1
|
Park J, Cheong DY, Lee G, Han CE. Deep learning-based denoising for unbiased analysis of morphology and stiffness in amyloid fibrils. Comput Biol Med 2025; 184:109410. [PMID: 39577350 DOI: 10.1016/j.compbiomed.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Understanding the morphology of amyloid fibrils is crucial for comprehending the aggregation and degradation mechanisms of abnormal proteins implicated in various diseases, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and various forms of amyloidosis. Atomic force microscopy (AFM) stands as the most representative method for studying amyloid fibril morphology. However, obstacles in AFM images, including noise, salt, and amorphous aggregates, often impede accurate sample quantification. In this study, we developed denoising software employing a U-Net deep learning architecture to address this issue. The software efficiently eliminated various impediments that interfere with fibril analysis in noisy AFM images, thereby facilitating precise quantification of amyloid fibrils. We also developed automated fibril analysis technologies using the denoised AFM images, leading to quicker, more precise, and more objective assessments of fibril morphology. Furthermore, we presented a method for fibril stiffness extraction from a modulus image through mask creation based on a denoised height image. Our approach secures time efficiency and precision in analyzing amyloid morphology, and we believe it will significantly advance the currently stagnant research on amyloid-related diseases.
Collapse
Affiliation(s)
- Jaehee Park
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Da Yeon Cheong
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
2
|
Yi Y, Li Z, Liu L, Wu HC. Towards Next Generation Protein Sequencing. Chembiochem 2024:e202400824. [PMID: 39632614 DOI: 10.1002/cbic.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Understanding the structure and function of proteins is a critical objective in the life sciences. Protein sequencing, a central aspect of this endeavor, was first accomplished through Edman degradation in the 1950s. Since the late 20th century, mass spectrometry has emerged as a prominent method for protein sequencing. In recent years, single-molecule technologies have increasingly been applied to this field, yielding numerous innovative results. Among these, nanopore sensing has proven to be a reliable single-molecule technology, enabling advancements in amino acid recognition, short peptide differentiation, and peptide sequence reading. These developments are set to elevate protein sequencing technology to new heights. The next generation of protein sequencing technologies is anticipated to revolutionize our understanding of molecular mechanisms in biological processes and significantly enhance clinical diagnostics and treatments.
Collapse
Affiliation(s)
- Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Liu
- College of Food and Bioengineering, Xihua University, 610039, Chengdu, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024; 8:e2400058. [PMID: 38644684 PMCID: PMC11672191 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
| |
Collapse
|
4
|
Yang Y, Li Y, Tang L, Li J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. PRECISION CHEMISTRY 2024; 2:518-538. [PMID: 39483271 PMCID: PMC11523000 DOI: 10.1021/prechem.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
Collapse
Affiliation(s)
- Yuxin Yang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Yueqi Li
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| | - Longhua Tang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Jinghong Li
- Department
of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of
Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing
Institute of Life Science and Technology, Beijing 102206, China
- New
Cornerstone Science Institute, Beijing 102206, China
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
He P, Wang H, Zhu A, Zhang Z, Sha J, Ni Z, Chen Y. Detection of Intrinsically Disordered Peptides by Biological Nanopore. Chem Asian J 2024; 19:e202400389. [PMID: 38865098 DOI: 10.1002/asia.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Intrinsically disordered protein regions (IDPRs) are pivotal in regulation of transcription and facilitation of signal transduction. Because of their multiple conformational states of structure, characterizing the highly flexible structures of IDPRs becomes challenging. Herein, we employed the wild-type (WT) aerolysin nanopore as a real-time biosensor for identification and monitoring of long peptides containing IDPRs. This sensor successfully identified three intrinsically disordered peptides, with the lengths up to 43 amino acids, by distinguishing the unique signatures of blockade current and duration time. The analysis of the binding constant revealed that interactions between the nanopore and peptides are critical for peptide translocation, which suggests that mechanisms beyond mere volume exclusion. Furthermore, we were able to compare the conformational stabilities of various IDPRs by examining the detailed current traces of blockade events. Our approach can detect the conformational changes of IDPR in a confined nanopore space. These insights broaden the understanding of peptide structural changes. The nanopore biosensor showed the potential to study the conformations change of IDPRs, IDPRs transmembrane interactions, and protein drug discovery.
Collapse
Affiliation(s)
- Pinyao He
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Haiyan Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- Engineering Research Center of New Light Sources Technology and Equipment, Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Anqi Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhenyu Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
6
|
Wang C, Li L, Li J, Zhang J, Qu ZB. Biomimetic Surface Engineering to Modulate the Coffee-Ring Effect for Amyloid-β Detection in Rat Brains. Biomimetics (Basel) 2023; 8:581. [PMID: 38132520 PMCID: PMC10742163 DOI: 10.3390/biomimetics8080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Surface engineering of nanoparticles has been widely used in biosensing and assays, where sensitivity was mainly limited by plasmonic colour change or electrochemical responses. Here, we report a novel biomimetic sensing strategy involving protein-modified gold nanoparticles (AuNPs), where the modulation strategy was inspired by gastropods in inhibition of coffee-ring effects in their trail-followings. The so-called coffee-ring effect presents the molecular behaviour of AuNPs to a macroscopic ring through aggregation, and thus greatly improves sensitivity. The assay relies upon the different assembly patterns of AuNPs against analytes, resulting in the formation or suppression of coffee-ring effects by the different surface engineering of AuNPs by proteins and peptides. The mechanism of the coffee-ring formation process is examined through experimental characterizations and computational simulations. A practical coffee-ring effect assay is developed for a proof-of-concept target, amyloid β (1-42), which is a typical biomarker of Alzheimer's disease. A novel quasi-titrimetric protocol is constructed for quantitative determination of the target molecule. The assay shows excellent selectivity and sensitivity for the amyloid β monomer, with a low detection limit of 20 pM. Combined with a fluorescent staining technique, the assay is designed as a smart sensor for amyloid β detection and fibrillation evaluation in rat cerebrospinal fluids, which is a potential point-of-care test for Alzheimer's disease. Connections between amyloid fibrillation and different courses of brain ischaemia are also studied, with improved sensitivity, lower sample volumes that are required, convenience for rapid detection, and point-of-care testing.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; (C.W.); (L.L.)
| |
Collapse
|
7
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
8
|
Liu C, Henning-Knechtel A, Österlund N, Wu J, Wang G, Gräslund RAO, Kirmizialtin S, Luo J. Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206232. [PMID: 37170734 DOI: 10.1002/smll.202206232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/01/2023] [Indexed: 05/13/2023]
Abstract
Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Anja Henning-Knechtel
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Jinming Wu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | | | - Serdal Kirmizialtin
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
9
|
Awasthi S, Ying C, Li J, Mayer M. Simultaneous Determination of the Size and Shape of Single α-Synuclein Oligomers in Solution. ACS NANO 2023; 17:12325-12335. [PMID: 37327131 PMCID: PMC10339783 DOI: 10.1021/acsnano.3c01393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Soluble oligomers of amyloid-forming proteins are implicated as toxic species in the context of several neurodegenerative diseases. Since the size and shape of these oligomers influence their toxicity, their biophysical characterization is essential for a better understanding of the structure-toxicity relationship. Amyloid oligomers are difficult to characterize by conventional approaches due to their heterogeneity in size and shape, their dynamic aggregation process, and their low abundance. This work demonstrates that resistive pulse measurements using polymer-coated solid-state nanopores enable single-particle-level characterization of the size and shape of individual αSyn oligomers in solution within minutes. A comparison of the resulting size distribution with single-particle analysis by transmission electron microscopy and mass photometry reveals good agreement with superior resolution by nanopore-based characterization. Moreover, nanopore-based analysis has the capability to combine rapid size analysis with an approximation of the oligomer shape. Applying this shape approximation to putatively toxic oligomeric species that range in size from 18 ± 7 aggregated monomers (10S) to 29 ± 10 aggregated monomers (15S) and in concentration from picomolar to nanomolar revealed oligomer shapes that agree well with previous estimates by cryo-EM with the added advantage that nanopore-based analysis occurs rapidly, in solution, and has the potential to become a widely accessible technique.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Cuifeng Ying
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jiali Li
- University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Yang L, Sun Z, Zhang S, Sun Y, Li H. Chiral Transport in Nanochannel Based Artificial Drug Transporters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205274. [PMID: 36464638 DOI: 10.1002/smll.202205274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of chiral drug transmembrane transport can be achieved through drug transporters in living organisms. However, implementing this process in vitro is still a formidable challenge due to the complexity of the biological systems that control drug enantiomeric transport. Herein, a facile and feasible strategy is employed to construct chiral L-tyrosine-modified nanochannels (L-Tyr nanochannels) based on polyethylene terephthalate film, which could enhance the chiral recognition of propranolol isomers (R-/S-PPL) for transmembrane transport. Moreover, conventional fluorescence spectroscopy, patch-clamp technology, laser scanning confocal microscopy, and picoammeter technology are employed to evaluate the performance of nanochannels. The results show that the L-Tyr nanochannel have better chiral selectivity for R-/S-PPL compared with the L-tryptophan (L-Trp) channel, and the chiral selectivity coefficient is improved by about 4.21-fold. Finally, a detailed theoretical analysis of the chirality selectivity mechanism is carried out. The findings would not only enrich the basic theory research related to chiral drug transmembrane transport, but also provide a new idea for constructing artificial channels to separate chiral drugs.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhongyue Sun
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
11
|
Li S, Li X, Wan YJ, Ying YL, Yu RJ, Long YT. SmartImage: A Machine Learning Method for Nanopore Identifying Chemical Modifications on RNA. Chem Asian J 2023; 18:e202201144. [PMID: 36527379 DOI: 10.1002/asia.202201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
RNA modifications modulate essential cellular functions. However, it is challenging to quantitatively identify the differences in RNA modifications. To further improve the single-molecule sensing ability of nanopores, we propose a machine-learning algorithm called SmartImage for identifying and classifying nanopore electrochemical signals based on a combination of improved graph conversion methods and deep neural networks. SmartImage is effective for nearly all ranges of signal duration, which breaks the limitation of the current nanopore algorithm. The overall accuracy (OA) of our proposed recognition strategy exceeded 90% for identifying three types of RNAs. Prediction experiments show that the SmartImage owns the ability to recognize one modified RNA molecule from 1000 normal RNAs with OA >90%. Thus our proposed model and algorithm hold the potential application in clinical applications.
Collapse
Affiliation(s)
- Shijia Li
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Xinyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| |
Collapse
|
12
|
Ying YL, Hu ZL, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long YT. Nanopore-based technologies beyond DNA sequencing. NATURE NANOTECHNOLOGY 2022; 17:1136-1146. [PMID: 36163504 DOI: 10.1038/s41565-022-01193-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Zheng-Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Shengli Zhang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
13
|
Ge Y, Cui M, Zhang Q, Wang Y, Xi D. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. NANOSCALE ADVANCES 2022; 4:3883-3891. [PMID: 36133334 PMCID: PMC9470019 DOI: 10.1039/d2na00190j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Nanopore technology has attracted extensive attention due to its rapid, highly sensitive, and label-free performance. In this study, we aimed to identify proteinogenic amino acids using a wild-type aerolysin nanopore. Specifically, bipolar peptide probes were synthesised by linking four aspartic acid residues to the N-terminal and five arginine residues to the C-terminal of individual amino acids. With the help of the bipolar peptide carrier, 9 proteinogenic amino acids were reliably recognised based on current blockade and dwell time using an aerolysin nanopore. Furthermore, by changing the charge of the peptide probe, two of the five unrecognized amino acids above mentioned were identified. These findings promoted the application of aerolysin nanopores in proteinogenic amino acid recognition.
Collapse
Affiliation(s)
- Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University Guangzhou 510515 P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| |
Collapse
|
14
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Tanimoto IMF, Cressiot B, Greive SJ, Le Pioufle B, Bacri L, Pelta J. Focus on using nanopore technology for societal health, environmental, and energy challenges. NANO RESEARCH 2022; 15:9906-9920. [PMID: 35610982 PMCID: PMC9120803 DOI: 10.1007/s12274-022-4379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | | | - Bruno Le Pioufle
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Laurent Bacri
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LAMBE, CNRS, CY Cergy Paris Université, 95000 Cergy, France
| |
Collapse
|
16
|
Cressiot B, Pelta J. Fast Decoding of the First Steps of Protein Aggregation Using a Nanopipette. ACS CENTRAL SCIENCE 2022; 8:415-416. [PMID: 35505867 PMCID: PMC9052797 DOI: 10.1021/acscentsci.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- B. Cressiot
- CY Cergy Paris
Université, CNRS, LAMBE, 95000, Cergy, France
| | - J. Pelta
- Université Paris-Saclay, Université d'Evry,
CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| |
Collapse
|
17
|
Meyer N, Arroyo N, Baldelli M, Coquart N, Janot JM, Perrier V, Chinappi M, Picaud F, Torrent J, Balme S. Conical nanopores highlight the pro-aggregating effects of pyrimethanil fungicide on Aβ(1-42) peptides and dimeric splitting phenomena. CHEMOSPHERE 2022; 291:132733. [PMID: 34742766 DOI: 10.1016/j.chemosphere.2021.132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The Aβ(1-42) aggregation is a key event in the physiopathology of Alzheimer's disease (AD). Exogenous factors such as environmental pollutants, and more particularly pesticides, can corrupt Aβ(1-42) assembly and could influence the occurrence and pathophysiology of AD. However, pesticide involvement in the early stages of Aβ(1-42) aggregation is still unknown. Here, we employed conical track-etched nanopore in order to analyse the Aβ(1-42) fibril formation in the presence of pyrimethanil, a widely used fungicide belonging to the anilinopyrimidine class. Our results evidenced a pro-aggregating effect of pyrimethanil on Aβ(1-42). Aβ(1-42) assemblies were successfully detected using conical nanopore coated with PEG. Using an analytical model, the large current blockades observed (>0.7) were assigned to species with size close to the sensing pore. The long dwell times (hundreds ms scale) were interpreted by the possible interactions amyloid/PEG using molecular dynamic simulation. Such interaction could leave until splitting phenomena of the dimer structure. Our work also evidences that the pyrimethanil induce an aggregation of Aβ(1-42) mechanism in two steps including the reorganization prior the elongation phase.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Nicolas Arroyo
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25030, Besançon, France
| | - Matteo Baldelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via Del Politecnico 1, 00133, Roma, Italy
| | - Nicolas Coquart
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | | | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via Del Politecnico 1, 00133, Roma, Italy
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25030, Besançon, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
18
|
Review of the use of nanodevices to detect single molecules. Anal Biochem 2022; 654:114645. [DOI: 10.1016/j.ab.2022.114645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
|
19
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen H, Huang S. Allosteric Switching of Calmodulin in a
Mycobacterium smegmatis
porin A (MspA) Nanopore‐Trap. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Tiezheng Pan
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
20
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen HY, Huang S. Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porin A (MspA) Nanopore-Trap. Angew Chem Int Ed Engl 2021; 60:23863-23870. [PMID: 34449124 DOI: 10.1002/anie.202110545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Recent developments concerning large protein nanopores suggest a new approach to structure profiling of native folded proteins. In this work, the large vestibule of Mycobacterium smegmatis porin A (MspA) and calmodulin (CaM), a Ca2+ -binding protein, were used in the direct observation of the protein structure. Three conformers, including the Ca2+ -free, Ca2+ -bound, and target peptide-bound states of CaM, were unambiguously distinguished. A disease related mutant, CaM D129G was also discriminated by MspA, revealing how a single amino acid replacement can interfere with the Ca2+ -binding capacity of the whole protein. The binding capacity and aggregation effect of CaM induced by different ions (Mg2+ /Sr2+ /Ba2+ /Ca2+ /Pb2+ /Tb3+ ) were also investigated and the stability of MspA in extreme conditions was evaluated. This work demonstrates the most systematic single-molecule investigation of different allosteric conformers of CaM, acknowledging the high sensing resolution offered by the MspA nanopore trap.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Tiezheng Pan
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
21
|
Meyer N, Arroyo N, Janot JM, Lepoitevin M, Stevenson A, Nemeir IA, Perrier V, Bougard D, Belondrade M, Cot D, Bentin J, Picaud F, Torrent J, Balme S. Detection of Amyloid-β Fibrils Using Track-Etched Nanopores: Effect of Geometry and Crowding. ACS Sens 2021; 6:3733-3743. [PMID: 34554735 DOI: 10.1021/acssensors.1c01523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several neurodegenerative diseases have been linked to proteins or peptides that are prone to aggregate in different brain regions. Aggregation of amyloid-β (Aβ) peptides is recognized as the main cause of Alzheimer's disease (AD) progression, leading to the formation of toxic Aβ oligomers and amyloid fibrils. The molecular mechanism of Aβ aggregation is complex and still not fully understood. Nanopore technology provides a new way to obtain kinetic and morphological aspects of Aβ aggregation at a single-molecule scale without labeling by detecting the electrochemical signal of the peptides when they pass through the hole. Here, we investigate the influence of nanoscale geometry (conical and bullet-like shape) of a track-etched nanopore pore and the effect of molecular crowding (polyethylene glycol-functionalized pores) on Aβ fibril sensing and analysis. Various Aβ fibril samples that differed by their length were produced by sonication of fibrils obtained in the presence of epigallocatechin gallate. The conical nanopore functionalized with polyethylene glycol (PEG) 5 kDa is suitable for discrimination of the fibril size from relative current blockade. The bullet-like-shaped nanopore enhances the amplitude of the current and increases the dwell time, allowing us to well discern the fibrils. Finally, the nanopore crowded with PEG 20 kDa enhances the relative current blockade and increases the dwell time; however, the discrimination is not improved compared to the "bullet-shaped" nanopore.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Nicolas Arroyo
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université, 75005 Paris, France
| | - Anna Stevenson
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université, 75005 Paris, France
- School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Imad Abrao Nemeir
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Veronique Perrier
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic and Emerging Infections, Univ Montpellier, INSERM, EFS, Univ Antilles, 34095 Montpellier, France
| | - Maxime Belondrade
- Pathogenesis and Control of Chronic and Emerging Infections, Univ Montpellier, INSERM, EFS, Univ Antilles, 34095 Montpellier, France
| | - Didier Cot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jérémy Bentin
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Joan Torrent
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
22
|
Yan S, Zhang J, Wang Y, Guo W, Zhang S, Liu Y, Cao J, Wang Y, Wang L, Ma F, Zhang P, Chen HY, Huang S. Single Molecule Ratcheting Motion of Peptides in a Mycobacterium smegmatis Porin A (MspA) Nanopore. NANO LETTERS 2021; 21:6703-6710. [PMID: 34319744 DOI: 10.1021/acs.nanolett.1c02371] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Diverse functions of proteins, including synthesis, catalysis, and signaling, result from their highly variable amino acid sequences. The technology allowing for direct analysis of protein sequences, however, is still unsatisfactory. Recent developments of nanopore sequencing of DNA or RNA have motivated attempts to realize nanopore sequencing of peptides in a similar manner. The core challenge has been to achieve a controlled ratcheting motion of the target peptide, which is currently restricted to a limited choice of compatible enzymes. By constructing peptide-oligonucleotide conjugates (POCs) and measurements with nanopore-induced phase-shift sequencing (NIPSS), direct observation of the ratcheting motion of peptides has been successfully achieved. The generated events show a clear sequence dependence on the peptide that is being tested. The method is compatible with peptides with either a conjugated N- or C-terminus. The demonstrated results suggest a proof of concept of nanopore sequencing of peptide and can be useful for peptide fingerprinting.
Collapse
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Weiming Guo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jiao Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fubo Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Lenhart B, Wei X, Watson B, Wang X, Zhang Z, Li C, Moss M, Liu C. In Vitro Biosensing of β-Amyloid Peptide Aggregation Dynamics using a Biological Nanopore. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 338:129863. [PMID: 33927481 PMCID: PMC8078859 DOI: 10.1016/j.snb.2021.129863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Alzheimer's disease and other neurodegenerative disorders are becoming more prevalent as advances in technology and medicine increase living standards and life expectancy. Alzheimer's disease is thought to initiate development early in the patient's life and progresses continuously into old age. This process is characterized molecularly by the amyloid hypothesis, which asserts that self-aggregating amyloid peptides are core to the pathophysiology in Alzheimer's progression. Precise quantification of amyloid peptides in human bodily fluid samples (i.e. cerebrospinal fluid, blood) may inform diagnosis and prognosis, and has been studied using established biosensing technologies like liquid chromatography, mass spectrometry, and immunoassays. However, existing methods are challenged to provide single molecule, quantitative analysis of the disease-causing aggregation process. Ultra-sensitive nanopore biosensors can step in to fill this role as a dynamic mapping tool. The work in this paper establishes characteristic signals of β-amyloid 40 monomers, oligomers, and soluble aggregates, as well as a proof-of-concept foundation where a biological nanopore biosensor is used to monitor the extent of in vitro β-amyloid 40 peptide aggregation at the single molecule level. This foundation allows for future work to expand in drug screening, diagnostics, and aggregation dynamic experiments.
Collapse
Affiliation(s)
- Brian Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Watson
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Melissa Moss
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
24
|
Nanodiagnostics: A review of the medical capabilities of nanopores. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102425. [PMID: 34174420 DOI: 10.1016/j.nano.2021.102425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 11/20/2022]
Abstract
Modern diagnostics strive to be accurate, fast, and inexpensive in addition to properly identifying the presence of a disease, infection, or illness. Early diagnosis is key; catching a disease in its early stages can be the difference between fatality and treatment. The challenge with many diseases is that detectability of the disease scales with disease progression. Since single molecule sensors, e.g., nanopores, can sense biomolecules at low concentrations, they have the potential to become clinically relevant in many of today's medical settings. With nanopore-based sensing, lower volumes and concentrations are required for detection, enabling it to be clinically beneficial. Other advantages to using nanopores include that they are tunable to an enormous variety of molecules and boast low costs, and fabrication is scalable for manufacturing. We discuss previous reports and the potential for incorporating nanopores into the medical field for early diagnostics, therapeutic monitoring, and identifying relapse/recurrence.
Collapse
|
25
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021; 60:14738-14749. [DOI: 10.1002/anie.202013462] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
26
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
27
|
Hu Z, Johnson BP. Community news: The 2020 Nanopore Weekly Meeting: A Monday virtual event for nanopore electrochemistry. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202160001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing P. R. China
| | | |
Collapse
|
28
|
Liu SC, Ying YL, Li WH, Wan YJ, Long YT. Snapshotting the transient conformations and tracing the multiple pathways of single peptide folding using a solid-state nanopore. Chem Sci 2021; 12:3282-3289. [PMID: 34164097 PMCID: PMC8179386 DOI: 10.1039/d0sc06106a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental question relating to protein folding/unfolding is the time evolution of the folding of a protein into its precisely defined native structure. The proper identification of transition conformations is essential for accurately describing the dynamic protein folding/unfolding pathways. Owing to the rapid transitions and sub-nm conformation differences involved, the acquisition of the transient conformations and dynamics of proteins is difficult due to limited instrumental resolution. Using the electrochemical confinement effect of a solid-state nanopore, we were able to snapshot the transient conformations and trace the multiple transition pathways of a single peptide inside a nanopore. By combining the results with a Markov chain model, this new single-molecule technique is applied to clarify the transition pathways of the β-hairpin peptide, which shows nonequilibrium fluctuations among several blockage current stages. This method enables the high-throughput investigation of transition pathways experimentally to access previously obscure peptide dynamics, which is significant for understanding the folding/unfolding mechanisms and misfolding of peptides or proteins. A solid-state nanopore based method is described for resolving protein-folding-related problems via snapshotting the folding intermediates and characterizing the kinetics of a single peptide.![]()
Collapse
Affiliation(s)
- Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei-Hua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
29
|
Ito Y, Izawa Y, Osaki T, Kamiya K, Misawa N, Fujii S, Mimura H, Miki N, Takeuchi S. A Lipid-Bilayer-On-A-Cup Device for Pumpless Sample Exchange. MICROMACHINES 2020; 11:mi11121123. [PMID: 33352964 PMCID: PMC7767076 DOI: 10.3390/mi11121123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
Lipid-bilayer devices have been studied for on-site sensors in the fields of diagnosis, food and environmental monitoring, and safety/security inspection. In this paper, we propose a lipid-bilayer-on-a-cup device for serial sample measurements using a pumpless solution exchange procedure. The device consists of a millimeter-scale cylindrical cup with vertical slits which is designed to steadily hold an aqueous solution and exchange the sample by simply fusing and splitting the solution with an external solution. The slit design was experimentally determined by the capabilities of both the retention and exchange of the solution. Using the optimized slit, a planar lipid bilayer was reconstituted with a nanopore protein at a microaperture allocated to the bottom of the cup, and the device was connected to a portable amplifier. The solution exchangeability was demonstrated by observing the dilution process of a blocker molecule of the nanopore dissolved in the cup. The pumpless solution exchange by the proposed cup-like device presents potential as a lipid-bilayer system for portable sensing applications.
Collapse
Affiliation(s)
- Yoshihisa Ito
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yusuke Izawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Norihisa Miki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Correspondence: ; Tel.: +81-3-5841-7056; Fax: +81-3-5841-7104
| |
Collapse
|
30
|
Yin YD, Zhang L, Leng XZ, Gu ZY. Harnessing biological nanopore technology to track chemical changes. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|
32
|
Liu K, Huang S, Fang D. Electrochemical Measurement of Cholesterol Flip-Flop in Plasma Membrane at Single Cells. Anal Chem 2020; 92:10961-10965. [PMID: 32672037 DOI: 10.1021/acs.analchem.0c01991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, a microelectrode approach is established to measure the flip-flop rate of cholesterol in plasma membranes at single living cells. The initial validation is performed in a modeled phospholipid bilayer positioned at an interconnecting hole between two compartments, in which cholesterol in one compartment diffuses into the other one through a flip-flop movement in the bilayer and is then detected by a cholesterol oxidase-modified microelectrode. As compared with the time (140 ± 28 s) for free cholesterol transport in absence of the bilayer, a prolonged time (702 ± 42 s) is needed to observe the current increase in the presence of the bilayer. The difference in the time (562 s) gives the estimated flip-flop time of cholesterol in the bilayer. The position of the microelectrode in contact with a living cell and the injection of cholesterol inside the cell are further applied to measure the cholesterol flip-flop in the plasma membrane. The average time (1183 ± 146 s) is obtained to observe an additional current increase at the microelectrode, which reflects the cholesterol flip-flop rate in plasma membranes in single living cells. All these results support the establishment of this microelectrode approach for the study of the cholesterol flip-flop process in lipid membranes.
Collapse
Affiliation(s)
- Kang Liu
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Shuohan Huang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211126, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | | |
Collapse
|
33
|
Sun K, Ju Y, Chen C, Zhang P, Sawyer E, Luo Y, Geng J. Single‐Molecule Interaction of Peptides with a Biological Nanopore for Identification of Protease Activity. SMALL METHODS 2020. [DOI: 10.1002/smtd.201900892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ke Sun
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| | - Yuan Ju
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| | - Chuan Chen
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| | - Peng Zhang
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| | - Erica Sawyer
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
- Department of Biochemistry St. Lawrence University Canton NY 13617 USA
| | - Youfu Luo
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| | - Jia Geng
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
34
|
Giamblanco N, Fichou Y, Janot JM, Balanzat E, Han S, Balme S. Mechanisms of Heparin-Induced Tau Aggregation Revealed by a Single Nanopore. ACS Sens 2020; 5:1158-1167. [PMID: 32216272 DOI: 10.1021/acssensors.0c00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein aggregation is involved in many diseases, including Parkinson's and Alzheimer's. The latter is characterized by intraneuronal deposition of amyloid aggregates composed of the tau protein. Although large and insoluble aggregates are typically found in affected brains, intermediate soluble oligomers are thought to represent crucial species for toxicity and spreading. Nanopore sensors constitute an emerging technology that allows the detection of the size and populations of molecular assembly present in a sample. Here, we employed conical nanopores to obtain the particle distributions during tau aggregation. We identified three distinct populations, monomers, oligomers, and fibrils, which we could quantify along the aggregation process. By comparing tau wild type with a mutant carrying the disease-associated P301L mutation, we showed that the latter mutation promotes the formation of oligomers. We furthermore highlighted that the P301L mutation promotes fibril breakage. This work demonstrates that conical nanopore is a powerful tool to measure and quantify transient protein aggregate intermediates.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4, France
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| |
Collapse
|
35
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools. Biomolecules 2020; 10:E539. [PMID: 32252469 PMCID: PMC7226409 DOI: 10.3390/biom10040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (S.R.-C.); (B.M.-Z.)
| |
Collapse
|
37
|
Yuan B, Li S, Ying YL, Long YT. The analysis of single cysteine molecules with an aerolysin nanopore. Analyst 2020; 145:1179-1183. [DOI: 10.1039/c9an01965k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biological nanopore technology has the advantages of high selectivity and high reproducibility for characterizing single biomolecules.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Shuang Li
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Yi-Lun Ying
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P.R. China
| |
Collapse
|
38
|
Lenhart B, Wei X, Zhang Z, Wang X, Wang Q, Liu C. Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. Crit Rev Biomed Eng 2020; 48:29-62. [PMID: 32749118 PMCID: PMC8020784 DOI: 10.1615/critrevbiomedeng.2020033151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since its conception as an applied biomedical technology nearly 30 years ago, nanopore is emerging as a promising, high-throughput, biomarker-targeted diagnostic tool for clinicians. The attraction of a nanopore-based detection system is its simple, inexpensive, robust, user-friendly, high-throughput blueprint with minimal sample preparation needed prior to analysis. The goal of clinical-based nanopore biosensing is to go from sample acquisition to a meaningful readout quickly. The most extensive work in nanopore applications has been targeted at DNA, RNA, and peptide identification. Although, biosensing of pathological biomarkers, which is covered in this review, is on the rise. This review is broken into two major sections: (i) the current state of existing biological, solid state, and hybrid nanopore systems and (ii) the applications of nanopore biosensors toward detecting neurodegenerative biomarkers.
Collapse
Affiliation(s)
- Brian Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| |
Collapse
|
39
|
Yu RJ, Lu SM, Xu SW, Li YJ, Xu Q, Ying YL, Long YT. Single molecule sensing of amyloid-β aggregation by confined glass nanopores. Chem Sci 2019; 10:10728-10732. [PMID: 32153747 PMCID: PMC7020925 DOI: 10.1039/c9sc03260f] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
We have developed a glass nanopore based single molecule tool to investigate the dynamic oligomerization and aggregation process of Aβ1-42 peptides. The intrinsic differences in the molecular size and surface charge of amyloid aggregated states could be distinguished through single molecule induced characteristic current fluctuation. More importantly, our results reveal that the neurotoxic Aβ1-42 oligomer tends to adsorb onto the solid surface of nanopores, which may explain its instability and highly neurotoxic features.
Collapse
Affiliation(s)
- Ru-Jia Yu
- School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ;
| | - Si-Min Lu
- School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ;
| | - Su-Wen Xu
- School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Yuan-Jie Li
- School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China
| | - Qun Xu
- Department of Neurology , Renji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , P. R. China .
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ;
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ;
| |
Collapse
|
40
|
Xu J, Liao K, Fu Z, Xiong Z. A new method for early detection of pancreatic cancer biomarkers: detection of microRNAs by nanochannels. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2634-2640. [PMID: 31220948 DOI: 10.1080/21691401.2019.1614594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To develop an effective new method for early detection of pancreatic cancer biomarkers and to aid early clinical diagnosis. Methods: A DNA probe (Probe) capable of specifically recognizing the target miRNA was designed. The specific probe of miRNA 21 is designed first, and then mixed with the miRNA 21 sample to form a complex molecule, and the complex molecule is added to the nanochannels to detect the received signal. The probe is designed to detect the electrical signal by means of pre-matching and post-matching and observe the stability of the signal. The miRNA 21, miRNA 155, miRNA 196a were added to the nano-single channel to detect the characteristic signals and blocking time. The miRNA 21·probe 21 mixture was mixed with other five cancer-associated microRNAs, and the signal results of the detection were collected and compared. Results: The signal of miRNA 21 was successfully detected. Whether the probe is designed at the front or the back, there are two signal results. The Probe should be designed to match the middle region of the miRNA. The three microRNA complex molecules have different characteristic signals and blocking times, which can be effectively distinguished. Conclusion: Nanochannels can effectively detect pancreatic cancer-related microRNAs.
Collapse
Affiliation(s)
- Jiasheng Xu
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Kaili Liao
- b Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhonghua Fu
- c Department of Burns, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhenfang Xiong
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
41
|
Coglitore D, Coulon PE, Janot JM, Balme S. Revealing the Nanoparticle-Protein Corona with a Solid-State Nanopore. MATERIALS 2019; 12:ma12213524. [PMID: 31661780 PMCID: PMC6862098 DOI: 10.3390/ma12213524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Protein adsorption at the liquid–solid interface is an old but not totally solved topic. One challenge is to find an easy way to characterize the protein behavior on nanoparticles and make a correlation with its intrinsic properties. This work aims to investigate protein adsorption on gold nanoparticles and the colloidal properties. The protein panel was chosen from different structural categories (mainly-α, mainly-β or mix-αβ). The result shows that the colloidal stability with salt addition does not depend on the structural category. Conversely, using the single nanopore technique, we show that the mainly-α proteins form a smaller corona than the mainly-β proteins. We assign these observations to the lower internal energy of α-helices, making them more prone to form a homogeneous corona layer.
Collapse
Affiliation(s)
- Diego Coglitore
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34090 Montpellier, France.
| | - Pierre Eugene Coulon
- Laboratoire des Solides Irradiés, École polytechnique, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau CEDEX, France.
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34090 Montpellier, France.
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34090 Montpellier, France.
| |
Collapse
|
42
|
Ding T, Chen AK, Lu Z. The applications of nanopores in studies of proteins. Sci Bull (Beijing) 2019; 64:1456-1467. [PMID: 36659703 DOI: 10.1016/j.scib.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023]
Abstract
Nanopores are a label-free platform with the ability to detect subtle changes in the activities of individual biomolecules under physiological conditions. Here, we comprehensively review the technological development of nanopores, focusing on their applications in studying the physicochemical properties and dynamic conformations of peptides, individual proteins, protein-protein complexes and protein-DNA complexes. This is followed by a brief discussion of the potential challenges that need to be overcome before the technology can be widely accepted by the scientific community. We believe that with continued refinement of the technology, significant understanding can be gained to help clarify the role of protein activities in the regulation of cellular physiology and pathogenesis.
Collapse
Affiliation(s)
- Taoli Ding
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zuhong Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
43
|
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2019; 15:rsif.2017.0952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
This review highlights recent development of biosensors that use the functions of membrane proteins. Membrane proteins are essential components of biological membranes and have a central role in detection of various environmental stimuli such as olfaction and gustation. A number of studies have attempted for development of biosensors using the sensing property of these membrane proteins. Their specificity to target molecules is particularly attractive as it is significantly superior to that of traditional human-made sensors. In this review, we classified the membrane protein-based biosensors into two platforms: the lipid bilayer-based platform and the cell-based platform. On lipid bilayer platforms, the membrane proteins are embedded in a lipid bilayer that bridges between the protein and a sensor device. On cell-based platforms, the membrane proteins are expressed in a cultured cell, which is then integrated in a sensor device. For both platforms we introduce the fundamental information and the recent progress in the development of the biosensors, and remark on the outlook for practical biosensing applications.
Collapse
Affiliation(s)
- Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
44
|
Ying YL, Long YT. Nanopore-Based Single-Biomolecule Interfaces: From Information to Knowledge. J Am Chem Soc 2019; 141:15720-15729. [DOI: 10.1021/jacs.8b11970] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
45
|
Gao R, Lin Y, Ying YL, Long YT. Nanopore-based sensing interface for single molecule electrochemistry. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9509-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Wang J, Fertig N, Ying YL. Real-time monitoring β-lactam/β-lactamase inhibitor (BL/BLI) mixture towards the bacteria porin pathway at single molecule level. Anal Bioanal Chem 2019; 411:4831-4837. [PMID: 30824965 DOI: 10.1007/s00216-019-01650-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Multidrug-resistant bacteria are a great concern and a problem that must be addressed. Extended-spectrum β-lactamases are a common defence mechanism of bacteria to make β-lactam (BL) antibiotics ineffective. β-Lactamase inhibitors (BLIs) are consequently designed and are often clinically prescribed with a BL antibiotic to hinder degradation. Current studies focusing on how BL antibiotics or BLIs interact solely with the bacterial outer membrane nanopores (porins) on reaching the periplasmic side using a nanopore-based sensing technique. In electrochemical studies, the bias voltage allows real-time monitoring of BL antibiotics, BLIs and their mixture through the porin pathway at the single-molecule level. Here we consider the most abundant membrane protein from Escherichia coli (i.e. OmpF), purify and reconstitute the membrane protein in an artificial lipid bilayer and then study its ex vivo electrochemical behaviour. We show the piperacillin/tazobactam mixture interacts with OmpF, whereas the substrate interacts under the maximum bandwidth. The power spectrum analysis of the ionic current trace demonstrates the ampicillin/sulbactram mixture requires more energy than ampicillin alone to pass through the porin pathway. Our results demonstrate that clinically relevant combinations (e.g. piperacillin/tazobactam and ampicillin/sulbactam) interact more strongly with OmpF than either the BL antibiotic or the BLI alone. We suggest a quick and relatively cheap screening method to test the ability of BL antibiotics/BLIs to cross the bacterial cellular membrane.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany.
| | - Niels Fertig
- Nanion Technologies GmbH, 80339, Munich, Germany
| | - Yi-Lun Ying
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
47
|
Luchian T, Park Y, Asandei A, Schiopu I, Mereuta L, Apetrei A. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Acc Chem Res 2019; 52:267-276. [PMID: 30605305 DOI: 10.1021/acs.accounts.8b00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decades long advances in nanotechnology, biomolecular sciences, and protein engineering ushered the introduction of groundbreaking technologies devoted to understanding how matter behaves at single particle level. Arguably, one of the simplest in concept is the nanopore-based paradigm, with deep roots in what is originally known as the Coulter counter, resistive-pulse technique. Historically, a nanopore system comprising the oligomeric protein generated by Staphylococcus aureus toxin α-hemolysin (α-HL) was first applied to detecting polynucleotides, as revealed in 1996 by John J. Kasianowicz, Eric Brandin, Daniel Branton, and David W. Deamer, in the Proceedings of the National Academy of Sciences. Nowadays, a wide variety of other solid-state or protein-based nanopores have emerged as efficient tools for stochastic sensing of analytes as small as single metal ions, handling single molecules, or real-time, label-free probing of chemical reactions at single-molecule level. In this Account, we demonstrate the usefulness of the α-HL nanopore on probing metal-induced folding of peptides, and to investigating the reversible binding of various metals to physiologically relevant amyloid fragments. The widely recognized Achilles heel of the approach, is the relatively short dwell time of the analytes inside the nanopore. This hinders the collection of sufficient data required to infer statistically meaningful conclusions about the physical or chemical state of the studied analyte. To mitigate this, various approaches were successfully applied in particular experiments, including but not restricted to altering physical parameters of the aqueous solution, downsizing the nanopore geometry, the controlled tuning of the balance between the electrostatic and electro-osmotic forces, coating nanopores with a fluid lipid bilayer, employing a pressure-voltage biased pore. From our perspective, in this Account, we will present two strategies aimed at controlling the analyte passage across the α-HL. First, we will reveal how the electroosmotic flow can be harnessed to control residence time, direction, and the sequence of spatiotemporal dynamics of a single peptide along the nanopore. This also allows one to identify the mesoscopic trajectory of a peptide exiting the nanopore through either the vestibule or β-barrel moiety. Second, we lay out the principles of an approach dubbed "nanopore tweezing", enabling simultaneous capture rate increase and escape rate decrease of a peptide from the α-HL, with the applied voltage. At its core, this method requires the creation of an electrical dipole on the peptide under study, via engineering positive and negative amino acid residues at the two ends of the peptide. Concise applications of this approach are being demonstrated, as in proof-of-concept experiments we probed the primary structure exploration of polypeptides, via discrimination between selected neutral amino acid residues. Another useful venue provided by the nanopores is represented by single-molecule force experiments on captured analytes inside the nanopore, which proved useful in exploring force-induced rupture of nucleic acids duplexes, hairpins, or various nucleic acids-ligand conjugates. We will show that when applied to oppositely charged, polypeptide-functionalized PNA-DNA duplexes, the nanopore tweezing introduces a new generation of force-spectroscopy nanopore-based platforms, facilitating unzipping of a captured duplex and enabling the duplex hybridization energy estimation.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea 61452
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Loredana Mereuta
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Aurelia Apetrei
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| |
Collapse
|
48
|
Wang J, Yang J, Ying YL, Long YT. Nanopore-Based Confined Spaces for Single-Molecular Analysis. Chem Asian J 2019; 14:389-397. [PMID: 30548206 DOI: 10.1002/asia.201801648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Indexed: 11/07/2022]
Abstract
The field of nanopore sensing at the single-molecular level is in a "boom" period. Such nanopores, which are either composed of biological materials or are fabricated from solid-state substrates, offer a unique confined space that is compatible with the single-molecular scale. Under the influence of an electrical field, such single-biomolecular interfaces can read single-molecular information and, if appropriately fine-tuned, each molecule plays its individual ionic rhythm to compose a "molecular symphony". Over the past few decades, many research groups have worked on nanopore-based single-molecular sensors for a range of thrilling chemical and clinical applications. Furthermore, for the past decade, we have also focused on nanopore-based sensors. In this Minireview, we summarize the recent developments in fundamental research and applications in this area, along with data algorithms and advances in hardware, which act as infrastructure for the electrochemical analysis.
Collapse
Affiliation(s)
- Jiajun Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Yang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
49
|
Zou Z, Yang H, Yan Q, Qi P, Qing Z, Zheng J, Xu X, Zhang L, Feng F, Yang R. Synchronous screening of multiplexed biomarkers of Alzheimer's disease by a length-encoded aerolysin nanopore-integrated triple-helix molecular switch. Chem Commun (Camb) 2019; 55:6433-6436. [DOI: 10.1039/c9cc02065a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A label-free triple-helix molecular switch-mediated nanopore sensor is developed for the synchronous screening of biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhen Zou
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
| | - Hua Yang
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
| | - Qi Yan
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
| | - Peng Qi
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
| | - Zhihe Qing
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- P. R. China
| | - Xuan Xu
- Children's Medical Center
- People's Hospital of Hunan Province
- Changsha
- P. R. China
| | - Lihua Zhang
- College of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong
- P. R. China
| | - Feng Feng
- College of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong
- P. R. China
| | - Ronghua Yang
- Changsha University of Science and Technology
- School of Chemistry and Food Engineering
- Changsha
- P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
50
|
Cressiot B, Greive SJ, Mojtabavi M, Antson AA, Wanunu M. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nat Commun 2018; 9:4652. [PMID: 30405123 PMCID: PMC6220183 DOI: 10.1038/s41467-018-07116-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
Nanopore-based sensors are advancing the sensitivity and selectivity of single-molecule detection in molecular medicine and biotechnology. Current electrical sensing devices are based on either membrane protein pores supported in planar lipid bilayers or solid-state (SS) pores fabricated in thin metallic membranes. While both types of nanosensors have been used in a variety of applications, each has inherent disadvantages that limit its use. Hybrid nanopores, consisting of a protein pore supported within a SS membrane, combine the robust nature of SS membranes with the precise and simple engineering of protein nanopores. We demonstrate here a novel lipid-free hybrid nanopore comprising a natural DNA pore from a thermostable virus, electrokinetically inserted into a larger nanopore supported in a silicon nitride membrane. The hybrid pore is stable and easy to fabricate, and, most importantly, exhibits low peripheral leakage allowing sensing and discrimination among different types of biomolecules.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.,LAMBE, Université d'Evry Val d'Essonne, Université de Cergy Pontoise, CNRS, CEA, Université Paris-Saclay, Evry, F-91025, France
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, USA. .,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|