1
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Kim B, Araujo R, Howard M, Magni R, Liotta LA, Luchini A. Affinity enrichment for mass spectrometry: improving the yield of low abundance biomarkers. Expert Rev Proteomics 2018. [PMID: 29542338 DOI: 10.1080/14789450.2018.1450631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mass spectrometry (MS) is the premier tool for discovering novel disease-associated protein biomarkers. Unfortunately, when applied to complex body fluid samples, MS has poor sensitivity for the detection of low abundance biomarkers (≪10 ng/mL), derived directly from the diseased tissue cells or pathogens. Areas covered: Herein we discuss the strengths and drawbacks of technologies used to concentrate low abundance analytes in body fluids, with the aim to improve the effective sensitivity for MS discovery. Solvent removal by dry-down or dialysis, and immune-depletion of high abundance serum or plasma proteins, is shown to have disadvantages compared to positive selection of the candidate biomarkers by affinity enrichment. A theoretical analysis of affinity enrichment reveals that the yield for low abundance biomarkers is a direct function of the binding affinity (Association/Dissociation rates) used for biomarker capture. In addition, a high affinity capture pre processing step can effectively dissociate the candidate biomarker from partitioning with high abundance proteins such as albumin. Expert commentary: Properly designed high affinity capture materials can enrich the yield of low abundance (0.1-10 picograms/mL) candidate biomarkers for MS detection. Affinity capture and concentration, as an upfront step in sample preparation for MS, combined with MS advances in software and hardware that improve the resolution of the chromatographic separation can yield a transformative new class of low abundance biomarkers predicting disease risk or disease latency.
Collapse
Affiliation(s)
| | - Robyn Araujo
- b School of Mathematical Sciences , Queensland University of Technology , Brisbane , Australia
| | - Marissa Howard
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Ruben Magni
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Lance A Liotta
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alessandra Luchini
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
3
|
Muhammad P, Liu J, Xing R, Wen Y, Wang Y, Liu Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Anal Chim Acta 2017; 995:34-42. [PMID: 29126479 DOI: 10.1016/j.aca.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL-1), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach.
Collapse
Affiliation(s)
- Pir Muhammad
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Abdel-Sayed P, Yamauchi KA, Gerver RE, Herr AE. Fabrication of an Open Microfluidic Device for Immunoblotting. Anal Chem 2017; 89:9643-9648. [PMID: 28825964 DOI: 10.1021/acs.analchem.7b02406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O2 and the presence of O2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O2, we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in <60 s, with separation resolution exceeding 1.0 and CVs of 8.4% for BSA-OVA and 2.4% for OVA-TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.
Collapse
Affiliation(s)
- Philippe Abdel-Sayed
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Kevin A Yamauchi
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Rachel E Gerver
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
5
|
Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis. Sci Rep 2016; 6:39774. [PMID: 28008969 PMCID: PMC5180089 DOI: 10.1038/srep39774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022] Open
Abstract
High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.
Collapse
|
6
|
Cummins BM, Ligler FS, Walker GM. Point-of-care diagnostics for niche applications. Biotechnol Adv 2016; 34:161-76. [PMID: 26837054 PMCID: PMC4833668 DOI: 10.1016/j.biotechadv.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Point-of-care or point-of-use diagnostics are analytical devices that provide clinically relevant information without the need for a core clinical laboratory. In this review we define point-of-care diagnostics as portable versions of assays performed in a traditional clinical chemistry laboratory. This review discusses five areas relevant to human and animal health where increased attention could produce significant impact: veterinary medicine, space travel, sports medicine, emergency medicine, and operating room efficiency. For each of these areas, clinical need, available commercial products, and ongoing research into new devices are highlighted.
Collapse
Affiliation(s)
- Brian M Cummins
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Glenn M Walker
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE. A lateral electrophoretic flow diagnostic assay. LAB ON A CHIP 2015; 15:1488-96. [PMID: 25608872 PMCID: PMC4383188 DOI: 10.1039/c4lc01370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.
Collapse
Affiliation(s)
- Robert Lin
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94720 USA.
| | | | | | | | | | | |
Collapse
|
8
|
Gerver R, Herr AE. Microfluidic Western blotting of low-molecular-mass proteins. Anal Chem 2014; 86:10625-32. [PMID: 25268977 PMCID: PMC4222625 DOI: 10.1021/ac5024588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5-116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets.
Collapse
Affiliation(s)
- Rachel
E. Gerver
- University of California Berkeley
and University of California San
Francisco Graduate Program in Bioengineering, and Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- University of California Berkeley
and University of California San
Francisco Graduate Program in Bioengineering, and Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Luo J, Cui X, Liu W, Li B. Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:243-248. [PMID: 24835732 DOI: 10.1016/j.saa.2014.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Homogeneous immunoassay is becoming more and more attractive for modern medical diagnosis because it is superior to heterogeneous immunoassay in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunoglobulin G (IgG) as a model analyte, has been developed. This assay relies upon the catalytic activity of gold nanoparticles (AuNPs) on luminol-AgNO3 chemiluminescence (CL) reaction. The immunoreaction of antigen and antibody can induce the aggregation of antibody-functionalized AuNPs, and after aggregation the catalytic activity of AuNPs on luminol-AgNO3 CL reaction is greatly enhanced. Without any separation steps, a CL signal is generated upon addition of a trigger solution, and the CL intensity is directly correlated to the quantity of IgG. The detection limit of IgG was estimated to be as low as 3pg/mL, and the sensitivity was better than that of the reported AuNPs-based CL immunoassay for IgG.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiang Cui
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
10
|
Pan Y, Karns K, Herr AE. Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis. Electrophoresis 2014; 35:2078-90. [PMID: 24591076 DOI: 10.1002/elps.201300500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 02/02/2023]
Abstract
Electrophoretic mobility shift assays (EMSAs) play an important role in analytical chemistry, quantitative bioscience, and point-of-care diagnostics. Emerging microfluidic lab-on-a-chip technologies bring high throughput and multiplexed analysis to affinity-based electrophoretic separations, greatly advancing the performance of traditional EMSAs. This review elaborates on the relevant theoretical basis for EMSAs, surveys microfluidic-based EMSA applications in molecular conformation analyses, immunoassays, affinity assays and genomics, and outlines challenges and potential future improvements needed from this powerful assay.
Collapse
Affiliation(s)
- Yuchen Pan
- Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, CA, USA
| | | | | |
Collapse
|
11
|
Kapil MA, Herr AE. Binding Kinetic Rates Measured via Electrophoretic Band Crossing in a Pseudohomogeneous Format. Anal Chem 2014; 86:2601-9. [DOI: 10.1021/ac403829z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Monica A. Kapil
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| | - Amy E. Herr
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| |
Collapse
|
12
|
KUBO T, OKETANI M, TOMINAGA Y, NAITO T, OTSUKA K. Tunable Molecular Sieving in Gel Electrophoresis Using a Poly(ethylene glycol)-Based Hydrogel. CHROMATOGRAPHY 2014. [DOI: 10.15583/jpchrom.2014.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | - Mami OKETANI
- Graduate School of Engineering, Kyoto University
| | - Yuichi TOMINAGA
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
13
|
Araz MK, Apori AA, Salisbury CM, Herr AE. Microfluidic barcode assay for antibody-based confirmatory diagnostics. LAB ON A CHIP 2013; 13:3910-3920. [PMID: 23925585 DOI: 10.1039/c3lc50229e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Confirmatory diagnostics offer high clinical sensitivity and specificity typically by assaying multiple disease biomarkers. Employed in clinical laboratory settings, such assays confirm a positive screening diagnostic result. These important multiplexed confirmatory assays require hours to complete. To address this performance gap, we introduce a simple 'single inlet, single outlet' microchannel architecture with multiplexed analyte detection capability. A streptavidin-functionalized, channel-filling polyacrylamide gel in a straight glass microchannel operates as a 3D scaffold for a purely electrophoretic yet heterogeneous immunoassay. Biotin and biotinylated capture reagents are patterned in discrete regions along the axis of the microchannel resulting in a barcode-like pattern of reagents and spacers. To characterize barcode fabrication, an empirical study of patterning behaviour was conducted across a range of electromigration and binding reaction timescales. We apply the heterogeneous barcode immunoassay to detection of human antibodies against hepatitis C virus and human immunodeficiency virus antigens. Serum was electrophoresed through the barcode patterned gel, allowing capture of antibody targets. We assess assay performance across a range of Damkohler numbers. Compared to clinical immunoblots that require 4-10 h long sample incubation steps with concomitant 8-20 h total assay durations; directed electromigration and reaction in the microfluidic barcode assay leads to a 10 min sample incubation step and a 30 min total assay duration. Further, the barcode assay reports clinically relevant sensitivity (25 ng ml(-1) in 2% human sera) comparable to standard HCV confirmatory diagnostics. Given the low voltage, low power and automated operation, we see the streamlined microfluidic barcode assay as a step towards rapid confirmatory diagnostics for a low-resource clinical laboratory setting.
Collapse
Affiliation(s)
- M Kursad Araz
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | |
Collapse
|
14
|
Apori AA, Brozynski MN, El-Sayed IH, Herr AE. Microfluidic Validation of Diagnostic Protein Markers for Spontaneous Cerebrospinal Fluid Rhinorrhea. J Proteome Res 2013; 12:1254-65. [DOI: 10.1021/pr300928p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Akwasi A. Apori
- Department
of Bioengineering, University of California—Berkeley, Berkeley,
California
| | - Martina N. Brozynski
- Department
of Bioengineering, University of California—Berkeley, Berkeley,
California
| | - Ivan H. El-Sayed
- Department of
Otolaryngology, University of California—San Francisco, San
Francisco, California
| | - Amy E. Herr
- Department
of Bioengineering, University of California—Berkeley, Berkeley,
California
| |
Collapse
|
15
|
Karns K, Vogan JM, Qin Q, Hickey SF, Wilson SC, Hammond MC, Herr AE. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function. J Am Chem Soc 2013; 135:3136-43. [PMID: 23343213 DOI: 10.1021/ja310742m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Riboswitches are RNA sensors that change conformation upon binding small molecule metabolites, in turn modulating gene expression. Our understanding of riboswitch regulatory function would be accelerated by a high-throughput, quantitative screening tool capable of measuring riboswitch-ligand binding. We introduce a microfluidic mobility shift assay that enables precise and rapid quantitation of ligand binding and subsequent riboswitch conformational change. In 0.3% of the time required for benchtop assays (3.2 versus 1020 min), we screen and validate five candidate SAM-I riboswitches isolated from thermophilic and cryophilic bacteria. The format offers enhanced resolution of conformational change compared to slab gel formats, quantitation, and repeatability for statistical assessment of small mobility shifts, low reagent consumption, and riboswitch characterization without modification of the aptamer structure. Appreciable analytical sensitivity coupled with high-resolution separation performance allows quantitation of equilibrium dissociation constants (K(d)) for both rapidly and slowly interconverting riboswitch-ligand pairs as validated through experiments and modeling. Conformational change, triplicate mobility shift measurements, and K(d) are reported for both a known and a candidate SAM-I riboswitch with comparison to in-line probing assay results. The microfluidic mobility shift assay establishes a scalable format for the study of riboswitch-ligand binding that will advance the discovery and selection of novel riboswitches and the development of antibiotics to target bacterial riboswitches.
Collapse
Affiliation(s)
- Kelly Karns
- San Francisco Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Apori AA, Herr AE. Chip-based immunoassays. Methods Mol Biol 2013; 919:233-248. [PMID: 22976105 DOI: 10.1007/978-1-62703-029-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microfluidic immunoassay techniques offer advantages in speed, automation, and portability over -bench-top gold standard counterparts. In particular, on-chip immunosubtraction is a rapid homogeneous immunoassay used for reporting both protein native mobility and binding specificity. Immunosubtraction is performed by removing antibody-bound target proteins from electrophoretic detection via a size-based exclusion filter, while unbound nontarget proteins are able to pass through the filter for downstream detection. Immunosubtraction is achieved on-chip by fabrication of discrete patterned polyacrylamide (PA) gel regions. Additionally, PA gel regions are used to define on-chip sample preparation regions for protein enrichment, fluorescent labeling, and antibody-target binding prior to immunosubtraction. Here we describe the immunosubtraction device fabrication technique as well as the electrophoretic assay protocol for determining target protein mobility and binding specificity within complex biological samples including cerebrospinal fluid.
Collapse
Affiliation(s)
- Akwasi A Apori
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
17
|
Abstract
Rapid, quantitative Western blotting is a long-sought bioanalytical goal in the life sciences. To this end, we describe a Western blotting assay conducted in a single glass microchannel under purely electronic control. The μWestern blot is comprised of multiple steps: sample enrichment, protein sizing, protein immobilization (blotting), and in situ antibody probing. To validate the microfluidic assay, we apply the μWestern blot to analyses of human sera (HIV immunoreactivity) and cell lysate (NFκB). Analytical performance advances are achieved, including: short durations of 10-60 min, multiplexed analyte detection, mass sensitivity at the femtogram level, high-sensitivity 50-pM detection limits, and quantitation capability over a 3.6-log dynamic range. Performance gains are attributed to favorable transport and reaction conditions on the microscale. The multistep assay design relies on a photopatternable (blue light) and photoreactive (UV light) polyacrylamide gel. This hydrophilic polymer constitutes both a separation matrix for protein sizing and, after brief UV exposure, a protein immobilization scaffold for subsequent antibody probing of immobilized protein bands. We observe protein capture efficiencies exceeding 75% under sizing conditions. This compact microfluidic design supports demonstration of a 48-plex μWestern blot in a standard microscope slide form factor. Taken together, the μWestern blot establishes a foundation for rapid, targeted proteomics by merging exceptional specificity with the throughput advantages of multiplexing, as is relevant to a broad range of biological inquiry.
Collapse
|
18
|
Abstract
Rapid, quantitative Western blotting is a long-sought bioanalytical goal in the life sciences. To this end, we describe a Western blotting assay conducted in a single glass microchannel under purely electronic control. The μWestern blot is comprised of multiple steps: sample enrichment, protein sizing, protein immobilization (blotting), and in situ antibody probing. To validate the microfluidic assay, we apply the μWestern blot to analyses of human sera (HIV immunoreactivity) and cell lysate (NFκB). Analytical performance advances are achieved, including: short durations of 10-60 min, multiplexed analyte detection, mass sensitivity at the femtogram level, high-sensitivity 50-pM detection limits, and quantitation capability over a 3.6-log dynamic range. Performance gains are attributed to favorable transport and reaction conditions on the microscale. The multistep assay design relies on a photopatternable (blue light) and photoreactive (UV light) polyacrylamide gel. This hydrophilic polymer constitutes both a separation matrix for protein sizing and, after brief UV exposure, a protein immobilization scaffold for subsequent antibody probing of immobilized protein bands. We observe protein capture efficiencies exceeding 75% under sizing conditions. This compact microfluidic design supports demonstration of a 48-plex μWestern blot in a standard microscope slide form factor. Taken together, the μWestern blot establishes a foundation for rapid, targeted proteomics by merging exceptional specificity with the throughput advantages of multiplexing, as is relevant to a broad range of biological inquiry.
Collapse
|
19
|
Duncombe TA, Herr AE. Use of Polyacrylamide Gel Moving Boundary Electrophoresis to Enable Low-Power Protein Analysis in a Compact Microdevice. Anal Chem 2012; 84:8740-7. [DOI: 10.1021/ac301875e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Todd A. Duncombe
- University of California, Berkeley−University of California, San Francisco
Graduate Program
in Bioengineering, 342 Stanley Hall, Berkeley, California 94720, United
States
| | - Amy E. Herr
- University of California, Berkeley−University of California, San Francisco
Graduate Program
in Bioengineering, 342 Stanley Hall, Berkeley, California 94720, United
States
| |
Collapse
|
20
|
Cui X, Liu M, Li B. Homogeneous fluorescence-based immunoassay via inner filter effect of gold nanoparticles on fluorescence of CdTe quantum dots. Analyst 2012; 137:3293-9. [PMID: 22655288 DOI: 10.1039/c2an35328h] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Homogeneous immunoassays are becoming more and more attractive for modern medical diagnosis because they are superior to heterogeneous immunoassays in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunoglobulin (IgG) as a model analyte, has been developed. This assay relies upon the inner filter effect (IFE) of gold nanoparticles (AuNPs) on CdTe QDs fluorescence. The immunoreaction of antigen and antibody can induce the aggregation of antibody-functionalized AuNPs, and after aggregation the IFE of AuNPs on CdTe QDs fluorescence is greatly enhanced, resulting in a decrease of fluorescence intensity in the system. Based on this phenomenon, a wide dynamic range of 1-100 pg mL(-1) for determination of IgG can be obtained. The proposed method shows a detection limit of 0.3 pg mL(-1) for human IgG, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods. This immunoassay method is simple, rapid, cheap, and sensitive. The proposed method has been successfully applied to measuring IgG in serum samples, and the obtained results agreed well with those of the enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Xiang Cui
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | | | | |
Collapse
|
21
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
22
|
Microfluidic homo- and hetero-geneous immunoassays: a tool to accelerate protein biomarker development. Bioanalysis 2011; 3:2161-5. [DOI: 10.4155/bio.11.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Karns K, Herr AE. Human tear protein analysis enabled by an alkaline microfluidic homogeneous immunoassay. Anal Chem 2011; 83:8115-22. [PMID: 21910436 DOI: 10.1021/ac202061v] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to probe the protein content of human tear fluid has enormous potential for deepening our understanding of ocular and systemic disease pathology and enabling novel noninvasive tear-based diagnostic technologies. To overcome current challenges in tear proteomic measurements, we report on the first microfluidic homogeneous immunoassay capable of making rapid, quantitative, and specific measurements of endogenous tear protein biomarkers in human tear fluid. Lactoferrin (Lf) is a tear-specific biomarker for Sjögren's syndrome (SS), a serious systemic autoimmune disease currently diagnosed through rudimentary volumetric and surface chemistry measurements and an invasive lip biopsy. We detail optimization of a homogeneous electrophoretic immunoassay for Lf in <1 μL of tear fluid at clinically relevant concentrations. In particular, we present assay development details and a final assay that enables quantification of Lf in <5 s in a clinically relevant range for SS diagnostics. Characterization suggests the on-chip assay is accurate to within 15% of ELISA, specific (<15% nonspecific signal), and with a lower limit of detection of 3 ± 2 nM Lf in human tear matrix. Additionally, we develop and characterize a protocol for eluting proteins from nitrocellulose Schirmer strips, the clinical de facto standard for tear collection and storage. We relate on-chip measured Lf concentrations back to ocular surface concentrations for the first time to our knowledge. Taken in sum, this work details important steps toward (1) expanding the set of proteins quantified by electrophoretic immunoassays to encompass a wider range of isoelectric points than has been reported, (2) creating a first-in-kind translatable assay with clinical relevance to SS diagnostics, and (3) expanding the analytical toolkit available for rapid tear protein measurements, as is relevant to the advancement of basic research and clinical medicine.
Collapse
Affiliation(s)
- Kelly Karns
- Graduate Program in Bioengineering, The University of California, Berkeley-University of California, San Francisco, Berkeley, California 94720, United States
| | | |
Collapse
|