1
|
Ocaña C, Lukic S, del Valle M. Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1540-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Loo AH, Bonanni A, Ambrosi A, Pumera M. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection. NANOSCALE 2014; 6:11971-5. [PMID: 25177907 DOI: 10.1039/c4nr03795b] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | | | | | | |
Collapse
|
3
|
Loo AH, Bonanni A, Pumera M. An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes. Analyst 2014; 138:467-71. [PMID: 23172284 DOI: 10.1039/c2an36199j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an emerging interest in developing electrochemical DNA biosensors which rely on label-free protocols for the detection of DNA hybridization and polymorphism. Lately, many of them have been using DNA probes which were physically adsorbed onto different graphene platforms. In these works, the biorecognition event is monitored by electrochemical impedance spectroscopy and the detection mechanism proposed needs verification by orthogonal methods. Here, we aim to provide an insight into the mechanism behind the impedimetric signal change upon the hybridization event on graphene platforms. For this aim, we used an orthogonal electrochemical method, differential pulse voltammetry, to examine the oxidation of guanine on target DNA molecules hybridized with an inosine-substituted hairpin DNA probe. We show that the successful biorecognition event leads to desorption of dsDNA from graphenic surfaces on a wide range of graphenic surfaces, such as graphene oxide, electrochemically reduced graphene oxide and thermally reduced graphene oxide. These results confirm the previous hypothesis based on electrochemical impedance spectroscopy data. In addition, these findings also have a profound impact on the understanding of both the interactions between DNA and graphene platforms and the DNA recognition event on graphene platforms for the construction of biosensors.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
4
|
Ma DL, He HZ, Leung KH, Zhong HJ, Chan DSH, Leung CH. Label-free luminescent oligonucleotide-based probes. Chem Soc Rev 2013; 42:3427-40. [PMID: 23348604 DOI: 10.1039/c2cs35472a] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breakthrough advances in chemistry and biology over the last two decades have vastly expanded the repertoire of nucleic acid structure and function with potential application in multiple areas of science and technology, including sensing and analytical applications. DNA oligonucleotides represent popular tools for the development of sensing platforms due to their low cost, rich structural polymorphism, and their ability to bind to cognate ligands with sensitivity and specificity rivaling those for protein enzymes and antibodies. In this review, we give an overview of the "label-free" approach that has been a particular focus of our group and others for the construction of luminescent DNA-based sensing platforms. The label-free strategy aims to overcome some of the drawbacks associated with the use of covalently-labeled oligonucleotides prevalent in electrochemical and optical platforms. Label-free DNA-based probes harness the selective interaction between luminescent dyes and functional oligonucleotides that exhibit a "structure-switching" response upon binding to analytes. Based on the numerous examples of label-free luminescent DNA-based probes reported recently, we envisage that this field would continue to thrive and mature in the years to come.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
5
|
Loo AH, Bonanni A, Pumera M. Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. NANOSCALE 2013; 5:7844-7848. [PMID: 23846404 DOI: 10.1039/c3nr02101g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Graphene related materials have been widely employed as highly efficient transducers for biorecognition. Here we show a conceptually new approach of using graphene oxide nanoplatelets (50 × 50 nm) as voltammetric inherently active labels for specific protein-target molecule recognition. This proof-of-principle is demonstrated by biotin-avidin recognition, which displays that graphene oxide nanoplatelet labels show excellent selectivity. Therefore, it is expected that inherently electroactive graphene oxide nanoplatelet labels will play a similar role as electroactive gold nanoparticle labels which were developed more than a decade ago.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
6
|
Loo AH, Bonanni A, Pumera M. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. NANOSCALE 2013; 5:4758-4762. [PMID: 23604556 DOI: 10.1039/c3nr00511a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Graphene and its associated materials are commonly used as the transducing platform in biosensing. We propose a different approach for the application of graphene in biosensing. Here, we utilized graphene oxide nanoplatelets as the inherently electroactive labels for the aptasensing of thrombin. The basis of detection lies in the ability of graphene oxide to be electrochemically reduced, thereby providing a well-defined reduction wave; one graphene oxide nanoplatelet of dimension 50 × 50 nm can provide a reduction signal by accepting ~22,000 electrons. We demonstrate that by using graphene oxide nanoplatelets as an inherently electroactive label, we can detect thrombin in the concentration range of 3 pM-0.3 μM, with good selectivity of the aptamer towards interferences by bovine serum albumin, immunoglobulin G and avidin. Therefore, the inherently electroactive graphene oxide nanoplatelets are a material which can serve as an electroactive label, in a manner similar to metallic nanoparticles.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | | | | |
Collapse
|
7
|
Loo AH, Bonanni A, Pumera M. Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chem Asian J 2012; 8:198-203. [PMID: 23090869 DOI: 10.1002/asia.201200756] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 01/09/2023]
Abstract
The preparation of biorecognition layers on the surface of a sensing platform is a very crucial step for the development of sensitive and selective biosensors. Different protocols have been used thus far for the immobilization of biomolecules onto various electrode surfaces. In this work, we investigate how the protocol followed for the immobilization of a DNA aptamer affects the performance of the fabricated thrombin aptasensor. Specifically, the differences in selectivity and optimum amount of immobilized aptamer of the fabricated aptasensors adopting either physical, covalent, or affinity immobilization were compared. It was discovered that while all three methods of immobilization uniformly show a similar optimum amount of immobilized aptamer, physical, and covalent immobilization methods exhibit higher selectivity than affinity immobilization. Hence, it is believed that our findings are very important in order to optimize and improve the performance of graphene-based aptasensors.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
8
|
Loo AH, Bonanni A, Pumera M. Impedimetric thrombin aptasensor based on chemically modified graphenes. NANOSCALE 2012; 4:143-147. [PMID: 22068751 DOI: 10.1039/c1nr10966a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Highly sensitive biosensors are of high importance to the biomedical field. Graphene represents a promising transducing platform for construction of biosensors. Here for the first time we compare the biosensing performance of a wide set of graphenes prepared by different methods. In this work, we present a simple and label-free electrochemical impedimetric aptasensor for thrombin based on chemically modified graphene (CMG) platforms such as graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO). Disposable screen-printed electrodes were first modified with chemically modified graphene (CMG) materials and used to immobilize a DNA aptamer which is specific to thrombin. The basis of detection relies on the changes in impedance spectra of redox probe after the binding of thrombin to the aptamer. It was discovered that graphene oxide (GO) is the most suitable material to be used as compared to the other three CMG materials. Furthermore, the optimum concentration of aptamer to be immobilized onto the modified electrode surface was determined to be 10 μM and the linear detection range of thrombin was 10-50 nM. Lastly, the aptasensor was found to demonstrate selectivity for thrombin. Such simply fabricated graphene oxide aptasensor shows high promise for clinical diagnosis of biomarkers and point-of-care analysis.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
9
|
Bonanni A, Ambrosi A, Pumera M. Nucleic acid functionalized graphene for biosensing. Chemistry 2011; 18:1668-73. [PMID: 22213459 DOI: 10.1002/chem.201102850] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Indexed: 11/11/2022]
Abstract
There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.
Collapse
Affiliation(s)
- Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
10
|
Giovanni M, Bonanni A, Pumera M. Detection of DNA hybridization on chemically modified graphene platforms. Analyst 2011; 137:580-3. [PMID: 22114759 DOI: 10.1039/c1an15910k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The increasing demand for simple, low-cost, rapid, sensitive and label-free methods for the detection of DNA sequences and the presence of single nucleotide polymorphisms (SNPs) has become an important issue in biomedical research. In this work, we studied the performances of several chemically modified graphene nanomaterials as sensing platforms by using the electrochemical impedance spectroscopy technique for the detection. We employed a hairpin DNA as a highly selective probe for the detection of SNP correlated to Alzheimer's disease. We believe that our findings may present a foundation for further research and development in graphene-based impedimetric biosensing.
Collapse
Affiliation(s)
- Marcella Giovanni
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | |
Collapse
|
11
|
Ren J, Wang J, Wang J, Luedtke NW, Wang E. Contribution of potassium ion and split modes of G-quadruplex to the sensitivity and selectivity of label-free sensor toward DNA detection using fluorescence. Biosens Bioelectron 2011; 31:316-22. [PMID: 22104647 DOI: 10.1016/j.bios.2011.10.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/16/2011] [Accepted: 10/19/2011] [Indexed: 12/30/2022]
Abstract
In recent years, bioanalytical technology based on G-quadruplex has been paid significant attention due to its versatility and stimulus-responsive reconfiguration. Notwithstanding, several key issues for template-directed reassembly of G-quadruplex have not been resolved: what is the key factor for determining the sensitivity and selectivity of split G-quadruplex probes toward target DNA. Therefore, in this study, we designed three pairs of split G-quadruplex probes and investigated the sensitivity and selectivity of these systems in terms of potassium ion concentration and split modes of G-quadruplex. Due to its simplicity and sensitivity, N-methyl-mesoporphyrin (NMM) as fluorescence probes was used to monitor the target-directed reassembling process of G-quadruplex. A G-quadruplex sequence derived from the c-Myc promoter was split into "symmetric" probes, where each fragment contained two runs of guanine residues (2+2), or into "asymmetric" fragments each containing (3+1 or 1+3) runs of guanine residues. In all three cases, the sensitivity of target detection was highly dependent on the thermodynamic stability of the hybrid structure, which can be modulated by potassium ion concentrations. Using a combination of CD, fluorescence, and UV spectroscopy, we found that increasing potassium concentrations can increase the sensitivity of target detection, but can decrease the selectivity of discriminating cognate versus mismatched "target" DNA. The previous argument that asymmetrically split probes were always better than symmetrically split probes in terms of selectivity was not plausible anymore. These results demonstrate how the sensitivities and selectivity of split probes to mutations can be optimized by tuning the thermodynamic stability of the three-way junction complex.
Collapse
Affiliation(s)
- Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
12
|
Kannan B, Williams DE, Booth MA, Travas-Sejdic J. High-Sensitivity, Label-Free DNA Sensors Using Electrochemically Active Conducting Polymers. Anal Chem 2011; 83:3415-21. [DOI: 10.1021/ac1033243] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bhuvaneswari Kannan
- Polymer Electronic Research Centre, Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - David E. Williams
- Polymer Electronic Research Centre, Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Marsilea A. Booth
- Polymer Electronic Research Centre, Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronic Research Centre, Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
13
|
Bonanni A, Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS NANO 2011; 5:2356-2361. [PMID: 21355609 DOI: 10.1021/nn200091p] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is enormous need for sensitive and selective detection of single nucleotide polymorphism of a DNA strand as this issue is related to many major diseases and disorders, such as Parkinson's and Alzheimer's disease. To achieve sensitivity and selectivity of the detection, a highly sensitive transducer of the signal with high surface area is required. In this work we employ a graphene platform to combine the sensitivity of electrochemical impedance spectroscopy with the high selectivity of hairpin-shaped DNA probes for the rapid detection of single nucleotide polymorphism correlated to the development of Alzheimer's disease. We investigate the influence of various graphene platforms consisting of different numbers of same-sized graphene layers. We believe that our findings are an important step toward highly sensitive and selective sensing architectures.
Collapse
Affiliation(s)
- Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | |
Collapse
|
14
|
Bonanni A, del Valle M. Use of nanomaterials for impedimetric DNA sensors: A review. Anal Chim Acta 2010; 678:7-17. [DOI: 10.1016/j.aca.2010.08.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023]
|