1
|
Parshina EK, Deriabin KV, Kolesnikov IE, Novikov AS, Kocheva AN, Golovenko EA, Islamova RM. Iridium(III)-Incorporating Self-Healing Polysiloxanes as Materials for Light-Emitting Oxygen Sensors. Macromol Rapid Commun 2024; 45:e2400450. [PMID: 39072911 DOI: 10.1002/marc.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Polymer-metal complexes (PMCs) based on poly(2,2'-bipyridine-4,4'-dicarboxamide-co-polydimethylsiloxanes) with cyclometalated di(2-phenylpyridinato-C2,N')iridium(III) fragments and cross-linked by Zn2+ (Zn[Ir]-BipyPDMSs) or Ir3+ (Ir[Ir]-BipyPDMSs) represent flexible, stretchable, phosphorescent, and self-healing molecular oxygen sensors. PMCs provide strong phosphorescence at λem = 595-605 nm. Zn[Ir]-BipyPDMS with PDMS chain length of Mn = 5000 has the highest quantum yield of 9.3% and is a molecular oxygen sensor at different O2 concentrations (0-100 vol%) compared to Ir[Ir]-BipyPDMSs. A Stern-Volmer constant is determined for Zn[Ir]-BipyPDMS as KSV = 0.014%-1, which is similar to the reported oxygen-sensitive iridium(III) complexes. All synthesized PMCs exhibit high elongation at break (up to 1100%) and self-healing efficiency (up to 99%).
Collapse
Affiliation(s)
- Elizaveta K Parshina
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Konstantin V Deriabin
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ilya E Kolesnikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Alexander S Novikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Anastasia N Kocheva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ekaterina A Golovenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Regina M Islamova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
2
|
Maity A, Mishra VK, Dolai S, Mishra S, Patra SK. Design, Synthesis, and Characterization of Organometallic BODIPY-Ru(II) Dyads: Redox and Photophysical Properties with Singlet Oxygen Generation Capability†. Inorg Chem 2024; 63:4839-4854. [PMID: 38433436 DOI: 10.1021/acs.inorgchem.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
3
|
Zeyrek Ongun M, Sahin M, Oguzlar S, Akbal Aytan T, Topal SZ, Atilla D. Modulation of the oxygen sensing properties of iridium (III) complexes by changing their substitution groups. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Dalfen I, Pol A, Borisov SM. Optical Oxygen Sensors Show Reversible Cross-Talk and/or Degradation in the Presence of Nitrogen Dioxide. ACS Sens 2022; 7:3057-3066. [PMID: 36109879 PMCID: PMC9623579 DOI: 10.1021/acssensors.2c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A variety of luminescent dyes including the most common indicators for optical oxygen sensors were investigated in regard to their stability and photophysical properties in the presence of nitrogen dioxide. The dyes were immobilized in polystyrene and subjected to NO2 concentrations from 40 to 5500 ppm. The majority of dyes show fast degradation of optical properties due to the reaction with NO2. The class of phosphorescent metalloporphyrins shows the highest resistance against nitrogen dioxide. Among them, palladium(II) and platinum(II) complexes of octasubstituted sulfonylated benzoporphyrins are identified as the most stable dyes with almost no decomposition in the presence of NO2. The phosphorescence of these dyes is reversibly quenched by nitrogen dioxide. Immobilized in various polymeric matrices, the sulfonylated Pt(II) benzoporphyrin demonstrates about one order of magnitude more efficient quenching by NO2 than by molecular oxygen. Our study demonstrates that virtually all commercially available and reported optical oxygen sensors are likely to show either irreversible decomposition in the presence of nitrogen dioxide or reversible luminescence quenching. They should be used with extreme caution if NO2 is present in relatively high concentrations or it may be generated from other species such as nitric oxide. As an important consequence of nearly anoxic systems, production of nitrogen dioxide or nitric oxide may be therefore erroneously interpreted as an increase in oxygen concentration.
Collapse
Affiliation(s)
- Irene Dalfen
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Arjan Pol
- Research
Institute for Biological and Environmental Sciences, Department of
Microbiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria,
| |
Collapse
|
5
|
Dalfen I, Borisov SM. Porous matrix materials in optical sensing of gaseous oxygen. Anal Bioanal Chem 2022; 414:4311-4330. [PMID: 35352161 PMCID: PMC9142480 DOI: 10.1007/s00216-022-04014-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
The review provides comparison of porous materials that act as a matrix for luminescent oxygen indicators. These include silica-gels, sol–gel materials based on silica and organically modified silica (Ormosils), aerogels, electrospun polymeric nanofibers, metal–organic frameworks, anodized alumina, and various other microstructured sensor matrices. The influence of material structure and composition on the efficiency of oxygen quenching and dynamic response times is compared and the advantages and disadvantages of the materials are summarized to give a guide for design and practical application of sensors with desired sensitivity and response time.
Collapse
Affiliation(s)
- I Dalfen
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - S M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
| |
Collapse
|
6
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
7
|
Meng H, Chen M, Mo F, Guo J, Liu P, Fu Y. Construction of self-enhanced photoelectrochemical platform for L-cysteine detection via electron donor-acceptor type coumarin 545 aggregates. Chem Commun (Camb) 2021; 57:11557-11560. [PMID: 34664560 DOI: 10.1039/d1cc03065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-enhanced electron donor-acceptor type coumarin 545 aggregates prepared via an anionic surfactant-assisted reprecipitation method provide an underlying approach for the photoelectrochemical detection of L-cysteine, which can be employed in aqueous solution without the addition of electron donors.
Collapse
Affiliation(s)
- Hui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Pingkun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Elistratova AA, Kritchenkov IS, Lezov AA, Gubarev AS, Solomatina AI, Kachkin DV, Shcherbina NA, Liao YC, Liu YC, Yang YY, Tsvetkov NV, Chelushkin PS, Chou PT, Tunik SP. Lifetime oxygen sensors based on block copolymer micelles and non-covalent human serum albumin adducts bearing phosphorescent near-infrared iridium(III) complex. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Two Excited State Collaboration of Heteroleptic Ir(III)-Coumarin Complexes for H2 Evolution Dye-Sensitized Photocatalysts. ENERGIES 2021. [DOI: 10.3390/en14092425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interfacial electron injection from a photoexcited surface-immobilized dye to a semiconductor substrate is a key reaction for dye-sensitized photocatalysts. We previously reported that the molecular orientation of heteroleptic Ir(III) photosensitizer on the TiO2 nanoparticle surface was important for efficient interfacial electron injection. In this work, to overcome the weak light absorption ability of heteroleptic Ir(III) photosensitizer and to improve the photoinduced charge-separation efficiency at the dye–semiconductor interface, we synthesized two heteroleptic Ir(III) complexes with different coumarin dyes, [Ir(C6)2(H4CPbpy)]Cl and [Ir(C30)2(H4CPbpy)]Cl [Ir-CX; X = 6 or 30; HC6 = 3-(2-enzothiazolyl)-7-(diethylamino)coumarin, HC30 = 3-(2-N-methylbenzimidazolyl)-7-N,N-diethylaminocoumarin, H4CPbpy = 4,4′-bis(methylphosphonic acid)-2,2′-bipyridine], as the cyclometalated ligands and immobilized them on the surface of Pt-cocatalyst-loaded TiO2 nanoparticles. Ultraviolet-visible absorption and emission spectroscopy revealed that the singlet ligand-centered (1LC) absorption and triplet 3LC emission bands of Ir-C30 occurred at shorter wavelengths than those of Ir-C6, while time-dependent density-functional-theory data suggested that the ligand-to-ligand charge transfer (LLCT) excited states of the two complexes were comparable. The photocatalytic H2 evolution activity of the Ir-C6-sensitized Pt-TiO2 nanoparticles (Ir-C6@Pt-TiO2) under visible light irradiation (λ > 420 nm) was higher than that of Ir-C30@Pt-TiO2. In contrast, their activities were comparable under irradiation with monochromatic light (λ = 450 ± 10 nm), which is absorbed comparably by both Ir-CX complexes. These results suggest that the internal conversion from the higher-lying LC state to the LLCT state effectively occurs in both Ir-CX complexes to trigger electron injection to TiO2.
Collapse
|
10
|
Wall T, Leist M, Dietrich F, Thiel WR, Gerhards M. Quantification of Cooperativity between Metal Sites in Dinuclear Transition Metal Complexes Containing the (2-Dimethylamino)-4-(2-pyrimidinyl)pyrimidine Ligand. Chempluschem 2021; 86:622-628. [PMID: 33851792 DOI: 10.1002/cplu.202100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Indexed: 01/25/2023]
Abstract
A concept for the quantification of cooperative effects in transition-metal complexes is presented. It is demonstrated for a series of novel N,N- (mononuclear) and C,N-coordinated homo- and heterometallic binuclear complexes based on the (2-dimethylamino)-4-(2-pyrimidinyl)pyrimidine ligand, which are accessible by applying roll-over cyclometallation. These iridium-, platinum-, and palladium-containing compounds are investigated with respect to their absorption and fluorescence spectra. The cooperative effects in the electronic absorptions, i. e., the energetic shifts between mononuclear and dinuclear complexes, and free ligands are analyzed on the basis of the lowest energy π-π* transitions and compared to calculated data, obtained from TD-DFT calculations. Furthermore the corresponding fluorescence spectra are presented and analyzed with respect to the concept of cooperativity.
Collapse
Affiliation(s)
- Tatjana Wall
- Research Center Optimas, TU Kaiserlautern, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.,Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Marko Leist
- Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Fabian Dietrich
- Research Center Optimas, TU Kaiserlautern, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.,Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany.,Núcleo Milenio MultiMat & Physics Department, Universidad de La Frontera, Francisco Salazar, 01145, Temuco, Chile
| | - Werner R Thiel
- Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Markus Gerhards
- Research Center Optimas, TU Kaiserlautern, Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.,Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| |
Collapse
|
11
|
Bevernaegie R, Wehlin SAM, Elias B, Troian‐Gautier L. A Roadmap Towards Visible Light Mediated Electron Transfer Chemistry with Iridium(III) Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robin Bevernaegie
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Sara A. M. Wehlin
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
12
|
Harada N, Sasaki Y, Hosoyamada M, Kimizuka N, Yanai N. Discovery of Key TIPS‐Naphthalene for Efficient Visible‐to‐UV Photon Upconversion under Sunlight and Room Light**. Angew Chem Int Ed Engl 2020; 60:142-147. [DOI: 10.1002/anie.202012419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/08/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Naoyuki Harada
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoichi Sasaki
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Masanori Hosoyamada
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- PRESTO JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
13
|
Harada N, Sasaki Y, Hosoyamada M, Kimizuka N, Yanai N. Discovery of Key TIPS‐Naphthalene for Efficient Visible‐to‐UV Photon Upconversion under Sunlight and Room Light**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Naoyuki Harada
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoichi Sasaki
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Masanori Hosoyamada
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- PRESTO JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
14
|
Liu X, Zhang K, Gao J, Chen Y, Tung C, Wu L. Monochromophore‐Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angew Chem Int Ed Engl 2020; 59:23456-23460. [DOI: 10.1002/anie.202007039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/30/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao‐Qin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Ke Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Feng Gao
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Yu‐Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Liu X, Zhang K, Gao J, Chen Y, Tung C, Wu L. Monochromophore‐Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Qin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Ke Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Feng Gao
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Yu‐Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
16
|
Paisley NR, Tonge CM, Hudson ZM. Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Front Chem 2020; 8:229. [PMID: 32328478 PMCID: PMC7160361 DOI: 10.3389/fchem.2020.00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Though molecules exhibiting thermally activated delayed fluorescence (TADF) have seen extensive development in organic light-emitting diodes, their incorporation into polymer nanomaterials and thin films has led to a range of applications in sensing and imaging probes. Triplet quenching can be used to probe oxygen concentration, and the reverse intersystem crossing mechanism which gives rise to TADF can also be used to measure temperature. Moreover, the long emission lifetimes of TADF materials allows for noise reduction in time-gated microscopy, making these compounds ideal for time-resolved fluorescence imaging (TRFI). A polymer matrix enables control over energy transfer between molecules, and can be used to modulate TADF behavior, solubility, biocompatibility, or desirable mechanical properties. Additionally, a polymer's oxygen permeability can be tuned to suit imaging applications in a range of media. Here we review the applications of polymer nanoparticles and films exhibiting TADF in sensing and imaging, demonstrating that this class of materials has great potential beyond electroluminescent devices still waiting to be explored.
Collapse
Affiliation(s)
| | | | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Liu L, Wang X, Hussain F, Zeng C, Wang B, Li Z, Kozin I, Wang S. Multiresponsive Tetradentate Phosphorescent Metal Complexes as Highly Sensitive and Robust Luminescent Oxygen Sensors: Pd(II) Versus Pt(II) and 1,2,3-Triazolyl Versus 1,2,4-Triazolyl. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12666-12674. [PMID: 30854842 DOI: 10.1021/acsami.9b02023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two Pd(II) complexes based on tetradentate chelate ligands with either a 1,2,4-triazolyl (Pd1) or 1,2,3-triazolyl (Pd2) unit were synthesized, and their structure-property relationships were studied. Both Pd1 and Pd2 are rare bright deep blue Pd(II) phosphors with contrasting properties. Pd1 displays stimuli-responsive luminescence in response to UV irradiation, concentration, or temperature change, which is ascribed to the facile switching of monomer to excimer emission. In contrast, a similar stimuli-responsive luminescence was not observed for Pd2. Crystal structures and time-dependent density functional theory computational studies established that the excimer formation of Pd1 is caused by electronically favored intermolecular π-π interactions and less steric protection of the Pd core because of the position of its alkyl chains, compared to Pd2. In solution, the excimer emission of Pd1 shows a much greater sensitivity toward oxygen than the monomer emission with a very large Stern-Volmer constant ( Ksv) that is more than twice that of the monomer emission. Both Pd(II) complexes are found to be outstanding oxygen sensors in ethyl cellulose films with superior sensitivity ( Ksvapp = 0.228-0.346 Torr-1) over their Pt(II) equivalents ( Ksvapp = 0.00674-0.0110 Torr-1), owing to their long phosphorescence decay lifetimes. Furthermore, Pd1 shows an excellent photostability, compared to the Pt(II) analogue, making it one of the best and highly robust oxygen sensors based on cyclometalated metal complexes.
Collapse
Affiliation(s)
- Lijie Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Xiang Wang
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Faraz Hussain
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Chao Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Zechen Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Igor Kozin
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
19
|
Sebata S, Takizawa SY, Ikuta N, Murata S. Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Trans 2019; 48:14914-14925. [DOI: 10.1039/c9dt03144h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Utilization of DPPC vesicles allows water-insoluble photoactive Ir(iii) complexes to be dispersed in bulk aqueous solution.
Collapse
Affiliation(s)
- Shinogu Sebata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
20
|
Li C, Lu W, Zhou X, Pang M, Luo X. Visible-Light Driven Photoelectrochemical Platform Based on the Cyclometalated Iridium(III) Complex with Coumarin 6 for Detection of MicroRNA. Anal Chem 2018; 90:14239-14246. [DOI: 10.1021/acs.analchem.8b03246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Weisen Lu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiaoming Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Mengmeng Pang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
21
|
Borisov SM, Pommer R, Svec J, Peters S, Novakova V, Klimant I. New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen via phosphorescence decay time. JOURNAL OF MATERIALS CHEMISTRY. C 2018; 6:8999-9009. [PMID: 30713692 PMCID: PMC6333324 DOI: 10.1039/c8tc02726a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 05/03/2023]
Abstract
New complexes of Zn(ii), Pd(ii) and Pt(ii) with Schiff bases are prepared in a one-step condensation of 4-(dibutylamino)-2-hydroxybenzaldehyde and 4,5-diaminophthalonitrile in the presence of a metal salt. The complexes possess efficient absorption in the blue-green part of the spectrum with molar absorption coefficients up to 98 000 M-1 cm-1. The Pt(ii) complex shows very strong red phosphorescence in anoxic solutions at room temperature with a quantum yield of 65% in toluene which places it among the brightest emitters available for this spectral range. The phosphorescence of the Pd(ii) complex under the same conditions is very weak (Φ < 1%) but is enhanced to Φ > 10% upon immobilization into polymers. Optical thermometers based on self-referenced lifetime read-out are prepared upon immobilization of the dyes into gas-blocking poly(vinylidene chloride-co-acrylonitrile). At 25 °C, the materials based on Pd(ii) and Pt(ii) complexes show sensitivities of -2.1 and -0.52%τ/K, respectively. Application of the sensors for imaging of temperature on surfaces (planar optode) and for monitoring of fast temperature fluctuations (fiber-optic microsensor) is demonstrated. Immobilized into a gas-permeable matrix, the Pt(ii) complex also performs as a promising oxygen-sensing material. The new systems are also attractive for imaging of oxygen or temperature with the help of multi-photon microscopy, due to a good match with the biological optical window and much better brightness under two photon excitation compared to that of the conventional Pt(ii) meso-tetra-(pentafluorophenyl)porphyrin.
Collapse
Affiliation(s)
- Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , 8010 , Graz , Austria .
| | - Reinhold Pommer
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , 8010 , Graz , Austria .
| | - Jan Svec
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis , Faculty of Pharmacy in Hradec Kralove , Charles University , Akademika Heyrovskeho 1203 , Hradec Kralove , Czech Republic
| | - Sven Peters
- Department of Ophthalmology , University Hospital Jena , Jena , Germany
| | - Veronika Novakova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis , Faculty of Pharmacy in Hradec Kralove , Charles University , Akademika Heyrovskeho 1203 , Hradec Kralove , Czech Republic
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , 8010 , Graz , Austria .
| |
Collapse
|
22
|
Huang C, Ran G, Zhao Y, Wang C, Song Q. Synthesis and application of a water-soluble phosphorescent iridium complex as turn-on sensing material for human serum albumin. Dalton Trans 2018; 47:2330-2336. [PMID: 29367989 DOI: 10.1039/c7dt04676f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel water-soluble cyclometallated iridium complex [Ir(pq-COOH)2FDS]- (pq-COOH = 2-phenylquinoline-4-carboxylic acid, FDS = 3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-1,2,4-triazine dianions) (abbreviated as Ir) was synthesized and its phosphorescent property was comprehensively studied. It was found that the complex exhibited strong phosphorescence, which peaked at 634 nm in neutral conditions (maximized at pH 8.0). Its phosphorescence decreased with an increase in acidity of the aqueous solution. At pH 2.0, the quenched phosphorescence could be resumed upon the addition of human serum albumin (HSA) because of the hydrophobic and electrostatic interactions between HSA and Ir. Based on this phenomenon, a "turn on" type phosphorescence probe was developed for the detection of HSA. Under optimal conditions, a wide calibration range of 1-280 nM was obtained with a limit of detection of 0.8 nM for HSA. The phosphorescence probe was successfully used for the determination of HSA in blood serum and urine samples.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
23
|
Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death. Bioinorg Chem Appl 2018; 2018:7578965. [PMID: 30154833 PMCID: PMC6092981 DOI: 10.1155/2018/7578965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
Collapse
|
24
|
Filho AFDM, Gewehr PM, Maia JM, Jakubiak DR. Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1953. [PMID: 29914139 PMCID: PMC6021951 DOI: 10.3390/s18061953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins.
Collapse
Affiliation(s)
| | - Pedro M Gewehr
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Joaquim M Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Douglas R Jakubiak
- Department of Electronics (DAELN), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| |
Collapse
|
25
|
Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI. Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:85-103. [PMID: 29080132 DOI: 10.1007/978-3-319-67358-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- Metabolic Imaging Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
26
|
Taniguchi M, Lindsey JS. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD. Photochem Photobiol 2018; 94:290-327. [PMID: 29166537 DOI: 10.1111/php.12860] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/22/2017] [Indexed: 01/06/2025]
Abstract
The design of new molecules for photochemical studies typically requires knowledge of spectral features of pertinent chromophores beginning with the absorption spectrum (λabs ) and accompanying molar absorption coefficient (ε, m-1 cm-1 ) and often extending to the fluorescence spectrum (λem ) and fluorescence quantum yield (Φf ), where the fluorescence properties may be of direct relevance or useful as proxies to gain insight into the nature of the first excited singlet state. PhotochemCAD databases, developed over a period of 30 years, are described here. The previous databases for 150 compounds have been expanded to encompass 339 compounds for which absorption spectra (including ε values), fluorescence spectra (including Φf values) and references to the primary literature have been included where available (552 spectra altogether). The compounds exhibit spectra in the ultraviolet, visible and/or near-infrared spectral regions. The compound classes and number of members include acridines (21), aromatic hydrocarbons (41), arylmethane dyes (11), azo dyes (18), biomolecules (18), chlorins/bacteriochlorins (16), coumarins (14), cyanine dyes (19), dipyrrins (7), heterocycles (26), miscellaneous dyes (13), oligophenylenes (13), oligopyrroles (6), perylenes (5), phthalocyanines (11), polycyclic aromatic hydrocarbons (16), polyenes/polyynes (10), porphyrins (34), quinones (24) and xanthenes (15). A database of 31 solar spectra also is included.
Collapse
|
27
|
Lu Y, Conway-Kenny R, Wang J, Cui X, Zhao J, Draper SM. Exploiting coumarin-6 as ancillary ligands in 1,10-phenanthroline Ir(iii) complexes: generating triplet photosensitisers with high upconversion capabilities. Dalton Trans 2018; 47:8585-8589. [PMID: 29431810 DOI: 10.1039/c8dt00231b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new Ir(iii) complexes incorporating 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (coumarin 6) and ethynylpyrene (EP) functionalised 1,10-phenanthroline (phen) were developed. [Ir(iii)(coumarin 6)2(3-EP-phen)](PF6) (Ir-3) proved to be the most promising material in triplet photosensitising applications. Highly absorbing at λ = 485 nm (ε = 1.31 × 105 M-1 cm-1), it exhibits high upconversion and singlet oxygen quantum yields (ΦUC = 27.5%, ΦΔ = 81.5%) and an exemplary upconversion capability (η = 3.60 × 106 M-1 cm-1).
Collapse
Affiliation(s)
- Y Lu
- Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
28
|
Torres J, Carrión MC, Leal J, Jalón FA, Cuevas JV, Rodríguez AM, Castañeda G, Manzano BR. Cationic Bis(cyclometalated) Ir(III) Complexes with Pyridine–Carbene Ligands. Photophysical Properties and Photocatalytic Hydrogen Production from Water. Inorg Chem 2018; 57:970-984. [DOI: 10.1021/acs.inorgchem.7b02289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - M. Carmen Carrión
- Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Bulevar Rio Alberche s/n, 45007 Toledo, Spain
| | | | | | - José V. Cuevas
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana M. Rodríguez
- Escuela Superior de Ingenieros Industriales, Avda,
C. J. Cela, 3, 13071 Ciudad Real, Spain
| | | | | |
Collapse
|
29
|
Takizawa SY, Kano R, Ikuta N, Murata S. An anionic iridium(iii) complex as a visible-light absorbing photosensitizer. Dalton Trans 2018; 47:11041-11046. [DOI: 10.1039/c8dt02477d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anionic Ir(iii) photosensitizer bearing coumarin dyes has been developed and applied to the visible-light-driven hydrogen generation.
Collapse
Affiliation(s)
- Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Ryoto Kano
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
30
|
Yu Y, Kwon MS, Jung J, Zeng Y, Kim M, Chung K, Gierschner J, Youk JH, Borisov SM, Kim J. Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors. Angew Chem Int Ed Engl 2017; 56:16207-16211. [DOI: 10.1002/anie.201708606] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/27/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Youngchang Yu
- Department of Materials Science and Engineering University of Michigan USA
| | - Min Sang Kwon
- Department of Materials Science and Engineering University of Michigan USA
- Department of Materials Science and Engineering Ulsan Institute of Science and Technology (UNIST) Korea
| | - Jaehun Jung
- Macromolecular Science and Engineering University of Michigan USA
| | - Yingying Zeng
- Department of Materials Science and Engineering University of Michigan USA
| | - Mounggon Kim
- Department of Materials Science and Engineering University of Michigan USA
| | - Kyeongwoon Chung
- Macromolecular Science and Engineering University of Michigan USA
- Process Innovation Department Korea Institute of Materials Science (KIMS) Korea
| | | | - Ji Ho Youk
- Department of Applied Organic Materials Engineering Inha University Korea
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry Graz University of Technology Austria
| | - Jinsang Kim
- Department of Materials Science and Engineering University of Michigan USA
- Macromolecular Science and Engineering University of Michigan USA
- Department of Chemical Engineering Department of Biomedical Engineering, and Department of Chemistry University of Michigan USA
| |
Collapse
|
31
|
Yu Y, Kwon MS, Jung J, Zeng Y, Kim M, Chung K, Gierschner J, Youk JH, Borisov SM, Kim J. Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708606] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Youngchang Yu
- Department of Materials Science and Engineering University of Michigan USA
| | - Min Sang Kwon
- Department of Materials Science and Engineering University of Michigan USA
- Department of Materials Science and Engineering Ulsan Institute of Science and Technology (UNIST) Korea
| | - Jaehun Jung
- Macromolecular Science and Engineering University of Michigan USA
| | - Yingying Zeng
- Department of Materials Science and Engineering University of Michigan USA
| | - Mounggon Kim
- Department of Materials Science and Engineering University of Michigan USA
| | - Kyeongwoon Chung
- Macromolecular Science and Engineering University of Michigan USA
- Process Innovation Department Korea Institute of Materials Science (KIMS) Korea
| | | | - Ji Ho Youk
- Department of Applied Organic Materials Engineering Inha University Korea
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry Graz University of Technology Austria
| | - Jinsang Kim
- Department of Materials Science and Engineering University of Michigan USA
- Macromolecular Science and Engineering University of Michigan USA
- Department of Chemical Engineering Department of Biomedical Engineering, and Department of Chemistry University of Michigan USA
| |
Collapse
|
32
|
Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI. Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials 2017; 146:86-96. [DOI: 10.1016/j.biomaterials.2017.08.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
|
33
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Nanoscale upconversion for oxygen sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:76-84. [DOI: 10.1016/j.msec.2016.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023]
|
35
|
Application of five-membered ring products of cyclometalation reactions as sensing materials in sensing devices. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Banerjee S, Kelly C, Kerry JP, Papkovsky DB. High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Jiang X, Peng J, Wang J, Guo X, Zhao D, Ma Y. Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3591-600. [PMID: 26592255 DOI: 10.1021/acsami.5b07860] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The photophysics of a series of bichromophoric molecules featuring an intramolecular triplet energy transfer between a triscyclometalated iridium(III) complex and covalently linked organic group are studied. By systematically varying the energy gap (0.1-0.3 eV) between the donor (metal complex) and acceptor (pyrene unit), reversible triplet energy transfer processes with equilibrium constant K ranging from ca. 500 to 40 000 are established. Unique photophysical consequences of such large K values are observed. Because of the highly imbalanced forward and backward energy transfer rates, triplet excitons dominantly populate the acceptor moiety in the steady state, giving rise to ultralong luminescence lifetimes up to 1-4 ms. Because the triscyclometalated Ir and triplet pyrene groups both impart relatively small nonradiative energy loss, decent phosphorescence quantum yields (Φ = 0.1-0.6) are attained in spite of the exceptionally prolonged excited states. By virtue of such precious combination of long-lived triplet state and high Φ, these bichromophoric molecules can serve as highly sensitive luminescent sensors for detecting trace amount of O2 and as potent photosensitizers for producing singlet oxygen even under low-oxygen content conditions.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jiang Peng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianchun Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
38
|
Filatov MA, Baluschev S, Landfester K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem Soc Rev 2016; 45:4668-89. [DOI: 10.1039/c6cs00092d] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different approaches towards protection of triplet excited states against deactivation by molecular oxygen are summarized and reviewed.
Collapse
Affiliation(s)
- Mikhail A. Filatov
- Trinity Biomedical Science Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Stanislav Baluschev
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Optics and Spectroscopy Department
- Faculty of Physics
| | - Katharina Landfester
- Optics and Spectroscopy Department
- Faculty of Physics
- Sofia University “St. Kliment Ochridski”
- 1164 Sofia
- Bulgaria
| |
Collapse
|
39
|
Medina-Rodríguez S, Denisov SA, Cudré Y, Male L, Marín-Suárez M, Fernández-Gutiérrez A, Fernández-Sánchez JF, Tron A, Jonusauskas G, McClenaghan ND, Baranoff E. High performance optical oxygen sensors based on iridium complexes exhibiting interchromophore energy shuttling. Analyst 2016; 141:3090-7. [DOI: 10.1039/c6an00497k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible electronic energy transfer is used for sensing oxygen traces and results in very high sensitivity.
Collapse
Affiliation(s)
| | | | - Yanouk Cudré
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | - Louise Male
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | - Marta Marín-Suárez
- Department of Analytical Chemistry
- Faculty of Sciences
- University of Granada
- 18071 Granada
- Spain
| | | | | | - Arnaud Tron
- Université Bordeaux/CNRS
- ISM
- 33405 Talence Cedex
- France
| | | | | | | |
Collapse
|
40
|
Staudinger C, Borisov SM. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors. Methods Appl Fluoresc 2015; 3:042005. [PMID: 27134748 PMCID: PMC4849553 DOI: 10.1088/2050-6120/3/4/042005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed.
Collapse
Affiliation(s)
- Christoph Staudinger
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
41
|
Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angew Chem Int Ed Engl 2015; 54:8094-9. [PMID: 26037656 DOI: 10.1002/anie.201503067] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Indexed: 12/27/2022]
Abstract
We have developed a nanosensor for tracking cancer metastasis by noninvasive real-time whole-body optical imaging. The nanosensor is prepared by the formation of co-micelles from a poly(N-vinylpyrrolidone)-conjugated iridium(III) complex (Ir-PVP) and poly(ε-caprolactone)-b-poly(N-vinylpyrrolidone) (PCL-PVP). The near-infrared phosphorescence emission of the nanosensor could be selectively activated in the hypoxic microenvironment induced by cancer cells. The detection ability of the nanosensor was examined in cells and different animal models. After intravenous injection, the nanosensor can be effectively delivered to the lung and lymph node, and cancer cell metastasis through bloodstream or lymphatics can be quickly detected with high signal-to-background ratio by whole-body imaging and organ imaging. Moreover, the nanosensor exhibits good biocompatibility both in vitro and in vivo. The nanosensor is believed to be a powerful tool for the diagnosis of cancer metastasis.
Collapse
Affiliation(s)
- Xianchuang Zheng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Huang Tang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Chen Xie
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Jialiang Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China).
| |
Collapse
|
43
|
Dang TT, Bonneau M, Gareth Williams JA, Le Bozec H, Doucet H, Guerchais V. Pd-Catalyzed Functionalization of the Thenoyltrifluoroacetone Coligands by Aromatic Dyes in Bis(cyclometallated) IrIIIComplexes: From Phosphorescence to Fluorescence? Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Sun S, Ungerböck B, Mayr T. Imaging of oxygen in microreactors and microfluidic systems. Methods Appl Fluoresc 2015; 3:034002. [DOI: 10.1088/2050-6120/3/3/034002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Li C, Wang H, Shen J, Tang B. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal Chem 2015; 87:4283-91. [PMID: 25816127 DOI: 10.1021/ac5047032] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive material is the most crucial factor which intimately determines analytical performances of the photoelectrochemical sensor. On the basis of the high affinity of dipyrido [3,2-a:2',3'-c] phenazine (dppz) with DNA helix, a novel photoactive intercalator, [(ppy)2Ir(dppz)](+)PF6(-)(ppy = 2-phenylpyridine and dppz = dipyrido [3,2-a:2',3'-c] phenazine) was prepared and characterized by UV-vis absorption spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of the as-prepared iridium(III) complex immobilized on the ITO electrode was investigated. Either cathodic or anodic photocurrent generation can be observed when triethanolamine (TEOA) or dissolved O2 is used as a sacrificial electron donor/acceptor, respectively. The probable photocurrent-generation mechanisms are speculated. A highly sensitive iridium(III) complex-based photoelectrochemical sensor was proposed for DNA detection via hybridization chain reaction (HCR) signal amplification. Under optimal conditions, the biosensor was found to be linearly proportional to the logarithm of target DNA concentration in the range from 0.025 to 100 pmol L(-1) with a detection limit of 9.0 fmol L(-1) (3σ). Moreover, the proposed sensor displayed high selectivity and good reproducibility, demonstrating efficient and stable photoelectric conversion ability of the Ir(III) complex.
Collapse
Affiliation(s)
- Chunxiang Li
- †College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P.R. China.,‡Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hongyang Wang
- ‡Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jing Shen
- ‡Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Bo Tang
- †College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
46
|
Santner J, Larsen M, Kreuzeder A, Glud RN. Two decades of chemical imaging of solutes in sediments and soils--a review. Anal Chim Acta 2015; 878:9-42. [PMID: 26002324 DOI: 10.1016/j.aca.2015.02.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
The increasing appreciation of the small-scale (sub-mm) heterogeneity of biogeochemical processes in sediments, wetlands and soils has led to the development of several methods for high-resolution two-dimensional imaging of solute distribution in porewaters. Over the past decades, localised sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative understanding of biogeochemical processes regulating the distribution of key elements and solutes including O2, CO2, pH, redox conditions as well as nutrient and contaminant ion species in structurally complex soils and sediments. Recently these methods have been applied in parallel or integrated as so-called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments.
Collapse
Affiliation(s)
- Jakob Santner
- Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Morten Larsen
- Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Andreas Kreuzeder
- Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ronnie N Glud
- Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Scottish Marine Institute, Scottish Association for Marine Science, Oban, Scotland, PA37 1QA, UK; Greenland Climate Research Centre (CO Greenland Institute of Natural Resources), Kivioq 2, Box 570, 3900 Nuuk, Greenland; Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
47
|
Larsen M, Santner J, Oburger E, Wenzel WW, Glud RN. O 2 dynamics in the rhizosphere of young rice plants ( Oryza sativa L.) as studied by planar optodes. PLANT AND SOIL 2015; 390:279-292. [PMID: 26166902 PMCID: PMC4495287 DOI: 10.1007/s11104-015-2382-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/06/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Radial O2 loss (ROL) strongly affect the O2 availability in the rhizosphere of rice. The ROL create an oxic zone around the roots, protecting the plant from toxic reduced chemical species and regulates the redox chemistry in the soil. This study investigates the spatio-temporal variability in O2 dynamics in the rice rhizosphere. METHOD Applying high-resolution planar optode imaging, we investigated the O2 dynamics of plants grown in water saturated soil, as a function of ambient O2 level, irradiance and plant development, for submerged and emerged plants. RESULTS O2 leakage was heterogeneously distributed with zones of intense leakage around roots tips and young developing roots. While the majority of roots exhibited high ROL others remained surrounded by anoxic soil. ROL was affected by ambient O2 levels around the plant, as well as irradiance, indicating a direct influence of photosynthetic activity on ROL. At onset of darkness, oxia in the rhizosphere was drastically reduced, but subsequently oxia gradually increased, presumably as root and/or soil respiration declined. CONCLUSION The study demonstrates a high spatio-temporal heterogeneity in rhizosphere O2 dynamics and difference in ROL between different parts of the rhizosphere. The work documents that spatio-temporal measurements are important to fully understand and account for the highly variable O2 dynamics and associated biogeochemical processes and pathways in the rice rhizosphere.
Collapse
Affiliation(s)
- Morten Larsen
- Institute of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, 5320 Odense M, Denmark
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, Scotland PA37 1QA UK
- Greenland Climate Research Centre (CO Greenland Institute of National resources), Kivioq 2, Box 570, 3900 Nuuk, Greenland
| | - Jakob Santner
- Rhizosphere Ecology and Biogeochemistry Group, Institute of Soil Science, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 3430 Tulln, Austria
| | - Eva Oburger
- Rhizosphere Ecology and Biogeochemistry Group, Institute of Soil Science, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 3430 Tulln, Austria
| | - Walter W. Wenzel
- Rhizosphere Ecology and Biogeochemistry Group, Institute of Soil Science, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 3430 Tulln, Austria
| | - Ronnie N. Glud
- Institute of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, 5320 Odense M, Denmark
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, Scotland PA37 1QA UK
- Greenland Climate Research Centre (CO Greenland Institute of National resources), Kivioq 2, Box 570, 3900 Nuuk, Greenland
- Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
48
|
Mitochondria-targeted oxygen probes based on cationic iridium complexes with a 5-amino-1, 10-phenanthroline ligand. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Duan P, Yanai N, Nagatomi H, Kimizuka N. Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability. J Am Chem Soc 2015; 137:1887-94. [DOI: 10.1021/ja511061h] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pengfei Duan
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Hisanori Nagatomi
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
Li C, Wang S, Huang Y, Wen Q, Wang L, Kan Y. Photoluminescence properties of a novel cyclometalated iridium(III) complex with coumarin-boronate and its recognition of hydrogen peroxide. Dalton Trans 2014; 43:5595-602. [PMID: 24549180 DOI: 10.1039/c3dt53498g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel neutral iridium(III) complex-based phosphorescent probe (Ir-2) for hydrogen peroxide (H2O2) has been designed and synthesized by incorporating a benzeneboronic acid pinacol ester (bpe) moiety into 3-(benzothiazol-2-yl)-7-hydroxy-coumarin (Bthc) as a cyclometalated ligand (Bthc-bpe). The photophysical behavior of Ir-2 was investigated by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, and quantum mechanical calculations. The absorption spectra of the complex Ir-2 are dominated by the cyclometalated ligand; thus it shows an intense absorption band in the visible region at 460 nm with a molar extinction coefficient (ε) of about 3 × 10(4) M(-1) cm(-1), which is rarely found for typical polypyridine iridium(III) complexes. The complex Ir-2 displays efficient phosphorescent emission at 560 nm at room temperature originating from a mixed triplet metal-to-ligand charge-transfer ((3)MLCT, dπ(Ir) → π* (Bthc-bpe)) and triplet intraligand ((3)ILCT, π-π* (Bthc-bpe)) excited states as suggested by the DFT computational studies. Upon reaction with H2O2, the complex displays an emission decrease induced by an intense intermolecular aggregation due to the cleavage of the bulky benzeneboronic acid pinacol ester substituent, indicating that Ir-2 could act as an ON-OFF-type phosphorescent probe for H2O2. Additionally, selectivity studies reveal that the complex Ir-2 possesses high selectivity toward H2O2 over other reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Chunxiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | |
Collapse
|