1
|
Liu H, Ahn DJ. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155929. [PMID: 35957486 PMCID: PMC9371395 DOI: 10.3390/s22155929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Non-specific binding (NSB) is one of the important issues in biosensing performance. Herein, we designed a strategy for removing non-specific binding including anti-mouse IgG antibody and bovine serum albumin (BSA) by utilizing anisotropic cadmium selenide tetrapods (CdSe TPs) in a vortex flow. The shear force on the tetrapod nanoparticles was increased by controlling the rotation rate of the vortex flow from 0 rpm to 1000 rpm. As a result, photoluminescence (PL) signals of fluorescein (FITC)-conjugated protein, anti-mouse IgG antibody-FITC and bovine serum albumin (BSA)-FITC, were reduced by 35% and 45%, respectively, indicating that NSB can be removed under vortex flow. In particular, simultaneous NSB removal and protein capture can be achieved even with mixture solutions of target antibodies and anti-mouse IgG antibodies by applying cyclic mode vortex flow on anisotropic CdSe TPs. These results demonstrate successfully that NSB can be diminished by rotating CdSe TPs to generate shear force under vortex flow. This study opens up new research protocols for utilization of anisotropic nanoparticles under vortex flow, which increases the feasibility of protein capture and non-specific proteins removal for biosensors.
Collapse
Affiliation(s)
- Hanzhe Liu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
3
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Chen Y, Yuan S, Liu Y, Huang G. Rapid desalting during electrospray ionization mass spectrometry for investigating protein-ligand interactions in the presence of concentrated salts. Anal Chim Acta 2021; 1141:120-126. [PMID: 33248644 DOI: 10.1016/j.aca.2020.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
Investigation of protein-ligand interactions in physiological conditions is crucial for better understanding of biochemistry because the binding stoichiometry and conformations of complexes in biological processes, such as various types of regulation and transportation, could reveal key pathways in organisms. Nanoelectrospray ionization mass spectrometry is widely used in studies of biological processes and systems biology. However, non-volatile salts in biological fluid may adversely interfere with nanoelectrospray ionization mass spectrometry. In this study, the previously developed method of induced nanoelectrospray ionization was used to facilitate in situ desalting of protein in solutions with high concentrations of non-volatile salts, and direct investigation of protein-ligand interactions for the first time. In situ desalting occurred at the tip of emitters within a short period lasting for a few to tens of milliseconds, enabling the maintenance of nativelike conditions compatible with mass spectrometry measurements. Induced nanoelectrospray ionization was driven by pulsed potential and exhibited microelectrophoresis effect in each spray cycle, which is not observed in conventional nanoelectrospray ionization because the continuous spray procedure is driven by direct current. Microelectrophoresis caused desalting through micron-sized spray emitters (1-20 μm), as confirmed experimentally with proteins in 100 mM NaCl solution. The method developed in this study has been further illustrated as a potential option for fast and direct identification of protein-ligand (small molecules or metal ions) interactions in complex samples. The results of this study demonstrate that the newly developed method may represent a reliable approach for investigations of proteins and protein complexes in biological samples.
Collapse
Affiliation(s)
- Yuting Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Siming Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Yangzhong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Guangming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, PR China.
| |
Collapse
|
5
|
Nouchikian L, Lento C, Donovan K, Dobson R, Wilson DJ. Comparing the Conformational Stability of Pyruvate Kinase in the Gas Phase and in Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:685-692. [PMID: 31951698 DOI: 10.1021/jasms.9b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collision induced unfolding (CIU) is increasingly used to characterize protein complexes in the gas phase and is often employed to detect ligand binding-induced conformational stabilization. However, the extent to which gas-phase conformational stabilities measured by CIU reflect analogous parameters in solution is not yet clear, particularly for systems where conformational and protein complex stability are modulated by point mutation. Here, we compare CIU-derived relative stabilities of four point mutants of the homotetramer pyruvate kinase to solution stabilities measured by differential scanning fluorimetry (DSF) and solution conformational dynamics measured by time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX). Our results demonstrate that both destabilization of the tetrameric state and generally reduced conformational stability of the monomer in solution are well correlated to lower onset energies for specific unfolding transitions observed in CIU. However, this correlation not fully retained when comparing CIU to HDX data, where the latter measurement is strongly impacted by conformational dynamics within the tetramer.
Collapse
Affiliation(s)
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Katherine Donovan
- Dana Farber Institute, Harvard University, Boston, Massachusetts 02215, United States
| | - Renwick Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, Canterbury University, Christchurch 8041, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
6
|
Morgan CJ, Hedman AC, Li Z, Sacks DB. Endogenous IQGAP1 and IQGAP3 do not functionally interact with Ras. Sci Rep 2019; 9:11057. [PMID: 31363101 PMCID: PMC6667474 DOI: 10.1038/s41598-019-46677-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Ras family of small GTPases modulates numerous essential processes. Activating Ras mutations result in hyper-activation of selected signaling cascades, which leads to human diseases. The high frequency of Ras mutations in human malignant neoplasms has led to Ras being a desirable chemotherapeutic target. The IQGAP family of scaffold proteins binds to and regulates multiple signaling molecules, including the Rho family GTPases Rac1 and Cdc42. There are conflicting data in the published literature regarding interactions between IQGAP and Ras proteins. Initial reports showed no binding, but subsequent studies claim associations of IQGAP1 and IQGAP3 with K-Ras and H-Ras, respectively. Therefore, we set out to resolve this controversy. Here we demonstrate that neither endogenous IQGAP1 nor endogenous IQGAP3 binds to the major Ras isoforms, namely H-, K-, and N-Ras. Importantly, Ras activation by epidermal growth factor is not altered when IQGAP1 or IQGAP3 proteins are depleted from cells. These data strongly suggest that IQGAP proteins are not functional interactors of H-, K-, or N-Ras and challenge the rationale for targeting the interaction of Ras with IQGAP for the development of therapeutic agents.
Collapse
Affiliation(s)
- Chase J Morgan
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Andrew C Hedman
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Zhigang Li
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - David B Sacks
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
7
|
Investigation of manganese(II)-insulin complexes using electrospray ionization mass spectrometry. Int J Biol Macromol 2018; 120:557-565. [DOI: 10.1016/j.ijbiomac.2018.08.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 11/23/2022]
|
8
|
Gülfen M, Özdemir A, Lin JL, Chen CH. ESI-MS measurements for the equilibrium constants of copper(II)-insulin complexes. Int J Biol Macromol 2018; 112:188-196. [DOI: 10.1016/j.ijbiomac.2018.01.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/28/2022]
|
9
|
Gülbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. J Am Chem Soc 2018; 140:7486-7497. [DOI: 10.1021/jacs.7b13044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Basri Gülbakan
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
- Hacettepe University Institute of Child Health, Ihsan Dogramaci Children’s Hospital, Sıhhiye Square, 06100 Ankara, Turkey
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Max Pillong
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
10
|
Chi Q, Li Z, Huang J, Ma J, Wang X. Interactions of perfluorooctanoic acid and perfluorooctanesulfonic acid with serum albumins by native mass spectrometry, fluorescence and molecular docking. CHEMOSPHERE 2018; 198:442-449. [PMID: 29425944 DOI: 10.1016/j.chemosphere.2018.01.152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 05/22/2023]
Abstract
The binding information of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) with bovine and human serum albumins was investigated and characterized in details by using a combination method of electrospray ionization mass spectrometry (ESI-MS), fluorescence, circular dichroism (CD) and molecular docking (MD). The ESI-MS analysis revealed that maximally eight PFOA or PFOS molecules could bind to serum albumins at high mole ratios of PFOA/PFOS. Association constants were measured by ESI-MS and suggested that PFOS had a better binding affinity than PFOA. PFOA and PFOS were likely to bind with serum albumins in more than one pocket. The CD data demonstrated that binding of PFOA and PFOS could change the conformation of serum albumins with decreasing α-helix content, which may affect the protein physiological function. The phenomenon of protein fluorescence quenching by the binding of PFOA and PFOS indicated that the hydrophobic pocket proximate to Trp 214 in human serum albumin might be one of the dominated binding sites. This assumption was further confirmed by MD simulation. Consistent to ESI-MS observation, MD results also displayed a stronger binding affinity of PFOS than PFOA according to the calculated binding free energy, which is probably ascribed to one more hydrogen bond formed in the PFOS-bound protein complexes.
Collapse
Affiliation(s)
- Quan Chi
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Zhixiong Li
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Juan Huang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jieyao Ma
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Gupta K, Li J, Liko I, Gault J, Bechara C, Wu D, Hopper JTS, Giles K, Benesch JLP, Robinson CV. Identifying key membrane protein lipid interactions using mass spectrometry. Nat Protoc 2018; 13:1106-1120. [PMID: 29700483 PMCID: PMC6049616 DOI: 10.1038/nprot.2018.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.
Collapse
Affiliation(s)
- Kallol Gupta
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Cherine Bechara
- Department of Chemistry, University of Oxford, Oxford, UK
- Institut de Genomique Fonctionnelle, CNRS UMR-5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
12
|
Wolff P, Da Veiga C, Ennifar E, Bec G, Guichard G, Burnouf D, Dumas P. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:347-357. [PMID: 27957716 PMCID: PMC5227004 DOI: 10.1007/s13361-016-1534-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate Kd values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to Kd(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (Kd, ΔH) pairs greatly improved the fits and yielded a second Kd(ITC) close to Kd(ESI-MS). The striking features are: (1) ITC detected a minor binding mode (~20%) of 'low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (Kd, ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Philippe Wolff
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
- Plateforme protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire du CNRS, FRC 1589, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Cyrielle Da Veiga
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Eric Ennifar
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Guillaume Bec
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Gilles Guichard
- CBMN, UMR 5248, Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607, Pessac, France
- CNRS, CBMN, UMR 5248, 33600, Pessac, France
| | - Dominique Burnouf
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France.
| | - Philippe Dumas
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France.
- Institut de Biologie et Génétique Moléculaire, Université de Strasbourg, 1, rue Laurent Fries, 67400, Illkirch, France.
| |
Collapse
|
13
|
Gülfen M, Özdemir A, Lin JL, Chen CH. Investigation of non-covalent complexations of Ca(II) and Mg(II) ions with insulin by using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2171-2182. [PMID: 27469404 DOI: 10.1002/rcm.7683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/20/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Insulin is a peptide hormone secreted by pancreatic β-cells. Ca(II) and Mg(II) ions play an important role in the secretion of insulin. There is no study about a direct complexation of Ca(II) or Mg(II) with insulin and their equilibrium constants. Electrospray ionization mass spectrometry (ESI-MS) is a practical method for the monitoring of non-covalent complexes such as Ca(II)-insulin and Mg(II)-insulin. Here, the equilibrium constants of Ca(II)-insulin and Mg(II)-insulin non-covalent complexes have been calculated after ESI-MS measurements in aqueous solutions. METHODS The effects of pH, competitive binding, ion exchange, and Na(I) and K(I) ions on Ca(II)-insulin and Mg(II)-insulin complexation have been examined by measuring by ESI-MS. The dissociation equilibrium constants (K1 and K2 ) of Ca(II)-insulin and Mg(II)-insulin complexes were calculated from the binomial graph derived from the ESI-MS normalized peak intensities. The MS/MS spectra of the complexes have been examined. RESULTS The dissociation equilibrium constants were found to K1 : 1.29 × 10(-4) M and K2 : 9.69 × 10(-4) M for the Ca(II)-insulin complexes, and K1 : 1.37 × 10(-4) M and K2 : 9.12 × 10(-4) M for Mg(II)-insulin complexes. Ca(II) ions have higher complexation capability with insulin than Mg(II) ions. CONCLUSIONS The binding equilibrium constants of Ca(II)- and Mg(II)-insulin non-covalent complexes have been determined successfully by ESI-MS. Ca(II) and Mg(II) ions are involved in the insulin secretion by forming non-covalent complexes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mustafa Gülfen
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187, Sakarya, Turkey
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
14
|
Pedro L, Van Voorhis WC, Quinn RJ. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1520-30. [PMID: 27225419 PMCID: PMC4972871 DOI: 10.1007/s13361-016-1417-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 05/28/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase (PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Liliana Pedro
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | | | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Bartman CE, Metwally H, Konermann L. Effects of Multidentate Metal Interactions on the Structure of Collisionally Activated Proteins: Insights from Ion Mobility Spectrometry and Molecular Dynamics Simulations. Anal Chem 2016; 88:6905-13. [DOI: 10.1021/acs.analchem.6b01627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claire E. Bartman
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Przybylski C, Bonnet V, Cézard C. Probing the common alkali metal affinity of native and variously methylated β-cyclodextrins by combining electrospray-tandem mass spectrometry and molecular modeling. Phys Chem Chem Phys 2015; 17:19288-305. [PMID: 26138713 DOI: 10.1039/c5cp02895g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the study herein, we investigated the solution and gas phase affinity of native and variously methylated β-cyclodextrins (CDs) as hosts towards three common alkali metals as guests namely lithium, sodium and potassium. For this purpose, two complementary approaches have been employed: electrospray-tandem mass spectrometry (ESI-MS/MS) with two energetic regimes: Collision Induced Dissociation (CID) and Higher Collision Dissociation (HCD), respectively, and DFT molecular modeling. These approaches have been achieved by taking into account the interaction of either one or two alkali metals with the host molecules. The results showed a good agreement between experimental and theoretical data. It was demonstrated that increasing the methylation degree strengthened the gas phase affinity towards all studied alkali metals. Furthermore, it was established that the cation selectivity was Na(+) > Li(+) > K(+) and Li(+) > Na(+) > K(+) for the solution and gas phase, respectively.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, Bâtiment Maupertuis, Bld F. Mitterrand, F-91025 Evry, France.
| | | | | |
Collapse
|
17
|
Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90. Eur J Pharm Sci 2015; 76:83-94. [DOI: 10.1016/j.ejps.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/30/2015] [Accepted: 05/03/2015] [Indexed: 02/06/2023]
|
18
|
Harvey SR, Porrini M, Konijnenberg A, Clarke DJ, Tyler RC, Langridge-Smith PRR, MacPhee CE, Volkman BF, Barran PE. Dissecting the Dynamic Conformations of the Metamorphic Protein Lymphotactin. J Phys Chem B 2014; 118:12348-59. [DOI: 10.1021/jp504997k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Massimiliano Porrini
- Institut Européen de Chimie et Biologie (IECB), CNRS UMR 5248 Chimie et Biologie des Membranes et des Nano-objets (CBMN), 33607 Pessac Cedex, France
| | | | | | - Robert C. Tyler
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | | | - Brian F. Volkman
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Perdita E. Barran
- School
of Chemistry,
Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
19
|
Yue X, Vahidi S, Konermann L. Insights into the mechanism of protein electrospray ionization from salt adduction measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1322-1331. [PMID: 24839193 DOI: 10.1007/s13361-014-0905-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl(-) and Na(+) with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the "nascent" analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.
Collapse
Affiliation(s)
- Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | |
Collapse
|
20
|
Wei W, Chu Y, Ding C. Gas-Phase Binding of Noncovalent Complexes Between α-cyclodextrin and Amino Acids Investigated by Mass Spectrometry. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.900779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lemaur V, Carroy G, Poussigue F, Chirot F, De Winter J, Isaacs L, Dugourd P, Cornil J, Gerbaux P. Homotropic Allosterism: In-Depth Structural Analysis of the Gas-Phase Noncovalent Complexes Associating a Double-Cavity Cucurbit[n]uril-Type Host and Size-Selected Protonated Amino Compounds. Chempluschem 2013; 78:959-969. [DOI: 10.1002/cplu.201300208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 11/09/2022]
|
22
|
He X, Wei W, Chu Y, Liu Z, Ding C. Investigation on Non‐covalent Complexes of Cyclodextrins with Li+ in Gas Phase by Mass Spectrometry. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/03/287-294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Zhang Y, Liu L, Daneshfar R, Kitova EN, Li C, Jia F, Cairo CW, Klassen JS. Protein–Glycosphingolipid Interactions Revealed Using Catch-and-Release Mass Spectrometry. Anal Chem 2012; 84:7618-21. [DOI: 10.1021/ac3023857] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yixuan Zhang
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Lan Liu
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Rambod Daneshfar
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Caishun Li
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Feng Jia
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Christopher W. Cairo
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics
Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
24
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry 2012; 51:4244-53. [DOI: 10.1021/bi300436x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G
2G2
| |
Collapse
|
25
|
Hilton GR, Benesch JLP. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J R Soc Interface 2012; 9:801-16. [PMID: 22319100 PMCID: PMC3306659 DOI: 10.1098/rsif.2011.0823] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades.
Collapse
Affiliation(s)
| | - Justin L. P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX3 1QZ, UK
| |
Collapse
|
26
|
Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:431-41. [PMID: 22270873 DOI: 10.1007/s13361-011-0311-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.
Collapse
Affiliation(s)
- Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | |
Collapse
|
27
|
Pacholarz KJ, Garlish RA, Taylor RJ, Barran PE. Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. Chem Soc Rev 2012; 41:4335-55. [DOI: 10.1039/c2cs35035a] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Kang Y, Terrier P, Ding C, Douglas DJ. Solution and gas-phase H/D exchange of protein-small-molecule complexes: Cex and its inhibitors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:57-67. [PMID: 22006406 DOI: 10.1007/s13361-011-0263-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase ("Cex") with three aza-sugar inhibitors, deoxynojirimycin (X(2)DNJ), isofagomine lactam (X(2)IL), and isofagomine (X(2)IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation "remember" their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.
Collapse
Affiliation(s)
- Yang Kang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | | | | | | |
Collapse
|
29
|
Sciuto SV, Liu J, Konermann L. An electrostatic charge partitioning model for the dissociation of protein complexes in the gas phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1679-1689. [PMID: 21952881 DOI: 10.1007/s13361-011-0205-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.
Collapse
Affiliation(s)
- Stephen V Sciuto
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | |
Collapse
|
30
|
Ahadi E, Konermann L. Ejection of Solvated Ions from Electrosprayed Methanol/Water Nanodroplets Studied by Molecular Dynamics Simulations. J Am Chem Soc 2011; 133:9354-63. [DOI: 10.1021/ja111492s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elias Ahadi
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
31
|
Liu J, Konermann L. Protein-protein binding affinities in solution determined by electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:408-17. [PMID: 21472560 DOI: 10.1007/s13361-010-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 05/23/2023]
Abstract
Electrospray ionization (ESI) allows the transfer of multi-protein complexes into the gas phase, thereby providing a simple approach for monitoring the stoichiometry of these noncovalent assemblies by mass spectrometry (MS). It remains unclear, however, whether the measured ion abundance ratios of free and bound species are suitable for determining solution-phase binding affinities (K(d) values). Many types of mass spectrometers employ rf-only quadrupoles as ion guides. This work demonstrates that the settings used for these devices are a key factor for ensuring uniform transmission behavior, which is a prerequisite for meaningful affinity measurements. Using bovine β-lactoglobulin and hemoglobin as model systems, it is demonstrated that under carefully adjusted conditions the "direct" ESI-MS approach is capable of providing K(d) values that are in good agreement with previously published solution-phase data. Of the several ion sources tested, a regular ESI emitter operated with pressure-driven flow at 1 μL min(-1) provided the most favorable results. Potential problems in these experiments include conformationally-induced differences in ionization efficiencies, inadvertent collision-induced dissociation, and ESI-induced clustering artifacts. A number of simple tests can be conducted to assess whether or not these factors are prevalent under the conditions used. In addition, the fidelity of the method can be scrutinized by performing measurements over a wide concentration range. Overall, this work supports the viability of the direct ESI-MS approach for determining binding affinities of protein-protein complexes in solution.
Collapse
Affiliation(s)
- Jiangjiang Liu
- Department of Chemistry, The University of Western Ontario, N6A 5B7 London, Ontario, Canada
| | | |
Collapse
|
32
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Mayer PM, Martineau E. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys Chem Chem Phys 2011; 13:5178-86. [DOI: 10.1039/c0cp02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Fonslow BR, Kang SA, Gestaut DR, Graczyk B, Davis TN, Sabatini DM, Yates JR. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes. Anal Chem 2010; 82:6643-51. [PMID: 20614870 DOI: 10.1021/ac101235k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15 degrees C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (<45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25 degrees C) and eventually its individual protein components (30 degrees C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4-6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions.
Collapse
Affiliation(s)
- Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Averseng O, Hagège A, Taran F, Vidaud C. Surface plasmon resonance for rapid screening of uranyl affine proteins. Anal Chem 2010; 82:9797-802. [PMID: 21069968 DOI: 10.1021/ac102578y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A sensitive immunoassay based on SPR analysis was developed to measure uranyl cation (UO(2)(2+)) affinity for any protein in a free state under physiological conditions. The technique involves immobilization of a specific monoclonal antibody (mAb) raised against UO(2)(2+) and 1,10-phenanthroline-2,9-dicarboxylic acid (DCP) used as a probe of UO(2)(2+) captured by the mAb. Calibration curves were established for accurate determination of UO(2)(2+) concentrations with a detection limit of 7 nM. The remaining free UO(2)(2+) could be accurately quantified from the different protein-metal equilibrium and a dose-response curve established for K(D) determination. This generic method was applied not only to proteins such as transferrin and albumin but also to small phosphonated ligands. Its robustness allows the fast UO(2)(2+) K(D) determination of any kind of macromolecules and small ligands using very few amount of compounds, thus opening new prospects in the field of uranium toxicity.
Collapse
Affiliation(s)
- Olivier Averseng
- Service de Biochimie et de Toxicologie Nucléaire/LEPC, DSV/iBEB, CEA Marcoule, BP 17 171, F-30207 Bagnols sur Cèze, France
| | | | | | | |
Collapse
|
36
|
Chu YQ, Dai XH, Jiang D, Jiang GY, Fang X, Ding CF. Studies on the non-covalent interactions between cyclodextrins and aryl alkanol piperazine derivatives by mass spectrometry and fluorescence spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2255-2261. [PMID: 20623479 DOI: 10.1002/rcm.4622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The non-covalent complexes of alpha- and beta-cyclodextrins (alpha-, beta-CDs) with two aryl alkanol piperazine derivatives (Pipe I and Pipe II) have been studied by electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectroscopy. The ESI-MS experimental results demonstrated that Pipe I can conjugate to beta-CD and form 1:1 or 1:2 stoichiometric non-covalent complexes, and Pipe II can only form 1:1 complexes with alpha- or beta-CD. Fluorescence spectra indicated that the fluorescence intensities of Pipe I and Pipe II can be enhanced by increasing the content of beta-CD. The mass spectrometric titration experiments showed that the dissociation constants K(d1) were 5.77 and 9.52 x 10(-4) mol L(-1) for the complexes of alpha-CD with Pipe I and Pipe II, respectively, revealing that the binding of alpha-CD-Pipe I was stronger than alpha-CD-Pipe II. The K(d1) and K(d2) values were 9.81 x 10(-4) mol L(-1) and 1.11 x 10(-7) (mol L(-1))(2) for 1:1 and 1:2 complexes of Pipe I with beta-CD, respectively. The K(d) values obtained from fluorescence spectroscopy were in agreement with those from ESI-MS titration.
Collapse
Affiliation(s)
- Yan-Qiu Chu
- Laser Chemistry Institute, Chemistry Department, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
37
|
Sun N, Soya N, Kitova EN, Klassen JS. Nonspecific interactions between proteins and charged biomolecules in electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:472-481. [PMID: 20089416 DOI: 10.1016/j.jasms.2009.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 05/28/2023]
Abstract
An investigation of the nonspecific association of small charged biomolecules and proteins in electrospray ionization mass spectrometry (ES-MS) is described. Aqueous solutions containing pairs of proteins and a small acidic or basic biomolecule that does not interact specifically with either of the proteins were analyzed by ES-MS and the distributions of the biomolecules bound nonspecifically to each pair of proteins compared. For the basic amino acid arginine and the peptide RGVFRR, nonequivalent distributions were measured in positive ion mode, but equivalent distributions were measured in negative ion mode. In the case of uridine 5'-diphosphate, nonequivalent distributions were measured in negative ion mode, but equivalent distributions observed in positive ion mode. The results of dissociation experiments performed on the gaseous ions of the nonspecific complexes suggest that the nonequivalent distributions result from differences in the extent to which the nonspecific complexes undergo in-source dissociation. To test this hypothesis, the distributions of nonspecifically bound basic molecules measured in the presence of imidazole, which protects complexes from in-source dissociation, were compared. In all cases, equivalent distributions were obtained. The results indicate that nonspecific binding of charged molecules to proteins during ES is a statistical process, independent of protein structure and size. However, the kinetic stabilities of the nonspecific interactions are sensitive to the nature of the protein ions. It is concluded that the reference protein method for correcting ES mass spectra for nonspecific ligand-protein binding can be applied to the analysis of ionic ligands, provided that in-source dissociation of the nonspecific interactions is minimized.
Collapse
Affiliation(s)
- Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
38
|
Kitova EN, Mulvey GL, Dingle T, Sinelnikov I, Wee S, Griener TP, Armstrong GD, Klassen JS. Assembly and stability of the shiga toxins investigated by electrospray ionization mass spectrometry. Biochemistry 2009; 48:5365-74. [PMID: 19400587 DOI: 10.1021/bi9003155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic investigation into the assembly and stability of native and modified subunits of the Shiga toxins (Stx) in vitro is described. Analysis of the assembly of native and modified B subunits of Stx1 and Stx2 in solution, carried out using electrospray ionization mass spectrometry (ES-MS), suggests that the lower thermodynamic stability of the B subunit homopentamer of Stx2, compared to that of Stx1, is due to the presence of a repulsive interaction involving Asp70 of the Stx2 B subunit. In Stx1 B, the corresponding (spatially) residue is Arg. Using temperature-controlled ES-MS, it is shown that the Stx1 and Stx2 holotoxins exhibit differences in their resistance to temperature- and acid-induced dissociation. However, both Stx1 and Stx2 are fully assembled at pH >3.5 and 37 degrees C. This finding has several important biological implications. First, it argues against the likelihood that the difference in Stx1 and Stx2 toxicity arises from differential dissociation of the toxins during the intracellular trafficking steps of the cellular intoxication process. Second, it implies that the activation of the A subunits of Stx1 and Stx2 by enzymatic cleavage must occur while the A subunit is assembled with the B subunit homopentamer. It is, therefore, proposed that the differential toxicities of Stx1 and Stx2 reflect the relative efficiencies of intracellular activation of the A subunits.
Collapse
Affiliation(s)
- Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sun N, Sun J, Kitova EN, Klassen JS. Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1242-1250. [PMID: 19321359 DOI: 10.1016/j.jasms.2009.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The application of the reporter molecule (M(rep)) method for identifying nonspecific complexes in the ES-MS analysis of protein-ligand and DNA-ligand interactions in vitro is described. To test the reliability of the method, it was applied to the ES-MS analysis of protein-carbohydrate complexes originating from specific interactions in solution and from nonspecific interactions in the ES process. These control experiments confirm the basic assumptions underlying the M(rep) method, namely that nonspecific ligand binding is a random process, and that the ES droplet histories for specific and nonspecific complexes are distinct. The application of the M(rep) method to the ES-MS analysis of the sequential binding of the ethidium cation, a DNA intercalator, to single and double strand oligodeoxynucleotides is also described, and highlights the general utility of the method.
Collapse
Affiliation(s)
- Nian Sun
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
40
|
Pan J, Xu K, Yang X, Choy WY, Konermann L. Solution-Phase Chelators for Suppressing Nonspecific Protein−Metal Interactions in Electrospray Mass Spectrometry. Anal Chem 2009; 81:5008-15. [DOI: 10.1021/ac900423x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jingxi Pan
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People’s Republic of China, and School of Pharmaceutical Sciences and National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, People’s Republic of China
| | - Kun Xu
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People’s Republic of China, and School of Pharmaceutical Sciences and National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, People’s Republic of China
| | - Xiaoda Yang
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People’s Republic of China, and School of Pharmaceutical Sciences and National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, People’s Republic of China
| | - Wing-Yiu Choy
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People’s Republic of China, and School of Pharmaceutical Sciences and National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, People’s Republic of China
| | - Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People’s Republic of China, and School of Pharmaceutical Sciences and National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, People’s Republic of China
| |
Collapse
|
41
|
Guo N, Zhang R, Song F, He J, Xia B, Abliz Z. Characterization of acid-induced protein conformational changes and noncovalent complexes in solution by using coldspray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:845-851. [PMID: 19211263 DOI: 10.1016/j.jasms.2008.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 05/27/2023]
Abstract
Coldspray ionization (CSI) mass spectrometry, a variant of electrospray ionization (ESI) operating at low temperature (20 to -80 degrees C), has been used to characterize protein conformation and noncovalent complexes. A comparison of CSI and ESI was presented for the investigation of the equilibrium acid-induced unfolding of cytochrome c, ubiquitin, myoglobin, and cyclophilin A (CypA) over a wide range of pH values in aqueous solutions. CSI and nanoelectrospray ionization (nanoESI) were also compared in their performance to characterize the conformational changes of cytochrome c and myoglobin. Significant differences were observed, with narrower charged-state distribution and a shift to lower charge state in the CSI mass spectra compared with those in ESI and nanoESI mass spectra. The results suggest that CSI is more prone to preserving folded protein conformations in solution than the ESI and nanoESI methods. Moreover, the CSI-MS data are comparable with those obtained by other established biophysical methods, which are generally acknowledged to be the suitable techniques for monitoring protein conformation in solution. Noncovalent complexes of holomyoglobin and the protein-ligand complex between CypA and cyclosporin A (CsA) were also investigated at a neutral pH using the CSI-MS method. The results of this study suggest the ability of CSI-MS in retaining of protein conformation and noncovalent interactions in solution and probing subtle protein conformational changes. Additionally, the CSI-MS method is capable of analyzing quantitatively equilibrium unfolding transitions of proteins. CSI-MS may become one of the promising techniques for investigating protein conformation and noncovalent protein-ligand interactions in solution.
Collapse
Affiliation(s)
- Na Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
42
|
Grandori R, Santambrogio C, Brocca S, Invernizzi G, Lotti M. Electrospray-ionization mass spectrometry as a tool for fast screening of protein structural properties. Biotechnol J 2009; 4:73-87. [DOI: 10.1002/biot.200800250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Konermann L, Tong X, Pan Y. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1021-1036. [PMID: 18523973 DOI: 10.1002/jms.1435] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS) plays a central role in studies on protein structure and dynamics. This review highlights some of the recent developments in this area, with focus on applications involving the use of electrospray ionization (ESI) MS. Although this technique involves the transformation of analytes into highly nonphysiological species (desolvated gas-phase ions in the vacuum), ESI-MS can provide detailed insights into the solution-phase behavior of proteins. Notably, the ionization process itself occurs in a structurally sensitive manner. An increased degree of solution-phase unfolding is correlated with a higher level of protonation. Also, ESI allows the transfer of intact noncovalent complexes into the gas phase, thereby yielding information on binding partners, stoichiometries, and even affinities. A particular focus of this article is the use of hydrogen/deuterium exchange (HDX) methods and hydroxyl radical (.OH) labeling for monitoring dynamic and structural aspect of solution-phase proteins. Conceptual similarities and differences between the two methods are discussed. We describe a simple method for the computational simulation of protein HDX patterns, a tool that can be helpful for the interpretation of isotope exchange data recorded under mixed EX1/EX2 conditions. Important aspects of .OH labeling include a striking dependence on protein concentration, and the tendency of commonly used solvent additives to act as highly effective radical scavengers. If not properly controlled, both of these factors may lead to experimental artifacts.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
44
|
Liu Z, Cheng S, Gallie DR, Julian RR. Exploring the Mechanism of Selective Noncovalent Adduct Protein Probing Mass Spectrometry Utilizing Site-Directed Mutagenesis To Examine Ubiquitin. Anal Chem 2008; 80:3846-52. [DOI: 10.1021/ac800176u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenjiu Liu
- Departments of Chemistry and Biochemistry, University of California, Riverside, California 92521
| | - Shijun Cheng
- Departments of Chemistry and Biochemistry, University of California, Riverside, California 92521
| | - Daniel R. Gallie
- Departments of Chemistry and Biochemistry, University of California, Riverside, California 92521
| | - Ryan R. Julian
- Departments of Chemistry and Biochemistry, University of California, Riverside, California 92521
| |
Collapse
|