1
|
Qian X, Zhang H, Zheng M, Li C, Wang J, Huang H, Deng K. A dual-mode strategy based on β-galactosidase and target-induced DNA polymerase protection for transcription factor detection using colorimetry and a glucose meter. Analyst 2023; 148:6078-6086. [PMID: 37909394 DOI: 10.1039/d3an01414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this work, we report a novel dual-mode method for the highly specific and sensitive detection of transcription factors (TFs) via the integration of Klenow polymerase protection induced by target-specific recognition, cascade-signal amplification using the hybridization chain reaction (HCR) and CRISPR/Cas12a system, and dual-signal transduction mediated by β-galactosidase (β-gal) and two substrates. A dual-mode signal-sensing interface was constructed by immobilizing the oligo DNA probe (P1) tethered β-gal in a 96-well plate. A hairpin H1 with the ability to initiate HCRs was designed to contain the TF binding site. The binding between the TF and H1 protected the H1 from being extended by the Klenow fragment. After thermal denaturation, the reserved H1 launched the HCR and the HCR products activated CRISPR/Cas12a to cleave P1 and reduce the β-gal on the sensing interface, and thus the contents of the TFs and the corresponding signals mediated by the catalysis of β-gal showed a correlation. This work was the first attempt at utilizing β-gal for dual-signal transduction. It is a pioneering study to utilize the HCR-CRISPR/Cas12a system for dual-mode TF sensors. It revealed that DNA polymerase protection through the binding of TF and DNA could be applied as a new pattern to develop TF sensors.
Collapse
Affiliation(s)
- Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Heng Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingyu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Chunxiang Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinglun Wang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Ma L, Wei Y, Mao Y, Liu Y, Li G, Deng Y. An accurate method for antigen β-conglycinin detection in soybean meal. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Chen Y, Wang K, Chen F, Chang S, Zhang H. Response of HPRT Gene Fragment Functionalized Gold Nanoparticles to Gamma Ray Irradiation. ANAL SCI 2021; 37:309-314. [PMID: 33342922 DOI: 10.2116/analsci.20p248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Radiation-sensitive biomolecules are highly significant for studying biological effects of radiation and developing ionizing radiation detectors based on biomolecules. In this work, we selected hypoxanthine phosphoribosyl transferase gene fragments sensitive to gamma-ray irradiation as a sensing element for radiation detection. The end was modified with thiol groups. The thiol-modified oligonucleotide sequences were coupled to the surface of gold nanoparticles by Au-S covalent bonds. The DNA attached to the surface of gold nanoparticles forms a DNA-AuNPs assembly through base pairing. The assembly was irradiated by gamma rays. And its response to radiation was studied with ultraviolet-visible spectroscopy and surface-enhanced Raman scattering (SERS) spectroscopy techniques. SERS spectroscopy and ultraviolet spectroscopy can detect the response of the DNA-AuNPs assembly to gamma-ray irradiation below 100 and 100 - 250 Gy, respectively. The results indicated that it was feasible to develop a new approach of gamma-ray detectors using biomolecular assemblies of gold nanoparticles.
Collapse
Affiliation(s)
- Yu Chen
- Department of Nuclear Science and Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics
| | - Kaikai Wang
- Department of Nuclear Science and Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics
| | - Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University
| | - Shuquan Chang
- Department of Nuclear Science and Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics
| | - Haiqian Zhang
- Department of Nuclear Science and Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics.,Jiangsu Key Laboratory for Biomaterials and Devices
| |
Collapse
|
4
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Li D, Li Y, Luo F, Qiu B, Lin Z. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for a Transcription Factor Based on Target-Modulated Proximity Hybridization and Exonuclease III-Powered Recycling Amplification. Anal Chem 2020; 92:12686-12692. [DOI: 10.1021/acs.analchem.0c03086] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dan Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Li
- Department of Ultrasound, Fourth People’s Hospital of Taizhou City, Jianshu, 225300, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Determination of the concentration of transcription factor by using exonuclease III-aided amplification and gold nanoparticle mediated fluorescence intensity: A new method for gene transcription related enzyme detection. Anal Chim Acta 2020; 1104:132-139. [PMID: 32106944 DOI: 10.1016/j.aca.2019.12.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 01/20/2023]
Abstract
Herein, we report a new probe for the determination of the concentration of NF-κB p50, one kind of DNA-binding transcription factors (TFs), by using Exonuclease III (Exo III)-aided amplification and gold nanoparticle mediated fluorescence intensity. Since TFs play critical roles in various biological processes, the detection of TFs can provide a lot of useful biological information for studding gene expression regulation related disease. In our system, in the presence of transcription factor, Exo III based amplification reaction was trigged. This enzymatic digestion results in the release of intermediate DNA and ultimately liberating the fluorophore (which, separated from the quencher of AuNP and BHQ2, now fluoresces). The released intermediate DNA then hybridizes with another strand3, whence the cycle starts anew. So, the fluorescence intensity reflects the NF-κB p50 concentration with a detection limit of 1.32 pM. Importantly, this method might be further extended to selectively detect various dsDNA-binding proteins by simply changing the binding-site sequences of strand1/strand2 duplex probes.
Collapse
|
7
|
Sun Y, Li Z, Lau C, Lu J. Antibody free ELISA-like assay for the detection of transcription factors based on double-stranded DNA thermostability. Analyst 2020; 145:3339-3344. [DOI: 10.1039/c9an02631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) play critical roles in gene expression regulation and disease development. Herein we report a chemiluminescence assay for the detection of transcription factor based on double-stranded DNA thermostability.
Collapse
Affiliation(s)
- Yue Sun
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Zhiyan Li
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Choiwan Lau
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Jianzhong Lu
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| |
Collapse
|
8
|
|
9
|
Cyclic enzymatic amplification method for highly sensitive detection of nuclear factor-kappa B. Anal Chim Acta 2019; 1068:80-86. [DOI: 10.1016/j.aca.2019.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
|
10
|
Wang C, Xing K, Zhang G, Yuan M, Xu S, Liu D, Chen W, Peng J, Hu S, Lai WH. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chem 2019; 281:91-96. [DOI: 10.1016/j.foodchem.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
|
11
|
Abstract
Hormones produced by glands in the endocrine system and neurotransmitters produced by the nervous system control many bodily functions. The concentrations of these molecules in the body are an indication of its state, hence the use of the term biomarker. Excess concentrations of biomarkers, such as cortisol, serotonin, epinephrine, and dopamine, are released by the body in response to a variety of conditions, for example, emotional state (euphoria, stress) and disease. The development of simple, low-cost modalities for point-of-use (PoU) measurements of biomarkers levels in various bodily fluids (blood, urine, sweat, saliva) as opposed to conventional hospital or lab settings is receiving increasing attention. This paper starts with a review of the basic properties of 12 primary stress-induced biomarkers: origin in the body (i.e., if they are produced as hormones, neurotransmitters, or both), chemical composition, molecular weight (small/medium size molecules and polymers, ranging from ∼100 Da to ∼100 kDa), and hydro- or lipophilic nature. Next is presented a detailed review of the published literature regarding the concentration of these biomarkers found in several bodily fluids that can serve as the medium for determination of the condition of the subject: blood, urine, saliva, sweat, and, to a lesser degree, interstitial tissue fluid. The concentration of various biomarkers in most fluids covers a range of 5-6 orders of magnitude, from hundreds of nanograms per milliliter (∼1 μM) down to a few picograms per milliliter (sub-1 pM). Mechanisms and materials for point-of-use biomarker sensors are summarized, and key properties are reviewed. Next, selected methods for detecting these biomarkers are reviewed, including antibody- and aptamer-based colorimetric assays and electrochemical and optical detection. Illustrative examples from the literature are discussed for each key sensor approach. Finally, the review outlines key challenges of the field and provides a look ahead to future prospects.
Collapse
Affiliation(s)
- Andrew J. Steckl
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221-0030, United States
| | - Prajokta Ray
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221-0030, United States
| |
Collapse
|
12
|
Li B, Chen Y, Wang J, Lu Q, Zhu W, Luo J, Hong J, Zhou X. Detecting transcription factors with allosteric DNA-Silver nanocluster switches. Anal Chim Acta 2018; 1048:168-177. [PMID: 30598147 DOI: 10.1016/j.aca.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
Sensitive and efficient detection of protein markers, such as transcription factors (TFs), is an important issue in postgenomic era. In this paper, we report a DNA nanodevice, allosteric DNA-silver nanocluster switches (AgSwitches), for TFs detection. The mechanism of this nanodevice is based on the binding-induced allostery whereby the binding between AgSwitches and TFs alters the conformation of AgSwitches. This alteration brings DNA-silver nanocluster (DNA-AgNCs) and guanine-rich enhancer sequences (GRS) into close proximity, generating fluorescent enhancement for quantifications. Our results revealed that the sequence design of AgSwitches can be rationally optimized according to stimulated free energy, and we demonstrated that this method can not only be used for detecting TFs in nuclear extracts of cells, but also be developed as a tool for screening inhibitors of TFs. Overall, this work expanded the category allosteric DNA nanodevices by first introducing DNA-AgNCs into this area, and the obtained method was efficient for TFs-related investigations.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jieping Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
13
|
Chen H, Sun Y, Li Y, Zhao J, Cao Y. Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Mikrochim Acta 2018; 185:451. [PMID: 30209641 DOI: 10.1007/s00604-018-2992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
The authors describe a significantly improved colorimetric nanoprobe for the determination of transcription factors (TFs). It is making use of click-mediated growth of gold nanoparticles (AuNPs) to amplify the signal-to-noise ratio. Hypoxia-inducible factor-1 (HIF-1) is an important TF that acts as a mediator of cell response to hypoxia. So, the detection of HIF-1 was chosen as the model analyte. Specifically, target HIF-1 is designed to bind to the hypoxia response element within DNA duplex. The click chemistry between the DNA duplex and alkynyl-functionalized AuNPs (AF-AuNPs) is then inhibited because of significant steric hindrance. As a result, the AF-AuNPs grow into larger-sized highly-aggregated irregular nanostructures, which in turn enable colorimetric determination. The ratio of absorbances at 620 and 560 nm increases in the 0.5 to 10 nM HIF-1 concentration range, and the detection limit is 0.27 nM. This is better by a factor of 100 than that of aggregation-based colorimetric assays. The nanoprobe is selective and can be used in complex samples. Conceivably, it may also be extended to the determination of other TFs by simply changing the used DNA duplex. Graphical abstract Schematic of a nanoprobe for detecting hypoxia-inducible factor-1 (HIF-1). Three concepts are involved: the binding of HIF-1 and hypoxia response element, the Cu+-catalyzed click chemistry between P1/P2 duplex and alkynyl-functionalized AuNPs (AF-AuNPs), and the AuNPs growth with hydroxylamine and HAuCl4.
Collapse
Affiliation(s)
- Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yan Sun
- Department of Endocrinology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
14
|
Si Y, Bai Y, Qin X, Li J, Zhong W, Xiao Z, Li J, Yin Y. Alkyne–DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells. Anal Chem 2018; 90:3898-3905. [DOI: 10.1021/acs.analchem.7b04735] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanmei Si
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yaocai Bai
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Xiaojie Qin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jun Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Wenwan Zhong
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Zhijun Xiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yadong Yin
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
15
|
Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1949-1954. [PMID: 29425043 DOI: 10.1021/acs.jafc.7b05326] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An aptamer-based lateral flow test strip was developed for the detection of zearalenone (ZEN). This assay was based on the competition for the aptamer between ZEN and its complementary sequence. Several experimental conditions that could influence sensitivity have been investigated, including the concentration of aptamer and NaCl used in the probe preparation, the mole ratio of streptavidin and biotinylated DNA used in the preparation of test line and control line, and the loading quantity of gold nanoparticles-aptamer conjugates (AuNPs-Apt). Under the optimal experimental conditions, we successfully detected ZEN within a detection range of 5-200 ng/mL and the visual limit of detection of 20 ng/mL. This aptamer-based strip was successfully applied to the determination of ZEN in spiked corn samples, and the recoveries were from 93.4% to 114.2%. All detections can be achieved within 5 min. The results demonstrated that the developed aptamer-based lateral flow test strip is a potential alternative tool for the rapid and sensitive detection of ZEN.
Collapse
Affiliation(s)
- Shijia Wu
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, China
| | | | | | | | | | | |
Collapse
|
16
|
Wang C, Chen D, Wang Q, Wang Q. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. ANAL SCI 2018; 32:757-62. [PMID: 27396657 DOI: 10.2116/analsci.32.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, an aptasensor-based resonance light-scattering (RLS) method was developed for the sensitive and selective detection of acetamiprid. The ABA (acetamiprid binding aptamer)-stabilized gold nanoparticles (ABA-AuNPs) were used as a probe. Highly specific single-strand DNA (ssDNA, i.e, aptamers) that bind to acetamiprid with high affinity were employed to discriminate other pesticides, such as edifenphos, kanamycin, metribuzin et. al. The sensing approach is based on a specific interaction between acetamiprid and ABA. Aggregation of AuNPs was specifically induced by the desorption of the ABA from the surface of AuNPs, which caused the RLS signal intensity to be enhanced at 700 nm. The alteration of AuNPs' aggregation has been successfully optimized by controlling several conditions. Under the optimal conditions, the RLS intensity changes (I/I0) of AuNPs were linearly correlated with the acetamiprid concentration in the range of 0 - 100 nM. The detection limit is 1.2 nM (3σ). This method had also been used for acetamiprid detection in lake water samples.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University
| | | | | | | |
Collapse
|
17
|
Bertucci A, Guo J, Oppmann N, Glab A, Ricci F, Caruso F, Cavalieri F. Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch. NANOSCALE 2018; 10:2034-2044. [PMID: 29323382 DOI: 10.1039/c7nr07814e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transcription factor DNA binding activity is of pivotal importance in living systems because of its primary involvement in the regulation of genetic machinery. The analysis of transient expression levels of transcription factors in response to a certain cell status is a powerful means for investigating cellular dynamics at the biomolecular level. Herein, a DNA-based molecular switch that enables probing of transcription factor DNA binding activity is directly used in living cells. We demonstrate that the DNA nanoswitch allows for dynamic fluorescence imaging of NF-κB and quantification of downstream gene silencing in real time. The present strategy is based on a functional DNA nanodevice that transduces, through a binding-induced conformational change, the recognition of a specific transcription factor into a fluorescent signal. In addition, stochastic optical resolution microscopy, a super-resolution microscopy technique, is used to track the internalization and intracellular trafficking of the DNA nanodevice with high spatial resolution. Overall, it has been shown that a rationally designed DNA nanodevice can be used to achieve rapid, simple, and cost-effective real-time determination of transcription factor binding activity and downstream gene silencing.
Collapse
Affiliation(s)
- Alessandro Bertucci
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang K, Wang L, Zhao H, Jiang W. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Talanta 2017; 179:331-336. [PMID: 29310240 DOI: 10.1016/j.talanta.2017.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) play central roles in the regulation of gene expression by binding with specific DNA sequences. As a potential diagnostic marker, sensitive detection of TFs is essential for pharmacological research development and clinical disease diagnosis. Here, a new fluorescent method based on target binding protection mediated rolling circle amplification (RCA) was developed for TFs detection. A hairpin probe with recognition site for target binding, cleavage site for Nt.BbvCI digestion and two hanging DNA strands with part of G-quadruplex complementary sequences for signal output was designed. Moreover, the hairpin probe could serve as template of RCA after being ligated. Firstly, TFs bound with hairpin probes and protected signal complementary sequences against cleavage by Nt.BbvCI due to space hindrance effect, while the excess hairpin probes were effectively digested to avoid false positive signal. Then, TFs and Nt.BbvCI were dissociated from hairpin probes by heating, complete hairpin probes being preserved. Next, protected hairpin probes were specifically connected to dumbbell templates under the action of T4 DNA ligase. Subsequently, dumbbell templates hybridized with primer to initiate the RCA reaction, obtaining numerous G-quadruplex sequences. Finally, N-methyl-mesoporphyrin IX (NMM) bound with G-quadruplex to generate enhanced fluorescence signal. The proposed assay system achieved excellent specificity and sensitivity toward TATA-binding protein (TBP) with a detection limit as low as 88pM, and with a linear range from 100pM to 40nM. The strategy proposed here was looking forward to offer a powerful tool for TFs related bioanalysis and disease diagnostics.
Collapse
Affiliation(s)
- Kaili Zhang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, PR China
| | - Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
19
|
Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria. Sci Rep 2017; 7:1452. [PMID: 28469128 PMCID: PMC5431225 DOI: 10.1038/s41598-017-01371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.
Collapse
|
20
|
A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon. Anal Chim Acta 2017; 957:55-62. [DOI: 10.1016/j.aca.2016.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/10/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022]
|
21
|
Carnerero JM, Jimenez‐Ruiz A, Castillo PM, Prado‐Gotor R. Covalent and Non‐Covalent DNA–Gold‐Nanoparticle Interactions: New Avenues of Research. Chemphyschem 2016; 18:17-33. [DOI: 10.1002/cphc.201601077] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jose M. Carnerero
- Physical Chemistry. Faculty of Chemistry University of Seville C/Profesor Garcia Gonzalez, s/n 41012 Seville Spain
| | - Aila Jimenez‐Ruiz
- Physical Chemistry. Faculty of Chemistry University of Seville C/Profesor Garcia Gonzalez, s/n 41012 Seville Spain
| | - Paula M. Castillo
- Physical Chemistry. Faculty of Chemistry University of Seville C/Profesor Garcia Gonzalez, s/n 41012 Seville Spain
| | - Rafael Prado‐Gotor
- Physical Chemistry. Faculty of Chemistry University of Seville C/Profesor Garcia Gonzalez, s/n 41012 Seville Spain
| |
Collapse
|
22
|
Farkhari N, Abbasian S, Moshaii A, Nikkhah M. Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications. Colloids Surf B Biointerfaces 2016; 148:657-664. [PMID: 27697740 DOI: 10.1016/j.colsurfb.2016.09.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/24/2016] [Accepted: 09/18/2016] [Indexed: 11/29/2022]
Abstract
The mechanism of adsorption of single and double stranded DNAs on colloidal gold and silver nanoparticles has been studied by measuring the resistance of the nanoparticles, surrounded by various oligonucleotides, against salt induced aggregation. It is shown that both single and double stranded DNAs can be adsorbed on the metal nanoparticles and the adsorption strength is determined by the interaction between various bases of DNA and the nanoparticles. By changing the salt concentration, the difference between adsorption of various DNA strands on the nanoparticles can be specified. The results indicate that a key parameter in success of a sensing assay of DNA hybridization is the salt concentration which should be greater than a minimum threshold depending on the nanoparticles characteristics. We have also investigated the interaction mechanism between various DNA bases with the metal nanoparticles. For both gold and silver nanoparticles, adenine has the highest and thymine has the lowest attachment to the nanoparticles. From surface enhanced Raman spectroscopy (SERS) data of various bases in the presence of gold nanoparticles, the probable interaction points in the bases with the nanoparticles have been determined, which are mainly the nitrogen sites of these oligonucleotides.
Collapse
Affiliation(s)
- Nahid Farkhari
- Department of Physics, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Sara Abbasian
- Department of Physics, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran; School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran; School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
23
|
Unmodified and positively charged gold nanoparticles for sensitive colorimetric detection of folate receptor via terminal protection of small molecule-linked ssDNA. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5589-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ma ZY, Ruan YF, Xu F, Zhao WW, Xu JJ, Chen HY. Protein Binding Bends the Gold Nanoparticle Capped DNA Sequence: Toward Novel Energy-Transfer-Based Photoelectrochemical Protein Detection. Anal Chem 2016; 88:3864-71. [DOI: 10.1021/acs.analchem.6b00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zheng-Yuan Ma
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Fan Ruan
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Li K, Wang L, Xu X, Gao T, Yan P, Jiang W. Protein binding-protected DNA three-way junction-mediated rolling circle amplification for sensitive and specific detection of transcription factors. RSC Adv 2016. [DOI: 10.1039/c6ra12535b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A novel fluorescent strategy for transcription factors assay was developed based on protein binding-protected DNA three-way junction-mediated rolling circle amplification.
Collapse
Affiliation(s)
- Kan Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Lei Wang
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
- P. R. China
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ting Gao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ping Yan
- Jinan Maternity and Child Care Hospital
- 250001 Jinan
- P. R. China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
26
|
Ahn J, Choi Y, Lee AR, Lee JH, Jung JH. A duplex DNA–gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins. Analyst 2016; 141:2040-5. [DOI: 10.1039/c6an00033a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SPL-12-mediated change of Au aggregation via duplex DNA–SPL-12 interactions could be utilized for colorimetric sensing of SPL-12 using duplex DNA–Au.
Collapse
Affiliation(s)
- Junho Ahn
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 660-701
- Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 660-701
- Korea
| | - Ae-Ree Lee
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 660-701
- Korea
| | - Joon-Hwa Lee
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 660-701
- Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 660-701
- Korea
| |
Collapse
|
27
|
TIAN R, ZHENG X. Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling. ANAL SCI 2016; 32:751-5. [DOI: 10.2116/analsci.32.751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Rui TIAN
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University
| | - Xingwang ZHENG
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University
| |
Collapse
|
28
|
Abstract
Recent advances in Au NP based optical sensing systems for various analytes based on absorption, fluorescence and SERS are summarized.
Collapse
Affiliation(s)
- Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung 95002
- Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
29
|
Zhang Y, Ma F, Tang B, Zhang CY. Recent advances in transcription factor assays in vitro. Chem Commun (Camb) 2016; 52:4739-48. [DOI: 10.1039/c5cc09891b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the recent advances in transcription factor assaysin vitroand highlight the emerging trends as well.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
30
|
Seow N, Tan YN, Yung LYL, Su X. DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection. Sci Rep 2015; 5:18293. [PMID: 26678946 PMCID: PMC4683372 DOI: 10.1038/srep18293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022] Open
Abstract
We have developed a unique DNA-assembled gold nanoparticles (AuNPs) dimer for dynamic light scattering (DLS) sensing of transcription factors, exemplified by estrogen receptor (ER) that binds specifically to a double-stranded (ds) DNA sequence containing estrogen response element (ERE). Here, ERE sequence is incorporated into the DNA linkers to bridge the AuNPs dimer for ER binding. Coupled with DLS, this AuNP dimer-based DLS detection system gave distinct readout of a single ‘complex peak’ in the presence of the target molecule (i.e., ER). This unique signature marked the first time that such nanostructures can be used to study transcription factor-DNA interactions, which DLS alone cannot do. This was also unlike previously reported AuNP-DLS assays that gave random and broad distribution of particles size upon target binding. In addition, the ERE-containing AuNP dimers could also suppress the light-scattering signal from the unbound proteins and other interfering factors (e.g., buffer background), and has potential for sensitive detection of target proteins in complex biological samples such as cell lysates. In short, the as-developed AuNP dimer probe coupled with DLS is a simple (mix and test), rapid (readout in ~5 min) and sensitive (low nM levels of ER) platform to detect sequence-specific protein-DNA binding event.
Collapse
Affiliation(s)
- Nianjia Seow
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Yen Nee Tan
- Institute of Material Research and Engineering, ASTAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602
| | - Lin-Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Xiaodi Su
- Institute of Material Research and Engineering, ASTAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602
| |
Collapse
|
31
|
Application Progress of Exonuclease-Assisted Signal Amplification Strategies in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60874-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Fok I cleavage–inhibition strategy for the specific and accurate detection of transcription factors. Talanta 2015; 144:44-50. [DOI: 10.1016/j.talanta.2015.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023]
|
33
|
An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1632-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Tohidi Moghadam T, Ranjbar B. Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme. Talanta 2015; 144:778-87. [PMID: 26452890 DOI: 10.1016/j.talanta.2015.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/24/2015] [Accepted: 06/11/2015] [Indexed: 12/01/2022]
Abstract
Gold nanorods have been nominated as propitious candidates for nanobiodiagnostic applications. Herein, a technique has been introduced for rapid visual detection of lysozyme, as its high level of excretion in biological fluids is a characteristic sign of leukemia and kidney disorders. Gold nanorods were biofunctionalized with lysozyme aptamer and characterized with UV-Visible and FTIR spectroscopy, zeta potential analyzer and transmission electron microscopy. Exposure of the nanoprobe to nano molar levels of lysozyme (20 nmol l(-1)) lead to dictated aggregation of the nanostructures at ambient temperature; which was significantly improved by heat induced morphological perturbations and rapid detection by the naked eye (down to pico molar level). Qualitative analysis of Acute myeloid leukemia, Acute lymphocytic leukemia and Lymphoma blood serums showed sensitivity and specificity of the fabricated aptasensor under both temperature conditions. This report encourages utilization of heat-induced aggregation of gold nanorods as a promising nanodiagnostic technique for the emerging nanotechnologies.
Collapse
Affiliation(s)
- Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
35
|
Jimenez-Ruiz A, Perez-Tejeda P, Grueso E, Castillo PM, Prado-Gotor R. Nonfunctionalized Gold Nanoparticles: Synthetic Routes and Synthesis Condition Dependence. Chemistry 2015; 21:9596-609. [DOI: 10.1002/chem.201405117] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Li C, Qiu X, Hou Z, Deng K. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection. Biosens Bioelectron 2015; 64:505-10. [DOI: 10.1016/j.bios.2014.09.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
37
|
Jiang B, Wang M, Li F, Yu L, Xie J. Multiplexed electrochemical coding of DNA–protein bindings. Biosens Bioelectron 2015; 64:429-33. [DOI: 10.1016/j.bios.2014.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/16/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
|
38
|
Zhang J, Pan L, Lv M, Aldalbahi A, Xie T, Li A, Tai R, Huang Q, Fan C, Zhao Y, Zhu Y. Transportation and fate of gold nanoparticles in oilseed rape. RSC Adv 2015. [DOI: 10.1039/c5ra07278f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we demonstrate the mild effect of AuNPs on the growth of oilseed rape seedlings and suggest their potential application as vehicles for gene delivery in plants.
Collapse
|
39
|
Chen C, Luo M, Ye T, Li N, Ji X, He Z. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst 2015; 140:4515-20. [DOI: 10.1039/c5an00485c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sensitive and selective colorimetric biosensor for the detection of protein, which combines gold nanoparticles and rolling circle amplification, is described.
Collapse
Affiliation(s)
- Chaohui Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ming Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Tai Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ningxing Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
40
|
Ma ZY, Ruan YF, Zhang N, Zhao WW, Xu JJ, Chen HY. A new visible-light-driven photoelectrochemical biosensor for probing DNA–protein interactions. Chem Commun (Camb) 2015; 51:8381-4. [DOI: 10.1039/c5cc01832c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel photoelectrochemical approach was achieved for the detection of a DNA binding protein via the protein–DNA interaction.
Collapse
Affiliation(s)
- Zheng-Yuan Ma
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
41
|
Deng HH, Weng SH, Huang SL, Zhang LN, Liu AL, Lin XH, Chen W. Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 2014; 852:218-22. [DOI: 10.1016/j.aca.2014.09.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/30/2013] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
42
|
Song C, Zhang Q, Han GM, Du YC, Kong DM. A facile fluorescence method for endonuclease detection using exonuclease III-aided signal amplification of a molecular beacon. RSC Adv 2014. [DOI: 10.1039/c4ra09676b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Liu Y, Fang W, Wu Z, Zhou G, Yi W, Zhou X, Shen A, Hu J. A one-tube multiplexed colorimetric strategy based on plasmonic nanoparticles combined with non-negative matrix factorization. Talanta 2014; 128:305-10. [DOI: 10.1016/j.talanta.2014.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
44
|
Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions. Anal Chim Acta 2014; 842:57-62. [DOI: 10.1016/j.aca.2014.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
|
45
|
Gonçalves AM, Pedro AQ, Santos FM, Martins LM, Maia CJ, Queiroz JA, Passarinha LA. Trends in protein-based biosensor assemblies for drug screening and pharmaceutical kinetic studies. Molecules 2014; 19:12461-85. [PMID: 25153865 PMCID: PMC6270898 DOI: 10.3390/molecules190812461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
Abstract
The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ana M Gonçalves
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Augusto Q Pedro
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Fátima M Santos
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís M Martins
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Cláudio J Maia
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - João A Queiroz
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
46
|
Zhao P, Chen Z, Li Y, Sun D, Gao Y, Huang Y, Li X. Selection of DNA-Encoded Small Molecule Libraries Against Unmodified and Non-Immobilized Protein Targets. Angew Chem Int Ed Engl 2014; 53:10056-9. [DOI: 10.1002/anie.201404830] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 11/07/2022]
|
47
|
Zhao P, Chen Z, Li Y, Sun D, Gao Y, Huang Y, Li X. Selection of DNA-Encoded Small Molecule Libraries Against Unmodified and Non-Immobilized Protein Targets. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Ma F, Yang Y, Zhang CY. Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Anal Chem 2014; 86:6006-11. [DOI: 10.1021/ac5017369] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Ma
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yong Yang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule Detection
and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
49
|
Zhang Y, Liu F, Nie J, Jiang F, Zhou C, Yang J, Fan J, Li J. An electrochemical sensing platform based on local repression of electrolyte diffusion for single-step, reagentless, sensitive detection of a sequence-specific DNA-binding protein. Analyst 2014; 139:2193-8. [PMID: 24647581 DOI: 10.1039/c4an00096j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wong JKF, Yip SP, Lee TMH. Ultrasensitive and closed-tube colorimetric loop-mediated isothermal amplification assay using carboxyl-modified gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1495-9. [PMID: 24623485 DOI: 10.1002/smll.201302348] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Indexed: 05/07/2023]
Affiliation(s)
- Jacky K F Wong
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|