1
|
Liu Q, Hong J, Zhang Y, Wang Q, Xia Q, Knierman MD, Lau J, Dayaratna C, Negron B, Nanda H, Gunawardena HP. Rapid identification of antibody impurities in size-based electrophoresis via CZE-MS generated spectral library. Sci Rep 2024; 14:20239. [PMID: 39215123 PMCID: PMC11364755 DOI: 10.1038/s41598-024-70914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Methods for the reliable and effective detection and identification of impurities are crucial to ensure the quality and safety of biopharmaceutical products. Technical limitations constrain the accurate identification of individual impurity peaks by size-based electrophoresis separations followed by mass spectrometry. This study presents a size-based electrophoretic method for detecting and identifying impurity peaks in antibody production. A hydrogen sulfide-accelerated degradation method was employed to generate known degradation products observed in bioreactors that forms the basis for size calibration. LabChip GXII channel electrophoresis enabled the rapid (< 1 min) detection of impurity peaks based on size, while capillary zone electrophoresis-mass spectrometry (CZE-MS) facilitated their accurate identification. We combine these techniques to examine impurities resulting from cell culture harvest conditions and forced degradation to assess antibody stability. To mimic cell culture harvest conditions and the impact of forced degradation, we subjected samples to cathepsin at different pH buffers or exposed them to high pH and temperature. Our method demonstrated the feasibility and broad applicability of using a CZE-MS generated spectral library to unambiguously assign peaks in high throughput size-based electrophoresis (i.e., LabChip GXII) with identifications or likely mass of the antibody impurity. Overall, this strategy combines the utility of CZE-MS as a high-resolution separation and detection method for impurities with size-based electrophoresis methods that are typically used to detect (not identify) impurities during the discovery and development of antibody therapeutics.
Collapse
Affiliation(s)
- Quan Liu
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Jiaying Hong
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Yukun Zhang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiuyue Wang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiangwei Xia
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Michael D Knierman
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Jim Lau
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Caleen Dayaratna
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Benjamin Negron
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Hirsh Nanda
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Harsha P Gunawardena
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
2
|
Identification of a monoclonal antibody clipping variant by cross-validation using capillary electrophoresis – sodium dodecyl sulfate, capillary zone electrophoresis – mass spectrometry and capillary isoelectric focusing – mass spectrometry. J Chromatogr A 2022; 1684:463560. [DOI: 10.1016/j.chroma.2022.463560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
3
|
Zagst H, Elgert C, Behrends S, Wätzig H. Combination of strong anion exchange liquid chromatography with microchip capillary electrophoresis sodium dodecyl sulfate for rapid two-dimensional separations of complex protein mixtures. Anal Bioanal Chem 2022; 414:1699-1712. [PMID: 34870722 PMCID: PMC8761713 DOI: 10.1007/s00216-021-03797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022]
Abstract
Two-dimensional separations provide a simple way to increase the resolution and peak capacity of complex protein separations. The feasibility of a recently developed instrumental approach for two-dimensional separations of proteins was evaluated. The approach is based on the general principle of two-dimensional gel electrophoresis. In the first dimension, semi-preparative strong anion exchange high-performance liquid chromatography is utilized and fractions are collected by means of a fraction collector. They are subsequently analyzed in the second dimension with microchip capillary electrophoresis sodium dodecyl sulfate. Microchip capillary electrophoresis provides the necessary speed (approximately 1 min/fraction) for short analysis. In this study, three different samples were investigated. Different constructs of soluble guanylyl cyclase were expressed in Sf9-cells using the baculovirus expression system. Cell lysates were analyzed and the resulting separations were compared. In our experimental setup, the soluble guanylyl cyclase was identified among hundreds of other proteins in these cell lysates, indicating its potential for screening, process control, or analysis. The results were validated by immunoblotting. Samples from Chinese hamster ovary cell culture before and after a purification step were investigated and approximately 9% less impurities could be observed. The separation patterns obtained for human plasma are closely similar to patterns obtained with two-dimensional gel electrophoresis and a total of 218 peaks could be observed. Overall, the approach was well applicable to all samples and, based on these results, further directions for improvements were identified. .
Collapse
Affiliation(s)
- Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Christin Elgert
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Sönke Behrends
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
4
|
Römer J, Stolz A, Kiessig S, Moritz B, Neusüß C. Online top-down mass spectrometric identification of CE(SDS)-separated antibody fragments by two-dimensional capillary electrophoresis. J Pharm Biomed Anal 2021; 201:114089. [PMID: 33940498 DOI: 10.1016/j.jpba.2021.114089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022]
Abstract
Size heterogeneity analysis by capillary sieving electrophoresis utilizing sodium dodecyl sulfate (CE(SDS)) with optical detection is a major method applied for release and stability testing of monoclonal antibodies (mAbs) in biopharmaceutical applications. Identification of mAb-fragments and impurities observed with CE(SDS) is of outstanding importance for the assessment of critical quality attributes and development of the analytical control system. Mass spectrometric (MS) detection is a powerful tool for protein identification and characterization. Unfortunately, CE(SDS) is incompatible with online MS-hyphenation due to strong ionization suppression of SDS and other separation buffer components. Here, we present a comprehensive platform for full characterization of individual CE(SDS)-separated peaks by CE(SDS)-capillary zone electrophoresis-top-down-MS. The peak of interest is transferred from the first to the second dimension via an 8-port valve to remove MS-incompatible components. Full characterization of mAb byproducts is performed by intact mass determination and fragmentation by electron transfer dissociation, higher-energy collisional dissociation, and ultraviolet photodissociation. This enables online determination of intact mass as well as sequence verification of individual CE(SDS)-separated peaks simultaneously. A more substantiated characterization of unknown CE(SDS) peaks by exact localization of modifications without prior digestion is facilitated. High sensitivity is demonstrated by successful mass and sequence verification of low abundant, unknown CE(SDS) peaks from two stressed mAb samples. Good fragmentation coverages are obtained by MS2, enabling unequivocal identification of these mAb-fragments. Also, the differentiation of reduced/non-reduced intra-protein disulfide bonds is demonstrated. In summary, a reliable and unambiguous online MS2 identification of unknown compounds of low-abundant individual CE(SDS) peaks is enabled.
Collapse
Affiliation(s)
- Jennifer Römer
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany; Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Alexander Stolz
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany; Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | - Steffen Kiessig
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Bernd Moritz
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
5
|
Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. Int J Mol Sci 2020; 21:ijms21165839. [PMID: 32823943 PMCID: PMC7461582 DOI: 10.3390/ijms21165839] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal–organic frameworks, (4) graphene materials, and (5) other materials, respectively.
Collapse
|
6
|
Römer J, Montealegre C, Schlecht J, Kiessig S, Moritz B, Neusüß C. Online mass spectrometry of CE (SDS)-separated proteins by two-dimensional capillary electrophoresis. Anal Bioanal Chem 2019; 411:7197-7206. [PMID: 31616969 DOI: 10.1007/s00216-019-02102-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is the fundamental technique for protein separation by size. Applying this technology in capillary format, gaining high separation efficiency in a more automated way, is a key technology for size separation of proteins in the biopharmaceutical industry. However, unequivocal identification by online mass spectrometry (MS) is impossible so far, due to strong interference in the electrospray process by SDS and other components of the SDS-MW separation gel buffer. Here, a heart-cut two-dimensional electrophoretic separation system applying an electrically isolated valve with an internal loop of 20 nL is presented. The peak of interest in the CE (SDS) separation is transferred to the CZE-MS, where electrospray-interfering substances of the SDS-MW gel are separated prior to online electrospray ionization mass spectrometry. An online SDS removal strategy for decomplexing the protein-SDS complex is implemented in the second dimension, consisting of the co-injection of organic solvent and cationic surfactant. This online CE (SDS)-CZE-MS system allows MS characterization of proteoforms separated in generic CE (SDS), gaining additional separation in the CZE and detailed MS information. In general, the system can be applied to all kinds of proteins separated by CE (SDS). Here, we present results of the CE (SDS)-CZE-MS system on the analysis of several biopharmaceutically relevant antibody impurities and fragments. Additionally, the versatile application spectrum of the system is demonstrated by the analysis of extracted proteins from soybean flour. The online hyphenation of CE (SDS) resolving power and MS identification capabilities will be a powerful tool for protein and mAb characterization. Graphical abstract Two-dimensional capillary electrophoresis system hyphenated with mass spectrometry for the characterization of CE (SDS)-separated proteins. As first dimension, a generic and high MS-interfering CE (SDS) separation is performed for size separation. After heart-cut transfer of the unknown CE (SDS) protein peak, via a four-port nanoliter valve to a volatile electrolyte system as second dimension, interference-free mass spectrometric data of separated mAb fragments and soybean proteins are obtained.
Collapse
Affiliation(s)
- Jennifer Römer
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Cristina Montealegre
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Steffen Kiessig
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Bernd Moritz
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
7
|
Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Sánchez-Hernández L, Montealegre C, Kiessig S, Moritz B, Neusüß C. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry. Electrophoresis 2017; 38:1044-1052. [DOI: 10.1002/elps.201600464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023]
|
9
|
Chen H, Zhu Z, Yu H, Lu JJ, Liu S. Simple Means for Fractionating Protein Based on Isoelectric Point without Ampholyte. Anal Chem 2016; 88:9293-9. [PMID: 27571344 DOI: 10.1021/acs.analchem.6b02856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this paper, we develop a simple electrokinetic means for fractionating protein samples according to their pI values without using ampholytes. The method uses inexpensive equipment, and its consumables are primarily ammonium acetate buffers. A key component of its apparatus is a dialysis membrane interface that eliminates electrolysis-caused protein oxidation/reduction and constrains proteins in the desired places. We demonstrate its feasibility for fractionating standard proteins and real-world samples. With the elimination of ampholytes, we can analyze the fractionated proteins directly by a matrix assisted laser desorption/ionization time-of-flight mass spectrometer. Important experimental parameters are also discussed in order to obtain good fractionation results.
Collapse
Affiliation(s)
- Huang Chen
- Department of Chemistry and Biochemistry, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zaifang Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Haiqing Yu
- Department of Chemistry and Biochemistry, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Joann Juan Lu
- Department of Chemistry and Biochemistry, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
11
|
Zhang W, Yuan Z, Huang L, Kang J, Jiang R, Zhong H. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry. Sci Rep 2016; 6:20981. [PMID: 26865351 PMCID: PMC4750088 DOI: 10.1038/srep20981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.
Collapse
Affiliation(s)
- Wenyang Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhiwei Yuan
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Lulu Huang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jie Kang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ruowei Jiang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
12
|
Wong FC, Tan ST, Chai TT. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S162-70. [DOI: 10.1080/10408398.2015.1045967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
|
14
|
Han F, Yang Y, Ouyang J, Na N. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry. Analyst 2015; 140:710-5. [DOI: 10.1039/c4an01688b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct extraction, desorption and ionization of in gel-intact proteins after electrophoresis have been achieved by CNTs-modified paper spray MS at ambient conditions.
Collapse
Affiliation(s)
- Feifei Han
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yuhan Yang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
15
|
Chung M, Kim D, Herr AE. Polymer sieving matrices in microanalytical electrophoresis. Analyst 2014; 139:5635-54. [DOI: 10.1039/c4an01179a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
17
|
|
18
|
Zhong X, Zhang Z, Jiang S, Li L. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS. Electrophoresis 2013; 35:1214-25. [PMID: 24170529 DOI: 10.1002/elps.201300451] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
Abstract
Coupling CE-based separation techniques to MS creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI-MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with recently developed CE-MS platforms are also highlighted.
Collapse
Affiliation(s)
- Xuefei Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
19
|
Wang W, Lu JJ, Gu C, Zhou L, Liu S. Performing isoelectric focusing and simultaneous fractionation of proteins on a rotary valve followed by sodium dodecyl-polyacrylamide gel electrophoresis. Anal Chem 2013; 85:6603-7. [PMID: 23819755 DOI: 10.1021/ac401470d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl-polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE, the second-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | | | | | | | | |
Collapse
|
20
|
Jin S, Anderson GJ, Kennedy RT. Western blotting using microchip electrophoresis interfaced to a protein capture membrane. Anal Chem 2013; 85:6073-9. [PMID: 23672369 DOI: 10.1021/ac400940x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Western blotting is a commonly used assay for proteins. Despite the utility of the method, it is also characterized by long analysis times, manual operation, and lack of established miniaturized counterpart. We report a new way to Western blot that addresses these limitations. In the method, sodium dodecyl sulfate (SDS)-protein complexes are separated by sieving electrophoresis in a microfluidic device or chip. The chip is interfaced to a moving membrane so that proteins are captured in discrete zones as they migrate from the chip. Separations of SDS-protein complexes in the molecular weight range of 11-155 kDa were completed in 2 min with 4 × 10(4) theoretical plates at 460 V/cm. Migration time and peak area relative standard deviations were 3-6% and 0.2%, respectively. Detection limit for actin was 0.7 nM. Assays for actin, AMP-kinase, carbonic anhydrase, and lysozyme are shown to demonstrate versatility of the method. Total analysis time including immunoassay was 22-32 min for a single sample. Because processing membrane for immunoassay is the slow step of the assay, sequential injections from different reservoirs on the chip and capture in different tracks on the same membrane allow increased throughput. As a demonstration, 9 injections were collected on one membrane and analyzed in 43 min (~5 min/sample). Further improvements in throughput are possible with more reservoirs or parallel channels.
Collapse
Affiliation(s)
- Shi Jin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
21
|
Zhang Z, Zhang F, Liu Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J Chromatogr Sci 2013; 51:666-83. [DOI: 10.1093/chromsci/bmt012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
22
|
Xie H, Wang Z, Kong W, Wang L, Fu Z. A novel enzyme-immobilized flow cell used as end-column chemiluminescent detection interface in open-tubular capillary electrochromatography. Analyst 2013; 138:1107-13. [DOI: 10.1039/c2an36556a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
24
|
Haselberg R, de Jong GJ, Somsen GW. CE-MS for the analysis of intact proteins 2010-2012. Electrophoresis 2012; 34:99-112. [DOI: 10.1002/elps.201200439] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Rob Haselberg
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| | | | - Govert W. Somsen
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| |
Collapse
|
25
|
Lu JJ, Wang S, Li G, Wang W, Pu Q, Liu S. Chip-capillary hybrid device for automated transfer of sample preseparated by capillary isoelectric focusing to parallel capillary gel electrophoresis for two-dimensional protein separation. Anal Chem 2012; 84:7001-7. [PMID: 22830584 PMCID: PMC3437655 DOI: 10.1021/ac3017168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to reroute the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed.
Collapse
Affiliation(s)
- Joann J. Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Shili Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Guanbin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P.R. China
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Qiaosheng Pu
- Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
26
|
Zhu Z, Lu JJ, Liu S. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta 2012; 709:21-31. [PMID: 22122927 PMCID: PMC3227876 DOI: 10.1016/j.aca.2011.10.022] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/02/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
Abstract
Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples.
Collapse
Affiliation(s)
- Zaifang Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Joann J. Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
27
|
Affiliation(s)
- Matthew Geiger
- University of Minnesota, Department of Chemistry, 207
Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Amy L. Hogerton
- University of Minnesota, Department of Chemistry, 207
Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- University of Minnesota, Department of Chemistry, 207
Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
He M, Novak J, Julian BA, Herr AE. Membrane-assisted online renaturation for automated microfluidic lectin blotting. J Am Chem Soc 2011; 133:19610-3. [PMID: 22070432 PMCID: PMC3267544 DOI: 10.1021/ja207963f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant glycosylation plays a pivotal role in a diverse set of diseases, including cancer. A microfluidic lectin blotting platform is introduced to enable and expedite the identification of protein glycosylation based on protein size and affinity for specific lectins. The integrated multistage assay eliminates manual intervention steps required for slab-gel lectin blotting, increases total assay throughput, limits reagent and sample consumption, and is completed using one instrument. The assay comprises non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by online post-sizing SDS filtration and lectin-based affinity blotting. Important functionality is conferred through both device and assay advances that enable integration of nanoporous membranes flanking a central microchamber to create sub-nanoliter volume compartments that trap SDS-protein complexes and allow electrophoretic SDS removal with buffer exchange. Recapitulation of protein binding for lectin was optimized through quantitative assessment of SDS-treated green fluorescent protein. Immunoglobulin A1 aberrantly glycosylated with galactose-deficient O-glycans was probed in ~6 min using ~3 μL of sample. This new microfluidic lectin blotting platform provides a rapid and automated assay for the assessment of aberrant glycosylation.
Collapse
Affiliation(s)
- Mei He
- Bioengineering, University of California, Berkeley, California 94720, United States
| | - Jan Novak
- Departments of Microbiology and Medicine, University of Alabama, Birmingham, Alabama 35294, United States
| | - Bruce A. Julian
- Departments of Microbiology and Medicine, University of Alabama, Birmingham, Alabama 35294, United States
| | - Amy E. Herr
- Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Dolnik V, Gurske WA. Chemical modification of proteins to improve the accuracy of their relative molecular mass determination by electrophoresis. Electrophoresis 2011; 32:2893-7. [PMID: 21905048 DOI: 10.1002/elps.201100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 11/10/2022]
Abstract
We studied the electrophoretic behavior of basic proteins (cytochrome c and histone III) and developed a carbamylation method that normalizes their electrophoretic size separation and improves the accuracy of their relative molecular mass determined electrophoretically. In capillary zone electrophoresis with cationic hitchhiking, native cytochrome c does not sufficiently bind cationic surfactants due to electrostatic repulsion between the basic protein and cationic surfactant. Carbamylation suppresses the strong positive charge of the basic proteins and results in more accurate relative molecular masses.
Collapse
|