1
|
Stolpovskaya EV, Trofimova NN, Babkin VA, Zhitov RG. A Study and Optimization of Complexation of Cobalt Ions with Dihydroquercetin in Aqueous Solutions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162020070158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
3
|
Deng Y, Luo YF, An LN, Yue T, Gilani MRHS, Liang GL. Covalent Conjugation of Fluorescence Probes to Nanoparticles for Signal Enhancement. CHEM LETT 2013. [DOI: 10.1246/cl.130424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yun Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Yu-feng Luo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Lin-na An
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Ting Yue
- School of Life Sciences, University of Science and Technology of China
| | - M. Rehan H. Shah Gilani
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
- Department of Chemistry, The Islamia University of Bahawalpur
| | - Gao-lin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| |
Collapse
|
4
|
Ledvina AR, Lee MV, McAlister GC, Westphall MS, Coon JJ. Infrared multiphoton dissociation for quantitative shotgun proteomics. Anal Chem 2012; 84:4513-9. [PMID: 22480380 DOI: 10.1021/ac300367p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low-pressure trap of a dual-cell quadrupole linear ion trap (dual-cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly, outperforms resonant-excitation collisional-activated dissociation (CAD) for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT rf amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass to charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides.
Collapse
Affiliation(s)
- Aaron R Ledvina
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | | | | | |
Collapse
|
5
|
Brückmann L, Tyrra W, Mathur S, Berden G, Oomens J, Meijer AJHM, Schäfer M. Examination of the Coordination Sphere of AlIII in Trifluoromethyl-Heteroarylalkenolato Complex Ions by Gas-Phase IRMPD Spectroscopy and Computational Modelling. Chemphyschem 2012; 13:2037-45. [DOI: 10.1002/cphc.201200132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 11/05/2022]
|
6
|
Brodbelt JS. Shedding light on the frontier of photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:197-206. [PMID: 21472579 DOI: 10.1007/s13361-010-0023-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The development of new ion activation/dissociation methods is motivated by the need for more versatile ways to characterize structures of ions, especially in the growing arena of biological mass spectrometry in which better tools for determining sequences, modifications, interactions, and conformations of biopolymers are essential. Although most agree that collision-induced dissociation (CID) remains the gold standard for ion activation/dissociation, recent inroads in electron- and photon-based activation methods have cemented their role as outstanding alternatives. This article will focus on the impact of photodissociation, including its strengths and drawbacks as an analytical tool, and its potential for further development in the next decade. Moreover, the discussion will emphasize photodissociation in quadrupole ion traps, because that platform has been used for one of the greatest arrays of new applications over the past decade.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Vasicek L, Brodbelt JS. Enhancement of ultraviolet photodissociation efficiencies through attachment of aromatic chromophores. Anal Chem 2010; 82:9441-6. [PMID: 20961088 DOI: 10.1021/ac102126s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two N-terminal derivatization reagents containing aromatic chromophores, 4-sulfophenyl isothiocyanate (SPITC) and 4-methylphosphonophenyl isothiocyanate (PPITC), were used to increase the dissociation efficiencies of peptides upon ultraviolet photodissociation (UVPD) at 193 nm. The resulting UVPD spectra are dominated by C-terminal ions, including y, z, x, v, and w ions, and immonium ions. The attachment of the PPITC or SPITC groups leads to a reduction in the number and abundances of N-terminal ions because the added phosphonate or sulfonate functionalities result in neutralization of some of the N-terminal species, ones that might normally be singly protonated in the absence of the negatively charged sulfonate or phosphonate groups. In addition, the greater photoabsorptivities of the PPITC- and SPITC-derivatized N-terminal product ions enhanced their secondary photodissociation, leading to formation of immonium ions.
Collapse
Affiliation(s)
- Lisa Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | | |
Collapse
|
8
|
Madsen JA, Gardner MW, Smith SI, Ledvina AR, Coon JJ, Schwartz JC, Stafford GC, Brodbelt JS. Top-down protein fragmentation by infrared multiphoton dissociation in a dual pressure linear ion trap. Anal Chem 2010; 81:8677-86. [PMID: 19785447 DOI: 10.1021/ac901554z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (approximately 29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gardner MW, Smith SI, Ledvina AR, Madsen JA, Coon JJ, Schwartz JC, Stafford GC, Brodbelt JS. Infrared multiphoton dissociation of peptide cations in a dual pressure linear ion trap mass spectrometer. Anal Chem 2009; 81:8109-18. [PMID: 19739654 PMCID: PMC2774747 DOI: 10.1021/ac901313m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells-the first a high pressure cell operated at nominally 5 x 10(-3) Torr and the second a low pressure cell operated at nominally 3 x 10(-4) Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y(1) fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of approximately 100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78751, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Newsome GA, Glish GL. Improving IRMPD in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1127-1131. [PMID: 19269191 DOI: 10.1016/j.jasms.2009.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 05/27/2023]
Abstract
A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 x 10(-3) Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5-10 ms at a bath gas pressure of 3.3 x 10(-4) Torr and in 3-25 ms at 1.0 x 10(-3) Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.
Collapse
Affiliation(s)
- G Asher Newsome
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
11
|
Brodbelt JS, Wilson JJ. Infrared multiphoton dissociation in quadrupole ion traps. MASS SPECTROMETRY REVIEWS 2009; 28:390-424. [PMID: 19294735 DOI: 10.1002/mas.20216] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of new ion activation techniques continues to be a dynamic area of scientific discovery, in part to complement the tremendous innovations in ionization methods that have allowed the mass spectrometric analysis of an enormous array of molecules. Ion activation/dissociation provides key information about ion structures, binding energies, and differentiation of isomers, as well as affording a primary means of identifying compounds in mixtures. Numerous new activation methods have emerged over the past two decades in an effort to develop alternatives to collisional activated dissociation, the gold standard for providing structurally diagnostic fragmentation patterns. Collisional activated dissociation does not always offer sufficiently high or controllable energy deposition, thus rendering it less useful for certain classes of molecules, such as large proteins or macromolecular complexes. Photodissociation is one of the most promising alternatives and is readily implemented in ion trapping and time-of-flight mass spectrometers. Photodissociation generally entails using a laser to irradiate ions with UV, visible, or IR photons, thus resulting in internal energy deposition based on the number and wavelengths of the photons. The activation process can be extremely rapid and efficient, as well as having the potential for high total energy deposition. This review describes infrared multiphoton dissociation in quadrupole ion trap mass spectrometry. A comparison of photodissociation and collisional activated dissociation is covered, in addition to some of the methods to increase photodissociation efficiency. Numerous applications of IRMPD are discussed as well, including ones related to the analysis of drugs, peptides, nucleic acids, and oligosaccharides.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
12
|
Rannulu NS, Rodgers MT. Noncovalent Interactions of Ni+ with N-Donor Ligands (Pyridine, 4,4′-Dipyridyl, 2,2′-Dipyridyl, and 1,10-Phenanthroline): Collision-Induced Dissociation and Theoretical Studies. J Phys Chem A 2009; 113:4534-48. [DOI: 10.1021/jp8112045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N. S. Rannulu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - M. T. Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
13
|
Vasicek LA, Wilson JJ, Brodbelt JS. Improved infrared multiphoton dissociation of peptides through N-terminal phosphonite derivatization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:377-384. [PMID: 19027323 DOI: 10.1016/j.jasms.2008.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 05/27/2023]
Abstract
A strategy for improving the sequencing of peptides by infrared multiphoton dissociation (IRMPD) in a linear ion trap mass spectrometer is described. We have developed an N-terminal derivatization reagent, 4-methylphosphonophenylisothiocyanate (PPITC), which allows the attachment of an IR-chromogenic phosphonite group to the N-terminus of peptides, thus enhancing their IRMPD efficiencies. After the facile derivatization process, the PPITC-modified peptides require shorter irradiation times for efficient IRMPD and yield extensive series of y ions, including those of low m/z that are not detected upon traditional CID. The resulting IRMPD mass spectra afford more complete sequence coverage for both model peptides and tryptic peptides from cytochrome c. We compare the effectiveness of this derivatization/IRMPD approach to that of a common N-terminal sulfonation reaction that utilizes 4-sulfophenylisothiocyanate (SPITC) in conjunction with CID and IRMPD.
Collapse
Affiliation(s)
- Lisa A Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
14
|
Madsen JA, Brodbelt JS. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:349-58. [PMID: 19036605 DOI: 10.1016/j.jasms.2008.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 05/12/2023]
Abstract
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | |
Collapse
|
15
|
March R, Brodbelt J. Analysis of flavonoids: tandem mass spectrometry, computational methods, and NMR. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1581-1617. [PMID: 18855332 DOI: 10.1002/jms.1480] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Due to the increasing understanding of the health benefits and chemopreventive properties of flavonoids, there continues to be significant effort dedicated to improved analytical methods for characterizing the structures of flavonoids and monitoring their levels in fruits and vegetables, as well as developing new approaches for mapping the interactions of flavonoids with biological molecules. Tandem mass spectrometry (MS/MS), particularly in conjunction with liquid chromatography (LC), is the dominant technique that has been pursued for elucidation of flavonoids. Metal complexation strategies have proven to be especially promising for enhancing the ionization of flavonoids and yielding key diagnostic product ions for differentiation of isomers. Of particular value is the addition of a chromophoric ligand to allow the application of infrared (IR) multiphoton dissociation as an alternative to collision-induced dissociation (CID) for the differentiation of isomers. CID, including energy-resolved methods, and nuclear magnetic resonance (NMR) have also been utilized widely for structural characterization of numerous classes of flavonoids and development of structure/activity relationships.The gas-phase ion chemistry of flavonoids is an active area of research particularly when combined with accurate mass measurement for distinguishing between isobaric ions. Applications of a variety of ab initio and chemical computation methods to the study of flavonoids have been reported, and the results of computations of ion and molecular structures have been shown together with computations of atomic charges and ion fragmentation. Unambiguous ion structures are obtained rarely using MS alone. Thus, it is necessary to combine MS with spectroscopic techniques such as ultraviolet (UV) and NMR to achieve this objective. The application of NMR data to the mass spectrometric examination of flavonoids is discussed.
Collapse
Affiliation(s)
- Raymond March
- Department of Chemistry, Trent University, Ontario, Canada.
| | | |
Collapse
|
16
|
Wilson JJ, Kirkovits GJ, Sessler JL, Brodbelt JS. Photodissociation of non-covalent peptide-crown ether complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:257-60. [PMID: 18077179 PMCID: PMC2288744 DOI: 10.1016/j.jasms.2007.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 05/25/2023]
Abstract
Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas-phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional-activated dissociation and infrared multiphoton dissociation of these non-covalent complexes result only in their disassembly with the charge retained on either the peptide or crown ether, yielding no sequence ions. Upon UV photon absorption the intermolecular energy transfer is facilitated by the fast activation timescale of ultraviolet photodissociation (<10 ns) and by the collectively strong hydrogen bonding between the crown ether and peptide, thus allowing effective transfer of energy to the peptide moiety before disruption of the intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
17
|
Pikulski M, Hargrove A, Shabbir SH, Anslyn EV, Brodbelt JS. Sequencing and characterization of oligosaccharides using infrared multiphoton dissociation and boronic acid derivatization in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:2094-2106. [PMID: 17936010 DOI: 10.1016/j.jasms.2007.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 05/25/2023]
Abstract
A simplified method for determining the sequence and branching of oligosaccharides using infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap (QIT) is described. An IR-active boronic acid (IRABA) reagent is used to derivatize the oligosaccharides before IRMPD analysis. The IRABA ligand is designed to both enhance the efficiency of the derivatization reaction and to facilitate the photon absorption process. The resulting IRMPD spectra display oligosaccharide fragments that are formed from primarily one type of diagnostic cleavage, thus making sequencing straightforward. The presence of sequential fragment ions, a phenomenon of IRMPD, permit the comprehensive sequencing of the oligosaccharides studied in a single stage of activation. We demonstrate this approach for two series of oligosaccharides, the lacto-N-fucopentaoses (LNFPs) and the lacto-N-difucohexaoses (LNDFHs).
Collapse
Affiliation(s)
- Michael Pikulski
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | | | |
Collapse
|
18
|
Wilson JJ, Brodbelt JS. Infrared multiphoton dissociation of duplex DNA/drug complexes in a quadrupole ion trap. Anal Chem 2007; 79:2067-77. [PMID: 17249688 PMCID: PMC2518938 DOI: 10.1021/ac061946f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Noncovalent duplex DNA/drug complexes formed between one of three 14-base pair non-self-complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisionally activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross section of the phosphate backbone at 10.6 mum promotes highly efficient dissociation within short irradiation times (<2 ms at 50 W) or using lower laser powers and longer irradiation times (<15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low-mass cutoff associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multiadduct dissociation in order to increase MS/MS sensitivity, and a two-stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|