic MALDI-TOF MS target anchor chip is covered.
Collapse
Affiliation(s)
- Anton Ressine
- Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
14
|
Adden R, Melander C, Brinkmalm G, Gorton L, Mischnick P. New Approaches to the Analysis of Enzymatically Hydrolyzed Methyl Cellulose. Part 1. Investigation of the Influence of Structural Parameters on the Extent of Degradation. Biomacromolecules 2006; 7:1399-409. [PMID: 16677020 DOI: 10.1021/bm050941+] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six methyl celluloses (MCs), one with a degree of substitution (DS) of 1.32 and five with DS between 1.83 and 1.88, were thoroughly investigated. Monomer composition and methyl distribution in the polymer chain were analyzed after total or partial random hydrolysis and appropriate derivatization with gas chromatography (GC) and mass spectrometry (MS), respectively, and used as reference data. The same MCs were then hydrolyzed with an enzyme preparation of Trichoderma longibrachiatum and further investigated with size-exclusion chromatography with multiangle light scattering and refractive index detection (SEC-MALS/RI) and MS. Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) in combination with various MS analyzers were compared with respect to quantification of the degradation products directly and after perdeuteriomethylation. The methyl group distribution in the oligomeric fractions and the average DS as a function of chain length were calculated from ESI mass spectra. With help of the reference analysis, patterns could be corrected for the unspecific contribution of end groups. By labeling and ESI tandem MS, our knowledge about the tolerance of the enzymes' sub-sites with respect to the number of methyl groups could be improved.
Collapse
Affiliation(s)
- Roland Adden
- TU Braunschweig, Institut für Lebensmittelchemie, Schleinitzstr. 20, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
15
|
Melander C, Tüting W, Bengtsson M, Laurell T, Mischnick P, Gorton L. Hydrolysis of Maltoheptaose in Flow through Silicon Wafer Microreactors Containing Immobilised α-Amylase and Glycoamylase. STARCH-STARKE 2006. [DOI: 10.1002/star.200500450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Melander C, Adden R, Brinkmalm G, Gorton L, Mischnick P. New Approaches to the Analysis of Enzymatically Hydrolyzed Methyl Cellulose. Part 2. Comparison of Various Enzyme Preparations. Biomacromolecules 2006; 7:1410-21. [PMID: 16677021 DOI: 10.1021/bm0509422] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this part of our studies, dealing with new approaches to the analysis of enzymatically hydrolyzed methyl cellulose, five different enzymes or enzyme preparations containing endoglucanases (from Bacillus agaradhaerens Cel 5A, Trichoderma reesei, Trichoderma viride, and two obtained from Trichoderma longibrachiatum) were used to hydrolyze six different methyl celluloses (MCs). The main goal was to investigate whether enzymes could be used for determination of the heterogeneity of the substituent distribution along the cellulose chain. To obtain information about the heterogeneity, it was necessary to gather information on how the enzymes affect hydrolysis. Size exclusion chromatography with multi-angle light scattering and refractive index detection (SEC-MALS/RI) was used to estimate the molar mass distribution of the MCs before and after hydrolysis. A novel internal standard addition method in combination with electrospray ionization ion trap mass spectrometry (ESI-ITMS) was used to determine the amount of formed oligomers. Two MCs, one with a degree of substitution (DS) of 1.8 and one with DS 1.3, were hydrolyzed with all of the five enzymes. The yield of summarized di- and trisaccharides was approximately 2% of the hydrolysis products for the MC with DS 1.8, whereas the product mixture, obtained from a MC with a DS of 1.3, contained 7-16% di- and trisaccharides. By a novel sample preparation method in combination with ESI-IT tandem MS, outlined in part 1 of this work, it was shown that the enzymes produced oligomers with the reducing end bearing no or only one substituent. Comparison of the methyl pattern at the nonreducing ends of the dimers and trimers indicated that the -2 subsite of the active complex is less tolerant than subsites -3 and +1. All enzymes had similar general selectivity toward the methyl substituents but also showed some differences. From both SEC-MALS/RI and ESI-ITMS, differences with respect to substituent distribution of MCs could be recognized but not for each enzyme used. Basic considerations for enzymatic hydrolysis and analysis of methyl cellulose were listed as a consequence of the results from the work.
Collapse
Affiliation(s)
- Claes Melander
- Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
17
|
Varma S, Yigzaw Y, Gorton L. Prussian blue-glutamate oxidase modified glassy carbon electrode: A sensitive l-glutamate and β-N-oxalyl-α,β-diaminopropionic acid (β-ODAP) sensor. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Melander C, Bengtsson M, Schagerlöf H, Tjerneld F, Laurell T, Gorton L. Investigation of micro-immobilised enzyme reactors containing endoglucanases for efficient hydrolysis of cellodextrins and cellulose derivatives. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.06.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|