1
|
Wang L, Chu Y, Cao B, Zhang R, Hussain Z, Liu Q. Cobalt (II) porphyrin nanoaggregates as sacrificial templates to improve the peroxidase-like activity of light-controlled TiO 2-based nanozymes for colorimetric determination of amikacin. Talanta 2025; 281:126889. [PMID: 39288583 DOI: 10.1016/j.talanta.2024.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Although porphyrin modification can improve the peroxidase-like activity of some inorganic nanozymes, it is hardly studied that metal porphyrin self-assembled nanoaggregates as sacrificial templates to turn on the peroxidase-like activity of inorganic nanozymes under light illumination. In this work, cobalt (II) 5,10,15,20-Tetrakis (4-carboxylpheyl)porphyrin (CoTCPP) self-assembled nanoaggregates are firstly used as soft templates to prepare TiO2-based nanozymes with the enhanced peroxidase-like activity. Interestingly, CoTCPP nanoaggregates can be changed into Co oxide nanoparticles dispersed into the nanosphere composites. Furthermore, the peroxidase-like activity of CoTCPP-TiO2 nanospheres can be controlled by light illumination. Comparatively, CoTCPP-TiO2 nanoshperes exhibit the highest peroxidase-like activity of three nanospheres (CoTCPP-TiO2, H2TCPP-TiO2 and TiO2) with similar morphology under the light illumination. Other than the existence of oxygen vacancy, the formation of heterostructure between TiO2 and a small amount of Co3O4 are ascribed to increase the catalytic activity of CoTCPP-TiO2 composites. Thus, a facile and convenient colorimetric sensing platform has been constructed and tuned by light illumination for determining H2O2 and amikacin in a good linear range of 20-100 and 50-100 μM with a limit of detection (LOD) of 3.04 μM and 1.88 μM, respectively. The CoTCPP-TiO2 based colorimetric sensing platform has been validated by measuring the amikacin residue in lake water.
Collapse
Affiliation(s)
- Liming Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Ying Chu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Bo Cao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Ruizhe Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| |
Collapse
|
2
|
Nguyen QK, Nguyen DT, Pham TMA, Pham B, Nguyen TAH, Pham TD, Sharma S, Pham DT, Gangavarapu RR, Pham TNM. A highly sensitive fluorescence nanosensor for determination of amikacin antibiotics using composites of carbon quantum dots and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123466. [PMID: 37778174 DOI: 10.1016/j.saa.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Amikacin is an aminoglycoside antibiotic widely used to treat various bacterial infections in humans. However, elevated concentrations of amikacin can damage the cochlear nerve. Thus, accurate and rapid amikacin detection is crucial. In this study, we developed an "on-off" fluorescence nanosensor for highly sensitive amikacin determination based on a composite of carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). The method quenches CQD fluorescence (turn-off) when they bind to AuNPs but restores it (turn-on) when amikacin binds and releases the CQDs. Adding Cu2+ enhances sensitivity by cross-linking amikacin-coated AuNPs. Under optimal conditions (pH 4, 1 mM Na2SO4, 1 mM CuSO4), the method achieved a low detection limit of 3.5 × 10-11 M (0.02 ppb), a wide linear range (10-10 to 10-8 M), high precision (RSD < 5 %), and a rapid 2-minute response time. Exceptional selectivity was observed over other antibiotics. The CQDs/AuNPs-based sensor successfully detected amikacin in pharmaceutical and surface water samples. This approach offers a fast on-site analytical method for amikacin detection, with potential applications in clinical and environmental settings.
Collapse
Affiliation(s)
- Quang Khanh Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dinh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Thi Mai Anh Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Bach Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Shuchi Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Duc Thang Pham
- Phenikaa University Nano Institute, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam; Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Ranga Rao Gangavarapu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam.
| |
Collapse
|
3
|
Maheshwari ML, Memon N, Memon AA, Khuhawar MY, Memon AH. A rapid HPLC–DAD method for quantification of amikacin in pharmaceuticals and biological samples using pre-column derivatization with Hantzsch reagent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [PMCID: PMC7478114 DOI: 10.1007/s13738-020-02046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amikacin (AMK) is an important member of aminoglycoside class, and its determination has therapeutic importance due to its matchless potency against gram –ve pathogens. Due to narrow therapeutic window, its monitoring in clinical samples is inevitable. Direct determination of AMK using HPLC with UV–visible detection is not possible because of its limited absorbance. Herein, Hantzsch reagent (mixture of acetylacetone, formaldehyde and acetate buffer) was used as pre-column derivatization for AMK. UV–visible detection was performed at 340 nm. Separation and identification of derivatized drug (amikacin) were carried out using C-18 column Kromasil 100 (15 cm × 0.46 mm, 5 μm) with isocratic mobile phase elution of pH 5 (acetate buffer 0.01 M):acetonitrile (30:70 v/v) with flow rate of 1 ml/min. The procedure was able to resolve AMK from endogenous compounds and from cephalosporin drug (most prescribed combination) with run time of 10 min. Under optimized conditions; calibration curve was linear in the range 0.10–25.0 µg/mL with LOD and LOQ values of 0.024 and 0.071 µg/mL. Method was also validated for reproducibility, ruggedness and accuracy. The procedure was found sensitive, robust and precise for the comprehensive analysis (qualitative and quantitative) that was applied for determination of AMK in pharmaceuticals, urine and blood samples.
Collapse
|
4
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Raut A, Sharma D, Suvarna V. A Status Update on Pharmaceutical Analytical Methods of Aminoglycoside Antibiotic: Amikacin. Crit Rev Anal Chem 2020; 52:375-391. [PMID: 32781828 DOI: 10.1080/10408347.2020.1803042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amikacin (AMK) is one of the commonly used aminoglycoside antibiotics, introduced for clinical use in patients suffering from bacterial infections especially life-threatening gram-negative infections. Due to lack of chromophore in the molecule, the detection of AMK during analysis is a challenge. Thus, pre and post-column derivatization techniques are generally used for AMK estimation. This review focuses on different analytical methods used for detection and quantification of AMK in pure or fixed dose combination pharmaceutical formulations and biological samples. Various reported methods described in the literature include high-performance liquid chromatography techniques, pulsed electrochemical detection techniques, Chemiluminescence techniques, Capillary electrophoresis and immunological methods. High-performance-liquid-chromatography based methods with UV/Vis spectrophotometric, fluorescence and mass spectrometric detection are the most prevailing methods employed for the analysis of AMK. This review could be of significant importance in the area of future AMK analytical method development studies.
Collapse
Affiliation(s)
- Adishri Raut
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Dhvani Sharma
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM Campus, Dr Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Fluorescence polarization assays for chemical contaminants in food and environmental analyses. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Huang C, Sheth S, Li M, Ran G, Song Q. Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta 2018; 190:292-297. [PMID: 30172512 DOI: 10.1016/j.talanta.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
First time the luminescent switch-on probe using novel water-soluble cyclometallated iridium complex (Ir-dc) has been developed for sensitive and selective detection of gluten in the presence of several interfering elements. Linear concentration range of gluten is obtained from 5 to 200 µg/mL with a limit of detection 2.6 µg/mL. The Ir-dc complex responded to the broad pH range which is advantageous for the detection of gluten in various food samples. Additionally, It has been successfully employed for the detection of gluten in commercial food samples of wheat flour and oats with highest recovery values, indicating applicability of Ir-dc for practical usage.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mengyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Glahn-Martínez B, Benito-Peña E, Salis F, Descalzo AB, Orellana G, Moreno-Bondi MC. Sensitive Rapid Fluorescence Polarization Immunoassay for Free Mycophenolic Acid Determination in Human Serum and Plasma. Anal Chem 2018; 90:5459-5465. [DOI: 10.1021/acs.analchem.8b00780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Francesca Salis
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Ana B. Descalzo
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - María C. Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
9
|
Isanga J, Mukunzi D, Chen Y, Suryoprabowo S, Liu L, Kuang H. Development of a monoclonal antibody assay and immunochromatographic test strip for the detection of amikacin residues in milk and eggs. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1309361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Joel Isanga
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Daniel Mukunzi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yanni Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Steven Suryoprabowo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
10
|
Omar MA, Hammad MA, Nagy DM, Aly AA. Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl acetaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1760-1766. [PMID: 25467667 DOI: 10.1016/j.saa.2014.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
A simple and sensitive spectrofluorimetric method has been developed and validated for determination of amikacin sulfate, neomycin sulfate and tobramycin in pure forms, pharmaceutical formulations and human plasma. The method was based on condensation reaction of cited drugs with ninhydrin and phenylacetaldehyde in buffered medium (pH 6) resulting in formation of fluorescent products which exhibit excitation and emission maxima at 395 and 470nm, respectively. The different experimental parameters affecting the development and stability of the reaction products were carefully studied and optimized. The calibration plots were constructed with good correlation coefficients (0.9993 for tobramycin and 0.9996 for both neomycin and amikacin). The proposed method was successfully applied for the analysis of cited drugs in dosage forms with high accuracy (98.33-101.7)±(0.80-1.26)%. The results show an excellent agreement with the reference method, indicating no significant difference in accuracy and precision. Due to its high sensitivity, the proposed method was applied successfully for determination of amikacin in real human plasma.
Collapse
Affiliation(s)
- Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Dalia M Nagy
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Alshymaa A Aly
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Omar MA, Ahmed HM, Hammad MA, Derayea SM. Validated spectrofluorimetric method for determination of selected aminoglycosides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:472-478. [PMID: 25113735 DOI: 10.1016/j.saa.2014.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/21/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
New, sensitive, and selective spectrofluorimetric method was developed for determination of three aminoglycoside drugs in different dosage forms, namely; neomycin sulfate (NEO), tobramycin (TOB) and kanamycin sulfate (KAN). The method is based on Hantzsch condensation reaction between the primary amino group of aminoglycosides with acetylacetone and formaldehyde in pH 2.7 yielding highly yellow fluorescent derivatives measured emission (471 nm) and excitation (410 nm) wavelengths. The fluorescence intensity was directly proportional to the concentration over the range 10-60, 40-100 and 5-50 ng/mL for NEO, TOB and KAN respectively. The proposed method was applied successfully for determination of these drugs in their pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hytham M Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Mohamed A Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sayed M Derayea
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
12
|
Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol 2014; 20:15476-15491. [PMID: 25400433 PMCID: PMC4229514 DOI: 10.3748/wjg.v20.i42.15476] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus (HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus (HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensor technologies employed in HCV detection. There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV. Due to their simplicity, specificity, and reliability, electrochemical biosensor devices have potential clinical applications in several viral infections.
Collapse
|
13
|
Omar MA, Nagy DM, Hammad MA, Aly AA. Highly sensitive spectrofluorimetric method for determination of certain aminoglycosides in pharmaceutical formulations and human plasma. AAPS PharmSciTech 2013; 14:828-37. [PMID: 23620260 DOI: 10.1208/s12249-013-9969-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519-524 nm and emission maxima at 545-570 nm. The calibration plots were constructed over the range of 4-60 pg mL(-1) for amikacin, 4-50 pg mL(-1) for gentamicin, neomycin and kanamycin, 4-40 pg mL(-1) for streptomycin and 5-50 pg mL(-1) for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.
Collapse
|
14
|
Tian J, Wang Y, Chen S, Jiang Y, Zhao Y, Zhao S. Mass-amplifying quantum dots in a fluorescence polarization-based aptasensor for ATP. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0919-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Chen Y, Chen Q, He L, Shang B, Zhang L. Enzyme immunoassay and liquid chromatography-fluorescence detection for amikacin in raw milk. Food Chem 2012; 135:380-5. [DOI: 10.1016/j.foodchem.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
|
16
|
Hahn U, Luelf H, Winkler HDF, Schalley CA, Vögtle F, De Cola L. Encapsulation of luminescent homoleptic [Ru(dpp)3](2+)-type chromophores within an amphiphilic dendritic environment. Chemistry 2012; 18:15424-32. [PMID: 23081803 DOI: 10.1002/chem.201201126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/27/2012] [Indexed: 11/12/2022]
Abstract
A new series of homoleptic metallodendrimers has been synthesized through ruthenium-metal complexation by dendritically modified bathophenanthroline ligands. The presence of hydrophilic oligo(ethylene glycol) groups on the surface of the monodisperse metal complexes enabled the solubilization of all of the fractal species in a wide range of solvents, including water. The specific properties of all of these compounds have been systematically investigated by using photophysical techniques as a function of the generation number. Accordingly, the encapsulation of the highly luminescent [Ru(dpp)(3)](2+)-type (dpp=4,7-diphenyl-1,10-phenanthroline) core unit within a dendritic microenvironment creates a powerful means to shield the center from dioxygen quenching. This shielding effect, as exerted on the phosphorescent ruthenium-derived center, is reflected by enhanced emission intensities and extended excited-state lifetimes that are close to the highest values reported so far, even in an air-equilibrated aqueous medium. Interestingly, when inspecting the largest dendritic assembly, that is, the third-generation assembly, significant drops in emission quantum yields and lifetimes are observed. This anomalous behavior has been attributed to the folding of the branches towards the luminescent core.
Collapse
Affiliation(s)
- Uwe Hahn
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
17
|
Tian J, Zhou L, Zhao Y, Wang Y, Peng Y, Zhao S. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 2012; 92:72-7. [DOI: 10.1016/j.talanta.2012.01.051] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/21/2012] [Accepted: 01/29/2012] [Indexed: 11/30/2022]
|
18
|
Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA. Long-wavelength fluorescence lifetime labels. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Zhang L, Peng J, Tang J, Yuan B, He R, Xiao Y. Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination. Anal Chim Acta 2011; 706:199-204. [DOI: 10.1016/j.aca.2011.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
|
20
|
Molina-Delgado M, Aguilar-Caballos M, Gómez-Hens A. Usefulness of gold nanoparticles as labels for the determination of gliadins by immunoaffinity chromatography with light scattering detection. Talanta 2011; 85:2391-6. [DOI: 10.1016/j.talanta.2011.07.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/19/2011] [Accepted: 07/23/2011] [Indexed: 12/19/2022]
|
21
|
Tian Z, Wu W, Wan W, Li ADQ. Photoswitching-induced frequency-locked donor-acceptor fluorescence double modulations identify the target analyte in complex environments. J Am Chem Soc 2011; 133:16092-100. [PMID: 21863862 DOI: 10.1021/ja205124g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precisely identifying biological targets and accurately extracting their relatively weak signals from complicated physiological environments represent daunting challenges in biological detection and biomedical diagnosis. Fluorescence techniques have become the method of choice and offer minimally invasive and ultrasensitive detections, thus, providing a wealth of information regarding the biological mechanisms in living systems. Despite fluorescence analysis has advanced remarkably, conventional detections still encounter considerable limitations. This stems from the fact that the fluorescence intensity signal (I) is sensitive and liable to numerous external factors including temperature, light source, medium characteristics, and dye concentration. The interferences exasperatingly undermine the precision of measurements, and frequently render the signal undetectable. For example, fluorescence from single-molecule emitters can be measured on glass substrates under optimum conditions, but single-molecule events in complicated physiological environments such as live cells can hardly be detected because of autofluorescence interference and other factors. Furthermore, traditional intensity (I) and wavelength (λ) measurements do not reveal the interactive nature between the donor and the acceptor. Thus, innovative detection strategies to circumvent these aforementioned limitations of the conventional techniques are critically needed. With the use of photoswitching-induced donor-acceptor-fluorescence double modulations, we present a novel strategy that introduces three additional physical parameters: modulation amplitude (A), phase shift (ΔΦ), and lock-in frequency (ω), and demonstrate that such a strategy can circumvent the limitation of the conventional fluorescence detection techniques. Together, these five physical quantities (I, λ, A, ΔΦ, ω) reveal insightful information regarding molecular interactive strength between the probe and the analyte and enable extracting weak-fluorescence spectra from large interfering noises in complex environments.
Collapse
Affiliation(s)
- Zhiyuan Tian
- College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing, PR China 100049.
| | | | | | | |
Collapse
|
22
|
Heterogeneous transition metal-based fluorescence polarization (HTFP) assay for probing protein interactions. Biotechniques 2010; 47:837-44. [PMID: 19852767 DOI: 10.2144/000113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Analyses of protein interactions are fundamental for the investigation of molecular mechanisms responsible for cellular processes and diseases, as well as for drug discovery in the pharmaceutical industry. The present study details the development of a fluorescence polarization assay using melanoma inhibitory activity (MIA) protein-binding compounds and studies of the binding properties of this protein. Since they are dependent on the the lifetime of the fluorescent label, currently available fluorescence polarization assays can only determine interactions with either high- or low-molecular weight interaction partners. Our new approach eliminates this limitation by immobilizing a known binding partner of MIA protein to a well plate and by labeling the target protein using luminescent transition metal labels such as Ru(bpy)3 for binding studies with both high- and low-molecular weight interaction partners. Due to the use of a functionalized surface, we termed our concept heterogeneous transition metal-based fluorescence polarization (HTFP) assay. The assay's independence from the molecular weight of potential binding partners should make the technique amenable to investigations on subjects as diverse as multimerization, interactions with pharmacophores, or binding affinity determination.
Collapse
|
23
|
Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem 2009; 81:7468-73. [PMID: 19630421 DOI: 10.1021/ac9014512] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, a new fluorescence polarization (FP) assay strategy is described reporting the first demonstration of a noncompetitive FP technique dedicated to the small molecule sensing. This approach was based on the unique induced-fit binding mechanism of nucleic acid aptamers which was exploited to convert the small target binding event into a detectable fluorescence anisotropy signal. An anti-L-tyrosinamide DNA aptamer, labeled by a single fluorescent dye at its extremity, was employed as a model functional nucleic acid probe. The DNA conformational change generated by the L-tyrosinamide binding was able to induce a significant increase in the fluorescence anisotropy signal. The method allowed enantioselective sensing of tyrosinamide and analysis in practical samples. The methodology was also applied to the L-argininamide detection, suggesting the potential generalizability of the direct FP-based strategy. Such aptamer-based assay appeared to be a sensitive analytical system of remarkable simplicity and ease of use.
Collapse
Affiliation(s)
- Josephine Ruta
- Département de Pharmacochimie Moléculaire UMR 5063, Institut de Chimie Moléculaire de Grenoble FR 2607, CNRS-Université Grenoble I (Joseph Fourier), 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
24
|
Yang C, Zhang Z, Wang J. New luminol chemiluminescence reaction using diperiodatoargentate as oxidate for the determination of amikacin sulfate. LUMINESCENCE 2009; 25:36-42. [PMID: 19585518 DOI: 10.1002/bio.1140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate [K(2) [Ag (H(2)IO(6)) (OH)(2)]] was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 x 10(-8) to 5.1 x 10(-6)mol L(-1) with a detection limit of 1.9 x 10(-8) mol L(-1) (3sigma). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 x 10(-7) mol L(-1) of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum.
Collapse
Affiliation(s)
- Chunyan Yang
- College of Chemistry and Materials Science, Shaanxi Normal University, Xi'an, People's Republic of China
| | | | | |
Collapse
|
25
|
Park JY, Lee YS, Kim BH, Park SM. Label-free detection of antibody-antigen interactions on (R)-lipo-diaza-18-crown-6 self-assembled monolayer modified gold electrodes. Anal Chem 2008; 80:4986-93. [PMID: 18505271 DOI: 10.1021/ac8002374] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel (R)-diaza-18-crown-6 has been prepared by a simple two-step synthetic method and characterized for its ability to form a uniform self-assembled monolayer (SAM) on gold as well as to immobilize proteins using atomic force microscopy, quartz crystal microbalance, and electrochemical impedance spectroscopy (EIS) experiments. The (R)-lipo-diaza-18-crown-6 was shown to form a well-defined SAM on gold, which subsequently captures the antibody (Ab) molecules that in turn capture the antigen (Ag) molecules. The Ab molecules studied include antibody C-reactive protein (Ab-CRP) and antibody ferritin (Ab-ferritin) along with their Ag's, i.e., CRP and ferritin. Quantitative detection of the Ab-Ag interactions was accomplished by EIS experiments with a Fe(CN)6(3-/4-) redox probe present. The ratios of the charge-transfer resistances for the redox probe on the SAM-antibody-covered electrode to those with the antigen molecules attached show an excellent linearity for log[Ag] with lower detection limits than those of other SAMs for the electrochemical sensing of proteins.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Korea
| | | | | | | |
Collapse
|
26
|
Lowry M, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2008; 80:4551-74. [DOI: 10.1021/ac800749v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mark Lowry
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Sayo O. Fakayode
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Maxwell L. Geng
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gary A. Baker
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Lin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Matthew E. McCarroll
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gabor Patonay
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| |
Collapse
|
27
|
Smith DS, Eremin SA. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 2008; 391:1499-507. [PMID: 18264817 DOI: 10.1007/s00216-008-1897-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 11/24/2022]
Abstract
Fluorescence polarization immunoassay (FPIA) is a homogeneous (without separation) competitive immunoassay method based on the increase in fluorescence polarization (FP) of fluorescent-labeled small antigens when bound by specific antibody. The minimum detectable quantity of FPIAs with fluorescein label (about 0.1 ng analyte) is comparable with chromatography and ELISA methods, although this may be limited by sample matrix interference. Because of its simplicity and speed, FPIA is readily automated and therefore suitable for high-throughput screening (HTS) in a variety of application areas. Systems that involve binding of ligands to receptor proteins are also susceptible to analysis by analogous FP methods employing fluorescent-labeled ligand and HTS applications have been developed, notably for use in candidate drug screening.
Collapse
Affiliation(s)
- David S Smith
- MicroPharm Ltd, 51-53 Bartholomew Close, St. Bartholomew's Hospital, London, EC1A 7BE, UK
| | | |
Collapse
|