1
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Frédérich M, Pirotte B, Fillet M, de Tullio P. Metabolomics as a Challenging Approach for Medicinal Chemistry and Personalized Medicine. J Med Chem 2016; 59:8649-8666. [PMID: 27295417 DOI: 10.1021/acs.jmedchem.5b01335] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
"Omics" sciences have been developed to provide a holistic point of view of biology and to better understand the complexity of an organism as a whole. These systems biology approaches can be examined at different levels, starting from the most fundamental, i.e., the genome, and finishing with the most functional, i.e., the metabolome. Similar to how genomics is applied to the exploration of DNA, metabolomics is the qualitative and quantitative study of metabolites. This emerging field is clearly linked to genomics, transcriptomics, and proteomics. In addition, metabolomics provides a unique and direct vision of the functional outcome of an organism's activities that are required for it to survive, grow, and respond to internal and external stimuli or stress, e.g., pathologies and drugs. The links between metabolic changes, patient phenotype, physiological and/or pathological status, and treatment are now well established and have opened a new area for the application of metabolomics in the drug discovery process and in personalized medicine.
Collapse
Affiliation(s)
- Michel Frédérich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Pascal de Tullio
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| |
Collapse
|
3
|
Fillet M, Frédérich M. The emergence of metabolomics as a key discipline in the drug discovery process. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:19-24. [PMID: 26190679 DOI: 10.1016/j.ddtec.2015.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
Metabolomics is a recent science that could be defined as the comprehensive qualitative and quantitative analysis of all small molecular weight compounds present in a cell, organ (including biofluids) or organism at a specific time point. More and more applications have been found these past years to metabolomics in the pharmaceutical field. Specifically in the drug discovery process, metabolomics open new perspectives, in new targets identification, in toxicological studies and in bioactive natural products discovery. The challenge in metabolomics is to find a technological approach allowing the reproducible identification and quantitation of as much metabolites as possible. In this context, mass spectrometry and NMR are emerging as key and complementary technologies.
Collapse
Affiliation(s)
- Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Perez-Guaita D, Sanchez-Illana A, Ventura-Gayete J, Garrigues S, de la Guardia M. Chemometric determination of lipidic parameters in serum using ATR measurements of dry films of solvent extracts. Analyst 2014; 139:170-8. [DOI: 10.1039/c3an01057k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Wang L, Chen C. Emerging applications of metabolomics in studying chemopreventive phytochemicals. AAPS JOURNAL 2013; 15:941-50. [PMID: 23794098 DOI: 10.1208/s12248-013-9503-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
Phytochemicals from diet and herbal medicines are under intensive investigation for their potential use as chemopreventive agents to block and suppress carcinogenesis. Chemical diversity of phytochemicals, together with complex metabolic interactions between phytochemicals and biological system, can overwhelm the capacity of traditional analytical platforms, and thus pose major challenges in studying chemopreventive phytochemicals. Recent progresses in metabolomics have transformed it to become a robust systems biology tool, suitable for examining both chemical and biochemical events that contribute to the cancer prevention activities of plant preparations or their bioactive components. This review aims to discuss the technical platform of metabolomics and its existing and potential applications in chemoprevention research, including identifying bioactive phytochemicals in plant extracts, monitoring phytochemical exposure in humans, elucidating biotransformation pathways of phytochemicals, and characterizing the effects of phytochemicals on endogenous metabolism and cancer metabolism.
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, 225 FScN, St. Paul, Minnesota, 55108, USA
| | | |
Collapse
|
6
|
Chen C, Kim S. LC-MS-based Metabolomics of Xenobiotic-induced Toxicities. Comput Struct Biotechnol J 2013; 4:e201301008. [PMID: 24688689 PMCID: PMC3962105 DOI: 10.5936/csbj.201301008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 01/12/2023] Open
Abstract
Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major causes behind development of xenobiotic-induced toxicities (XIT). Therefore, examining the metabolic events associated with XIT generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment. Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-MS) has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis. In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation, instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with xenobiotic exposure.
Collapse
Affiliation(s)
- Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States
| | - Sangyub Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|