1
|
Kalligosfyri PM, Sevastou A, Kyriakou IK, Tragoulias SS, Kalogianni DP, Christopoulos TK. Smartphone-based chemiluminometric hybridization assays and quantitative competitive polymerase chain reaction. Anal Chim Acta 2019; 1088:123-130. [DOI: 10.1016/j.aca.2019.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
2
|
TANI H. Development and Application of Analytical Methods for Biological Molecules Using the Fluorescent Dyes and the Nucleotide Analogs. BUNSEKI KAGAKU 2019. [DOI: 10.2116/bunsekikagaku.68.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hidenori TANI
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
3
|
Abstract
Rare earth elements have many uses, and are frequently included in products such as fluorescent materials, hydride batteries, catalytic materials and lasers. In this study, it was observed that trivalent lanthanide ions (Ln[III] ions) appeared to inhibit the synthesis of large fragments in PCR assays, thus resulting in the preferential amplification of shorter sequences. It is therefore speculated that this Ln(III) ion-mediated bias could be utilized to improve the success rates for amplification of shorter products.
Collapse
|
4
|
Yang Z, Zhao N, Chen D, Wei K, Su N, Huang JF, Xu HQ, Duan GJ, Fu WL, Huang Q. Improved detection of BRAF V600E using allele-specific PCR coupled with external and internal controllers. Sci Rep 2017; 7:13817. [PMID: 29061997 PMCID: PMC5653796 DOI: 10.1038/s41598-017-14140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/06/2017] [Indexed: 01/29/2023] Open
Abstract
Although traditional allele-specific PCR (tAS-PCR) is a common screening method for BRAF V600E mutations, its lower amplification specificity and mutation selectivity have limited its clinical applications. We hypothesize that these limitations are associated with the weaker specificities of allele-specific primers and the thermodynamic driving forces of DNA polymerase. We used three strategies to circumvent these limitations, namely, modifying allele-specific primers, introducing a competitive external allele-specific controller (i.e., cAS-PCR), and introducing a referenced internal positive controller in the cAS-PCR (i.e., rcAS-PCR). The amplification sensitivities and specificities were influenced by the position of the artificially introduced mismatched nucleotide in the allele-specific primers. Moreover, both cAS-PCR and rcAS-PCR could detect single-copy BRAF V600E alleles with higher mutation selectivity (0.1%) than tAS-PCR. In addition, cAS-PCR eliminated false-negative results caused by various PCR inhibitors that might be present in the DNA solutions. The rcAS-PCR could also be employed to avoid the false-negative results caused by low-abundance input templates in cAS-PCR. In conclusion, rcAS-PCR provides a rapid, simple, and low-cost method for detecting low levels of the mutated BRAF V600E gene.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Dong Chen
- Department of Laboratory Medicine; 302 hospital of PLA, Chongqing, 100039, P. R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Han-Qing Xu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China.
| |
Collapse
|
5
|
Cui H, Song W, Cao Z, Lu J. Simultaneous and sensitive detection of dual DNA targets via quantum dot-assembled amplification labels. LUMINESCENCE 2015; 31:281-7. [PMID: 26081829 DOI: 10.1002/bio.2959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/02/2023]
Abstract
We describe a signal amplification assay for the simultaneous detection of HIV-1 and HIV-2 via a quantum dot (QD) layer-by-layer assembled polystyrene microsphere (PS) composite in a homogeneous format. The crucial point of this composite is the core-shell system. PS is utilized as the core and QDs as the shell. Based on the high affinity of streptavidin and biotin, QDs are assembled layer-by-layer on the surface of the PS as amplification labels. Biotinylated reporter probe is combined with the PS-QDs conjugate and then hybridized with target DNA immobilized on the surface of a 96-well plate. Using this approach, each target DNA corresponds to a large number of QDs and the fluorescence signal is greatly enhanced. Two QD colors (605 and 655 nm) are used to detect dual-target DNAs simultaneously. Taking advantage of the enzyme-free reaction and high sensitivity, this PS-QD-based sensor can be used in simple 'mix and detection' assays. Our results show that this technology has potential application in rapid point-of-care testing, gene expression studies, high-throughput screening and clinical diagnostics.
Collapse
Affiliation(s)
- Hongyan Cui
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, Shanghai, China
| | - Wenqing Song
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, Shanghai, China
| | - Zhijuan Cao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, Shanghai, China
| | - Jianzhong Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lim HW, Lee SH, Yang KA, Yoo SI, Park TH, Zhang BT. Biomolecular computation with molecular beacons for quantitative analysis of target nucleic acids. Biosystems 2012; 111:11-7. [PMID: 23123676 DOI: 10.1016/j.biosystems.2012.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 06/23/2012] [Accepted: 09/11/2012] [Indexed: 01/08/2023]
Abstract
Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.
Collapse
Affiliation(s)
- Hee-Woong Lim
- Center for Biointelligence Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
7
|
Hoshino T, Inagaki F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol 2012; 35:390-5. [DOI: 10.1016/j.syapm.2012.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
|
8
|
Kishida N, Miyata R, Furuta A, Izumiyama S, Tsuneda S, Sekiguchi Y, Noda N, Akiba M. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR). WATER RESEARCH 2012; 46:187-194. [PMID: 22088270 DOI: 10.1016/j.watres.2011.10.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
We describe an assay for simple and cost-effective quantification of Cryptosporidium oocysts in water samples using a recently developed quantification method named alternately binding probe competitive PCR (ABC-PCR). The assay is based on the detection of 18S rRNA specific for Cryptosporidium oocysts. The standard curve of the ABC-PCR assay had a good fitting to a rectangular hyperbola with a correlation coefficient (R) of 0.9997. Concentrations of Cryptosporidium oocysts in real river water samples were successfully quantified by the ABC-reverse transcription (RT)-PCR assay. The quantified values by the ABC-RT-PCR assay very closely resemble those by the real-time RT-PCR assay. In addition, the quantified concentration in most water samples by the ABC-RT-PCR assay was comparable to that by conventional microscopic observation. Thus, Cryptosporidium oocysts in water samples can be accurately and specifically determined by the ABC-RT-PCR assay. As the only equipment that is needed for this end-point fluorescence assay is a simple fluorometer and a relatively inexpensive thermal cycler, this method can markedly reduce time and cost to quantify Cryptosporidium oocysts and other health-related water microorganisms.
Collapse
Affiliation(s)
- Naohiro Kishida
- Division of Water Management, Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351 0197, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Estes MD, Yang J, Duane B, Smith S, Brooks C, Nordquist A, Zenhausern F. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst 2012; 137:5510-9. [DOI: 10.1039/c2an35768b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Morishita S, Komatsu N, Kirito K, Koda AH, Sekiguchi Y, Tsuneda S, Noda N. Alternately binding probe competitive PCR as a simple, cost-effective, and accurate quantification method for JAK2V617F allele burden in myeloproliferative neoplasms. Leuk Res 2011; 35:1632-6. [DOI: 10.1016/j.leukres.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
11
|
Application Progresses of Nanomaterials on Polymerase Chain Reaction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
PCR with quenching probes enables the rapid detection and identification of ganciclovir-resistance-causing U69 gene mutations in human herpesvirus 6. Mol Cell Probes 2010; 24:167-77. [PMID: 20083192 DOI: 10.1016/j.mcp.2010.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/23/2022]
Abstract
A single-nucleotide polymorphism detection assay using PCR with quenching probes (QP-PCR) was developed for the rapid detection of antiviral drug-resistance mutations of human herpesvirus 6 (HHV-6). The mutations examined were in the HHV-6 U69 gene, and were single-base mutations in sequences known to be associated with ganciclovir (GCV) resistance in HCMV. We previously confirmed that they conferred GCV resistance to recombinant baculoviruses (Nakano et al., J. Virol. Methods 161:223-230, 2009). Six characterized mutations, including a previously reported one that encodes a GCV-sensitive kinase-activity mutant (Isegawa et al., J. Clin. Virol. 44:15-19, 2009), were used. The six mutations were separated into three groups based on their location in the U69 protein, and detected by the hybridization of three probes. We developed and validated a set of assays for these mutations using PCR followed by differential melting of a fluorescently labeled oligo probe, on a Roche Light Cycler platform. Nucleobase quenching was used to detect the hybridized probe. The optimized assay could distinguish the different mutants, and easily detected mutants representing 30% of the DNA in a mixed sample. This QP-PCR assay permitted the rapid (1.5 h), objective, and reproducible detection of drug-resistant mutations of HHV-6.
Collapse
|
13
|
Progress of Application of Nanomaterials in Polymerase Chain Reaction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. using alternately binding probe competitive Polymerase Chain Reaction. Mol Cell Probes 2009; 24:131-7. [PMID: 19944146 DOI: 10.1016/j.mcp.2009.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 11/07/2009] [Accepted: 11/17/2009] [Indexed: 11/22/2022]
Abstract
Dehalococcoides spp. are responsible for the reductive dehalogenation of environmental contaminants and are candidates for engineered bioremediation. The development of a sensitive, reliable, and rapid method for the quantification of Dehalococcoides spp. is required for the effective use of the organisms in bioremediation sites. Here, we describe the quantification of the 16S rRNA gene of Dehalococcoides spp. using a recently developed quantification method named alternately binding probe competitive PCR (ABC-PCR). The primers and probe sets that were newly designed for ABC-PCR were found to have a high specificity for Dehalococcoides spp. The standard curve of ABC-PCR had a good fitting (R = 0.999), and the lower detection limit was 10 copies/microl of template DNA. We also investigated the effects of inherent PCR-inhibiting compounds in an environmental sample on the quantification using ABC-PCR or real-time PCR by adding the soil extraction solution to PCR mixtures. ABC-PCR was more robust against the PCR amplification inhibitors than real-time PCR. The copy number of the 16S rRNA gene of Dehalococcoides spp. in soil and groundwater samples was successfully quantified using ABC-PCR. In conclusion, ABC-PCR is useful for the quantification of Dehalococcoides spp. populations and dynamics at bioremediation sites.
Collapse
|
15
|
Tani H, Miyata R, Ichikawa K, Morishita S, Kurata S, Nakamura K, Tsuneda S, Sekiguchi Y, Noda N. Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method. Anal Chem 2009; 81:5678-85. [PMID: 19530673 DOI: 10.1021/ac900414u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a flexible, specific, and cost-effective real-time polymerase chain reaction (PCR) method. In this technique, a quenching probe (QProbe) and a nonfluorescent 3'-tailed probe are used. The QProbe is a singly labeled oligonucleotide bearing a fluorescent dye that is quenched via electron transfer between the dye and a guanine base at a particular position. The nonfluorescent 3'-tailed probe consists of two parts: one is the target-specific sequence on the 5' side, and the other is complementary to the QProbe on the 3' side. When the QProbe/nonfluorescent 3'-tailed probe complex hybridizes with the target in PCR, the fluorescence of the dye is quenched. Fluorescence quenching efficiency is proportional to the amount of the target. We called this method the universal QProbe system. This method substantially reduces the cost of real-time PCR setup because the same QProbe can be used for different target sequences. Moreover, this method allows accurate quantification even in the presence of nonspecific PCR products because the use of nonfluorescent 3'-tailed probe significantly increases specificity. Our results demonstrate that this method can accurately and reproducibly quantify specific nucleic acid sequences in crude samples, comparable with conventional TaqMan chemistry. Furthermore, this method is also applicable to single-nucleotide polymorphism (SNP) genotyping.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tani H, Akimitsu N, Fujita O, Matsuda Y, Miyata R, Tsuneda S, Igarashi M, Sekiguchi Y, Noda N. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon. Biochem Biophys Res Commun 2009; 379:1054-9. [DOI: 10.1016/j.bbrc.2009.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 01/04/2009] [Indexed: 11/24/2022]
|
17
|
Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol 2008; 74:3831-8. [PMID: 18424532 DOI: 10.1128/aem.02743-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of quantitative PCR (QPCR) assays typically requires extensive screening within and across a given species to ensure specific detection and lucid identification among various pathogenic and nonpathogenic strains and to generate standard curves. To minimize screening requirements, multiple virulence and marker genes (VMGs) were targeted simultaneously to enhance reliability, and a predictive threshold cycle (C(T)) equation was developed to calculate the number of starting copies based on an experimental C(T). The empirical equation was developed with Sybr green detection in nanoliter-volume QPCR chambers (OpenArray) and tested with 220 previously unvalidated primer pairs targeting 200 VMGs from 30 pathogens. A high correlation (R(2) = 0.816) was observed between the predicted and experimental C(T)s based on the organism's genome size, guanine and cytosine (GC) content, amplicon length, and stability of the primer's 3' end. The performance of the predictive C(T) equation was tested using 36 validation samples consisting of pathogenic organisms spiked into genomic DNA extracted from three environmental waters. In addition, the primer success rate was dependent on the GC content of the target organisms and primer sequences. Targeting multiple assays per organism and using the predictive C(T) equation are expected to reduce the extent of the validation necessary when developing QPCR arrays for a large number of pathogens or other targets.
Collapse
|
18
|
Noda N, Tani H, Morita N, Kurata S, Nakamura K, Kanagawa T, Tsuneda S, Sekiguchi Y. Estimation of single-nucleotide polymorphism allele frequency by alternately binding probe competitive polymerase chain reaction. Anal Chim Acta 2008; 608:211-6. [DOI: 10.1016/j.aca.2007.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022]
|
19
|
Abstract
The exact quantification of tiny amounts of nucleic acids in biological samples continues to remain a requirement in both the experimental and the diagnostic laboratory. Competitive PCR involves the coamplification of a target DNA sample with known amounts of a competitor DNA that shares most of the nucleotide sequence with the target; in this way, any predictable or unpredictable variable affecting PCR amplification has the same effect on both molecular species. Competitive PCR therefore permits the quantification of the absolute number of target molecules in comparison to the amount of competitor DNA. Although requiring intensive post-PCR manipulation, the accuracy of competitive PCR by far exceeds that of any other quantitative PCR procedure, including real-time PCR. This protocol covers all stages in the competitive PCR and RT-PCR methods, from the design and construction of competitor molecules, and the competitive PCR itself, to the analysis of data and quantification of target DNA. Once the correct primers are available, the protocol can be completed in about 24 h.
Collapse
Affiliation(s)
- Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | | |
Collapse
|
20
|
Tani H, Kanagawa T, Morita N, Kurata S, Nakamura K, Tsuneda S, Noda N. Calibration-curve-free quantitative PCR: A quantitative method for specific nucleic acid sequences without using calibration curves. Anal Biochem 2007; 369:105-11. [PMID: 17679100 DOI: 10.1016/j.ab.2007.06.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/29/2007] [Accepted: 06/30/2007] [Indexed: 10/23/2022]
Abstract
We have developed a simple quantitative method for specific nucleic acid sequences without using calibration curves. This method is based on the combined use of competitive polymerase chain reaction (PCR) and fluorescence quenching. We amplified a gene of interest (target) from DNA samples and an internal standard (competitor) with a sequence-specific fluorescent probe using PCR and measured the fluorescence intensities before and after PCR. The fluorescence of the probe is quenched on hybridization with the target by guanine bases, whereas the fluorescence is not quenched on hybridization with the competitor. Therefore, quench rate (i.e., fluorescence intensity after PCR divided by fluorescence intensity before PCR) is always proportional to the ratio of the target to the competitor. Consequently, we can calculate the ratio from quench rate without using a calibration curve and then calculate the initial copy number of the target from the ratio and the initial copy number of the competitor. We successfully quantified the copy number of a recombinant DNA of genetically modified (GM) soybean and estimated the GM soybean contents. This method will be particularly useful for rapid field tests of the specific gene contamination in samples.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Chemical Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | | | |
Collapse
|