1
|
Abstract
We demonstrate the use of open-surface microfluidics to sequence DNA by pyrosequencing at the plain hydrophobically coated surface of a microscope glass cover slip. This method offers significant advantages in terms of instrument size, simplicity, disposability, and functional integration, particularly when combined with the broad and flexible capabilities of open-surface microfluidics. The DNA was incubated on superparamagnetic particles and placed on a hydrophobically coated glass substrate. The particles with bound DNA were moved using magnetic force through microliter-sized droplets covered with mineral oil to prevent water evaporation from the droplets. These droplets served as reaction "stations" performing pyrosequencing as well as washing stations. The resequencing protocol with 34-mer single-stranded DNA (ssDNA) was used to determine the reaction performance. The de novo sequencing was performed with 51-mer and 81-mer ssDNA. The method can be integrated with previously shown sample preparation and PCR into a single sample-to-answer system on a plain glass surface.
Collapse
Affiliation(s)
- Ana V Almeida
- KIST-Europe, Microfluidics Group, Campus E7.1, 66111 Saarbrücken, Germany.
| | | | | |
Collapse
|
2
|
Abstract
High-throughput sequencing (HTS) methods for analyzing RNA populations (RNA-Seq) are gaining rapid application to many experimental situations. The steps in an RNA-Seq experiment require thought and planning, especially because the expense in time and materials is currently higher and the protocols are far less routine than those used for other high-throughput methods, such as microarrays. As always, good experimental design will make analysis and interpretation easier. Having a clear biological question, an idea about the best way to do the experiment, and an understanding of the number of replicates needed will make the entire process more satisfying. Whether the goal is capturing transcriptome complexity from a tissue or identifying small fragments of RNA cross-linked to a protein of interest, conversion of the RNA to cDNA followed by direct sequencing using the latest methods is a developing practice, with new technical modifications and applications appearing every day. Even more rapid are the development and improvement of methods for analysis of the very large amounts of data that arrive at the end of an RNA-Seq experiment, making considerations regarding reproducibility, validation, visualization, and interpretation increasingly important. This introduction is designed to review and emphasize a pathway of analysis from experimental design through data presentation that is likely to be successful, with the recognition that better methods are right around the corner.
Collapse
|
3
|
Abstract
In the coming years, genetic test results will be increasingly used as indicators that influence medical decision making. Novel instrumentation that is able to detect relevant mutations in a point-of-care setting is being developed to facilitate this increase, frequently as a spin-off from recent research in the area of biothreat monitoring. This market review will describe the current generation of instrumentation that is most suitable for use in a point-of-care setting; it will also try to identify some of the technologies that will make-up the next generation of instrumentation currently being prepared for the market.
Collapse
Affiliation(s)
- Mark G Dobson
- National Centre for Medical Genetics, University College Dublin, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | | | | |
Collapse
|
4
|
Boles DJ, Benton JL, Siew GJ, Levy MH, Thwar PK, Sandahl MA, Rouse JL, Perkins LC, Sudarsan AP, Jalili R, Pamula VK, Srinivasan V, Fair RB, Griffin PB, Eckhardt AE, Pollack MG. Droplet-based pyrosequencing using digital microfluidics. Anal Chem 2011; 83:8439-47. [PMID: 21932784 DOI: 10.1021/ac201416j] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.
Collapse
Affiliation(s)
- Deborah J Boles
- Advanced Liquid Logic Incorporated, Research Triangle Park, North Carolina, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mary P, Chen A, Chen I, Abate AR, Weitz DA. On-chip background noise reduction for cell-based assays in droplets. LAB ON A CHIP 2011; 11:2066-70. [PMID: 21541376 DOI: 10.1039/c1lc20159j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Droplet-based microfluidics provides an excellent platform for high-throughput biological assays. Each droplet serves as a reaction vessel with a volume as small as a few picolitres. This is an important technology for a high variety of applications. However this technology is restricted to homogeneous assays as it is very difficult to wash reagents from the reaction vessel. To help overcome this limitation, we introduce a method to effectively dilute the content of a droplet while retaining the high throughput. We use electrocoalescence to merge the parent drop with a much larger drop containing only solvent, thereby increasing the volume of the drop by as much as a factor of 14. Three T-junctions then break the larger drop into eight smaller droplets. This dilution and break-up process can be repeated, thus leading to many drops comparable in size to the original one but with much lower concentration of reagents. The system is fully integrated in a PDMS device. To demonstrate its power, we perform a labelling reaction at the surface of the cells by coencapsulating yeast cells expressing S6 peptide tags with the enzyme SFP synthase and the fluorescent substrate CoA 488. After reaction, the droplets are diluted twice using the system and the intensity of their fluorescence is measured. This noise reduction method enables us to more easily distinguish the fluorescence at the surface of a single cell from the fluorescent background inside the droplet.
Collapse
Affiliation(s)
- Pascaline Mary
- School of Engineering and Applied Sciences/Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
6
|
Welch ERF, Lin YY, Madison A, Fair RB. Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 2010; 6:165-76. [PMID: 21298802 DOI: 10.1002/biot.201000324] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/02/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022]
Abstract
The results of investigations into performing DNA sequencing chemistry on a picoliter-scale electrowetting digital microfluidic platform are reported. Pyrosequencing utilizes pyrophosphate produced during nucleotide base addition to initiate a process ending with detection through a chemiluminescence reaction using firefly luciferase. The intensity of light produced during the reaction can be quantified to determine the number of bases added to the DNA strand. The logic-based control and discrete fluid droplets of a digital microfluidic device lend themselves well to the pyrosequencing process. Bead-bound DNA is magnetically held in a single location, and wash or reagent droplets added or split from it to circumvent product dilution. Here we discuss the dispensing, control, and magnetic manipulation of the paramagnetic beads used to hold target DNA. We also demonstrate and characterize the picoliter-scale reaction of luciferase with adenosine triphosphate to represent the detection steps of pyrosequencing and all necessary alterations for working on this scale.
Collapse
Affiliation(s)
- Erin R Ferguson Welch
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
7
|
Shuga J, Zeng Y, Novak R, Mathies RA, Hainaut P, Smith MT. Selected technologies for measuring acquired genetic damage in humans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:851-870. [PMID: 20872848 DOI: 10.1002/em.20630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Technical advances have improved the capacity to detect and quantify genetic variants, providing novel methods for the detection of rare mutations and for better understanding the underlying environmental factors and biological mechanisms contributing to mutagenesis. The polymerase chain reaction (PCR) has revolutionized genetic testing and remains central to many of these new techniques for mutation detection. Millions of genetic variations have been discovered across the genome. These variations include germline mutations and polymorphisms, which are inherited in a Mendelian manner and present in all cells, as well as acquired, somatic mutations that differ widely by type and size [from single-base mutations to whole chromosome rearrangements, and including submicroscopic copy number variations (CNVs)]. This review focuses on current methods for assessing acquired somatic mutations in the genome, and it examines their application in molecular epidemiology and sensitive detection and analysis of disease. Although older technologies have been exploited for detecting acquired mutations in cancer and other disease, the high-throughput and high-sensitivity offered by next-generation sequencing (NGS) systems are transforming the discovery of disease-associated acquired mutations by enabling comparative whole-genome sequencing of diseased and healthy tissues from the same individual. Emerging microfluidic technologies are beginning to facilitate single-cell genetic analysis of target variable regions for investigating cell heterogeneity within tumors as well as preclinical detection of disease. The technologies discussed in this review will significantly expand our knowledge of acquired genetic mutations and causative mechanisms.
Collapse
Affiliation(s)
- Joe Shuga
- School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
8
|
Pyrosequencing enhancement for better detection limit and sequencing homopolymers. Biochem Biophys Res Commun 2010; 401:117-23. [PMID: 20833128 DOI: 10.1016/j.bbrc.2010.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/05/2010] [Indexed: 11/24/2022]
Abstract
Pyrosequencing is a DNA sequencing technique based on sequencing-by-synthesis enabling rapid and real-time sequence determination. Although ample genomic research has been undertaken using pyrosequencing, the requirement of relatively high amount of DNA template and the difficulty in sequencing the homopolymeric regions limit its key advantages in the applications directing towards clinical research. In this study, we demonstrate that pyrosequencing on homopolymeric regions with 10 identical nucleotides can be successfully performed with optimal amount of DNA (0.3125-5 pmol) immobilized on conventional non-porous Sepharose beads. We also validate that by using porous silica beads, the sequencing signal increased 3.5-folds as compared to that produced from same amount of DNA immobilized on solid Sepharose beads. Our results strongly indicate that with optimized quantity of DNA and suitable solid support, the performance of pyrosequencing on homopolymeric regions and its detection limit has been significantly improved.
Collapse
|
9
|
Russom A, Irimia D, Toner M. Chemical gradient-mediated melting curve analysis for genotyping of SNPs. Electrophoresis 2009; 30:2536-43. [PMID: 19593749 DOI: 10.1002/elps.200800729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This report describes a microfluidic solid-phase chemical gradient-mediated melting curve analysis method for SNP analysis. The method is based on allele-specific denaturation to discriminate mismatched (MM) from perfectly matched (PM) DNA duplexes upon exposure to linear chemical gradient. PM and MM DNA duplexes conjugated on beads are captured in a microfluidic gradient generator device designed with dams, keeping the beads trapped perpendicular to a gradient generating channel. Two denaturants, formamide and urea, were tested for their ability to destabilize the DNA duplex by competing with Watson-Crick pairing. Upon exposure to the chemical gradient, rapid denaturing profile was monitored in real time using fluorescence microscopy. The results show that the two duplexes exhibit different kinetics of denaturation profiles, enabling discrimination of MM from PM DNA duplexes to score SNP.
Collapse
Affiliation(s)
- Aman Russom
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA 02114, USA
| | | | | |
Collapse
|
10
|
Liu X, Lo RC, Gomez FA. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads. Electrophoresis 2009; 30:2129-33. [PMID: 19582716 DOI: 10.1002/elps.200900041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An enzyme-catalyzed microfluidic assay using magnetic micro-beads is described. Here, diaphorase (DI) (E.C. 1.6.99) is covalently attached to the magnetic micro-beads (2.7 mum) and integrated into a short section of a microchip fabricated from PDMS. DI converts non-fluorescent resazurin to fluorescent resorufin in the presence of nicotinamide adenine dinucleotide phosphate (NADH). In this work, an embedded magnet holds the micro-beads in place within the microchannel while a solution of resazurin and NADH in buffer is flowed through the beads. Incorporation of the micro-beads into the microchannel requires only a few minutes and offers well-defined spatial resolution and reproducibility. At a flow rate of 41.2 microL/h, a stable state for the enzyme reaction in the microfluidic format was achieved within 50 s. The maximum conversion of the reaction was obtained at a concentration of 1.25 mM NADH. The reaction yield is affected by ZnCl(2) and at concentrations in excess of 90.0 mM, the activity of DI was almost double without ZnCl(2). At 5.2 mM potassium chloride, the activity of DI reached its maximum value. Overall, the conversion of resazurin in microfluidic format was more than twice than that in a batch assay.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032-8202, USA
| | | | | |
Collapse
|
11
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
12
|
Yoshino T, Nishimura T, Mori T, Suzuki S, Kambara H, Takeyama H, Matsunaga T. Nano-sized bacterial magnetic particles displaying pyruvate phosphate dikinase for pyrosequencing. Biotechnol Bioeng 2009; 103:130-7. [PMID: 19170242 DOI: 10.1002/bit.22240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a high demand for inexpensive and high-throughput DNA sequencing technologies in molecular biology and applied biosciences. In this study, novel nano-sized magnetic particles displaying enzymes for pyrosequencing, a rather novel bioluminometric DNA sequencing method based on the sequencing-by-synthesis principle by employing a cascade of several enzymatic reactions, was developed. A highly thermostable enzyme, pyruvate phosphate dikinase (PPDK) which converts PPi to ATP was successfully expressed onto bacterial magnetic particles (BacMPs) using a novel protein display system of Magnetospirillum magneticum AMB-1. The enzymatic stability of BacMPs displaying PPDK (PPDK-BacMPs) to pH and temperature was evaluated and its broad range of properties was shown. Subsequently, PPDK-BacMPs were applied in pyrosequencing and a target oligonucleotide was successfully sequenced. The PPDK enzyme displayed on BacMPs was shown to be recyclable in each sequence reaction as they can be manipulated by magnetic force. It was concluded that nano-sized PPDK-BacMPs are useful for the scale down of pyrosequencing reaction volumes, thus, permitting high-throughput. The recycling of enzymes was also shown to be promising and applicable for the development of an inexpensive DNA sequencing at a low running cost.
Collapse
Affiliation(s)
- Tomoko Yoshino
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ohno KI, Tachikawa K, Manz A. Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis 2008; 29:4443-53. [DOI: 10.1002/elps.200800121] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Roman GT, Kennedy RT. Fully integrated microfluidic separations systems for biochemical analysis. J Chromatogr A 2007; 1168:170-88; discussion 169. [PMID: 17659293 DOI: 10.1016/j.chroma.2007.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Over the past decade a tremendous amount of research has been performed using microfluidic analytical devices to detect over 200 different chemical species. Most of this work has involved substantial integration of fluid manipulation components such as separation channels, valves, and filters. This level of integration has enabled complex sample processing on miniscule sample volumes. Such devices have also demonstrated high throughput, sensitivity, and separation performance. Although the miniaturization of fluidics has been highly valuable, these devices typically rely on conventional ancillary equipment such as power supplies, detection systems, and pumps for operation. This auxiliary equipment prevents the full realization of a "lab-on-a-chip" device with complete portability, autonomous operation, and low cost. Integration and/or miniaturization of ancillary components would dramatically increase the capability and impact of microfluidic separations systems. This review describes recent efforts to incorporate auxiliary equipment either as miniaturized plug-in modules or directly fabricated into the microfluidic device.
Collapse
Affiliation(s)
- Gregory T Roman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- John H Leamon
- RainDance Technologies, Inc., 530 Whitfield Street, Guilford, Connecticut 06437, USA.
| | | |
Collapse
|
16
|
Dittrich PS, Tachikawa K, Manz A. Micro Total Analysis Systems. Latest Advancements and Trends. Anal Chem 2006; 78:3887-908. [PMID: 16771530 DOI: 10.1021/ac0605602] [Citation(s) in RCA: 564] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra S Dittrich
- Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | | | | |
Collapse
|
17
|
Salk JJ, Sanchez JA, Pierce KE, Rice JE, Soares KC, Wangh LJ. Direct amplification of single-stranded DNA for pyrosequencing using linear-after-the-exponential (LATE)-PCR. Anal Biochem 2006; 353:124-32. [PMID: 16540077 PMCID: PMC1533996 DOI: 10.1016/j.ab.2006.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 12/21/2022]
Abstract
Pyrosequencing is a highly effective method for quantitatively genotyping short genetic sequences, but it currently is hampered by a labor-intensive sample preparation process designed to isolate single-stranded DNA from double-stranded products generated by conventional PCR. Here linear-after-the-exponential (LATE)-PCR is introduced as an efficient and potentially automatable method of directly amplifying single-stranded DNA for pyrosequencing, thereby eliminating the need for solid-phase sample preparation and reducing the risk of laboratory contamination. These improvements are illustrated for single-nucleotide polymorphism genotyping applications, including an integrated single-cell-through-sequencing assay to detect a mutation at the globin IVS 110 site that frequently is responsible for beta-thalassemia.
Collapse
Affiliation(s)
- Jesse J Salk
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent advances in sequencing technologies have led to a remarkable increase in the number of sequenced fungal genomes. Several important plant pathogenic fungi are among those that have been sequenced or are being sequenced. Additional fungal pathogens are likely to be sequenced in the near future. Analysis of the available genomes has provided useful information about genes that may be important for plant infection and colonization. Genome features, such as repetitive sequences, telomeres, conserved syntenic blocks, and expansion of pathogenicity-related genes, are discussed in detail with Magnaporthe oryzae (M. grisea) and Fusarium graminearum as examples. Functional and comparative genomic studies in plant pathogenic fungi, although still in the early stages and limited to a few pathogens, have enormous potential to improve our understanding of the molecular mechanisms involved in host-pathogen interactions. Development of advanced genomics tools and infrastructure is critical for efficient utilization of the vast wealth of available genome sequence information and will form a solid foundation for systems biology studies of plant pathogenic fungi.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|