1
|
Luo J, Zhu Z. Sensitive and High-Throughput Time-Resolved Luminescence Detection of Tetracycline in Milk for Eliminating Background Fluorescence on a Miniaturized Apparatus. Anal Chem 2024; 96:11115-11120. [PMID: 38949267 DOI: 10.1021/acs.analchem.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fluorescence detection has always suffered from high background fluorescence from real samples such as milk. Therefore, cumbersome pretreatments of samples were necessary to remove the fluorescent substances but led to long processing times and low efficiency. Time-resolved luminescence detection is a powerful technique for eliminating short-lived background fluorescence without additional pretreatments. However, the related instruments are usually equipped with high-speed excitation sources and detectors, which are always bulky and expensive. Herein, we developed a low-cost and miniaturized imaging system for high-throughput time-gated luminescence detection. An UV LED array was used to excite multiple samples, the luminescence of which could be detected by a smartphone simultaneously. An analog circuit was designed to synchronize the LED to the mechanical chopper to eliminate the background signals resulting from scattering and short-lived autofluorescence. Compared to other synchronous circuits based on FPGAs and microcontrollers, this analog circuit required no programming and memory. For the first time, high-throughput time-resolved luminescence detection of tetracycline in milk without any separation or enrichment was achieved by utilizing a smartphone as a camera, and the scattered signals and the background fluorescence were eliminated efficiently. The limit of detection reached as low as 53 nM (∼0.024 ppm), lower than the residue limit set by the European Union. This high-throughput time-gated luminescence detection method can be used for quantitative analysis of many real samples with high background fluorescence.
Collapse
Affiliation(s)
- Jiahui Luo
- Department of Chemistry and Chemical Engineering, School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zece Zhu
- Department of Chemistry and Chemical Engineering, School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Fratto BE, Culver EL, Davis G, Deans R, Goods JB, Hwang S, Keller NK, Lawrence JA, Petty AR, Swager TM, Walish JJ, Zhu Z, Cox JR. Leveraging a smartphone to perform time-gated luminescence measurements. PLoS One 2023; 18:e0293740. [PMID: 37903097 PMCID: PMC10615318 DOI: 10.1371/journal.pone.0293740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Empowered by advanced on-board sensors, high-performance optics packages and ever-increasing computational power, smartphones have democratized data generation, collection, and analysis. Building on this capacity, many platforms have been developed to enable its use as an optical sensing platform for colorimetric and fluorescence measurements. In this paper, we report the ability to enable a smartphone to perform laboratory quality time-resolved analysis of luminescent samples via the exploitation of the rolling shutter mechanism of the native CMOS imager. We achieve this by leveraging the smartphone's standard image capture applications, commercially available image analysis software, and housing the device within a UV-LED containing case. These low-cost modifications enable us to demonstrate the smartphone's analytical potential by performing tasks ranging from authentication and encryption to the interrogation of packaging, compounds, and physical phenomena. This approach underscores the power of repurposing existing technologies to extend the reach and inclusivity of scientific exploration, opening new avenues for data collection and analysis.
Collapse
Affiliation(s)
- Brian E. Fratto
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Emma L. Culver
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Gabriel Davis
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Robert Deans
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - John B. Goods
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Sean Hwang
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Nicole K. Keller
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - John A. Lawrence
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | | | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joseph J. Walish
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Zhengguo Zhu
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Jason R. Cox
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| |
Collapse
|
3
|
Wang Y, Sadeghi S, Velayati A, Paul R, Hetzler Z, Danilov E, Ligler FS, Wei Q. Low-rate smartphone videoscopy for microsecond luminescence lifetime imaging with machine learning. PNAS NEXUS 2023; 2:pgad313. [PMID: 37829844 PMCID: PMC10566544 DOI: 10.1093/pnasnexus/pgad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sina Sadeghi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Alireza Velayati
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Evgeny Danilov
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Deng Q, Liu Y, Zhu Z, Shu X. Microsecond-resolved smartphone time-gated luminescence spectroscopy. OPTICS LETTERS 2022; 47:3427-3430. [PMID: 35838696 DOI: 10.1364/ol.467458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Time-gated luminescence spectra are usually measured by laboratory instruments equipped with high-speed excitation sources and spectrometers, which are always bulky and expensive. To reduce the reliance on expensive laboratory instruments, we demonstrate the first, to the best of our knowledge, use of a smartphone for the detection of time-gated luminescence spectra. A mechanical chopper is used as the detection shutter and an optical switch is placed at the edge of the wheel to convert the chopping signal into a transistor-transistor logic (TTL) signal which is used to control the excitation source and achieve synchronization. The time-gated luminescence spectra at different delay times of Eu(TTA)3 powder and the solutions of Eu-tetracycline complex are successfully detected with a temporal resolution of tens of microseconds by the proposed approach. We believe our approach offers a route toward portable instruments for the measurement of luminescence spectra and lifetimes.
Collapse
|
5
|
Deng Q, Zhu Z, Shu X. Auto-Phase-Locked Time-Resolved Luminescence Detection: Principles, Applications, and Prospects. Front Chem 2020; 8:562. [PMID: 32695750 PMCID: PMC7339960 DOI: 10.3389/fchem.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 11/23/2022] Open
Abstract
Time-resolved luminescence measurement is a useful technique which can eliminate the background signals from scattering and short-lived autofluorescence. However, the relative instruments always require pulsed excitation sources and high-speed detectors. Moreover, the excitation and detecting shutter should be precisely synchronized by electronic phase matching circuitry, leading to expensiveness and high-complexity. To make time-resolved luminescence instruments simple and cheap, the automatic synchronization method was developed by using a mechanical chopper acted as both of the pulse generator and detection shutter. Therefore, the excitation and detection can be synchronized and locked automatically as the optical paths fixed. In this paper, we first introduced the time-resolved luminescence measurements and review the progress and current state of this field. Then, we discussed low-cost time-resolved techniques, especially chopper-based time-resolved luminescence detections. After that, we focused on auto-phase-locked method and some of its meaningful applications, such as time-gated luminescence imaging, spectrometer, and luminescence lifetime detection. Finally, we concluded with a brief outlook for auto-phase-locked time-resolved luminescence detection systems.
Collapse
Affiliation(s)
| | - Zece Zhu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang Y, Sayyadi N, Zheng X, Woods TA, Leif RC, Shi B, Graves SW, Piper JA, Lu Y. Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region. LAB ON A CHIP 2020; 20:655-664. [PMID: 31934716 DOI: 10.1039/c9lc00895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.
Collapse
Affiliation(s)
- Yan Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nima Sayyadi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xianlin Zheng
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Travis A Woods
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Robert C Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Bingyang Shi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven W Graves
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia and School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
7
|
Time-Gated Luminescent In Situ Hybridization (LISH): Highly Sensitive Detection of Pathogenic Staphylococcus aureus. Molecules 2019; 24:molecules24112083. [PMID: 31159269 PMCID: PMC6600140 DOI: 10.3390/molecules24112083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022] Open
Abstract
We describe simple direct conjugation of a single TEGylated Europium chelate to DNA that binds to intracellular rRNA and is then detected using a homogeneous luminescent in situ hybridisation (LISH) technique. As a proof-of-principle, Staphylococcus aureus (S. aureus) was selected as a model for our study to show the ability of this probe to bind to intracellular 16S ribosomal rRNA. A highly purified Europium chelate conjugated oligonucleotide probe complementary to an rRNA sequence-specific S. aureus was prepared and found to be soluble and stable in aqueous solution. The probe was able to bind specifically to S. aureus via in situ hybridisation to differentiate S. aureus from a closely related but less pathogenic Staphylococcus species (S. epidermidis). A time-gated luminescent (TGL) microscope system was used to generate the high signal-to-noise ratio (SNR) images of the S. aureus. After excitation (365 nm, Chelate λmax = 335 nm), the long-lived (Eu3+) luminescent emission from the probe was detected without interference from natural background autofluorescence typically seen in biological samples. The luminescent images were found to have 6 times higher SNR or sensitivity compared to the fluorescent images using conventional fluorophore Alexa Fluor 488. The TEGylated Europium chelate -oligo probe stained S. aureus with mean signal intensity 3.5 times higher than the threshold level of signal from S. epidermidis (with SNR 8 times higher). A positive control probe (EUB338–BHHTEGST–Eu3+) has mean signal intensity for S. aureus and S. epidermidis equally 3.2 times higher than the threshold of signal for a negative NON-EUB338 control probe. The direct conjugation of a single Europium chelate to DNA provides simplicity and improvement over existing bovine serum albumin (BSA)/streptavidin/biotinylated DNA platforms for multi-attachment of Europium chelate per DNA and more importantly makes it feasible for hybridisation to intracellular RNA targets. This probe has great potential for highly sensitive homogeneous in situ hybridisation detection of the vast range of intracellular DNA targets.
Collapse
|
8
|
Parker LM, Sayyadi N, Staikopoulos V, Shrestha A, Hutchinson MR, Packer NH. Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization. J Neuroinflammation 2019; 16:65. [PMID: 30898121 PMCID: PMC6427895 DOI: 10.1186/s12974-019-1451-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurokine signaling via the release of neurally active cytokines arises from glial reactivity and is mechanistically implicated in central nervous system (CNS) pathologies such as chronic pain, trauma, neurodegenerative diseases, and complex psychiatric illnesses. Despite significant advancements in the methodologies used to conjugate, incorporate, and visualize fluorescent molecules, imaging of rare yet high potency events within the CNS is restricted by the low signal to noise ratio experienced within the CNS. The brain and spinal cord have high cellular autofluorescence, making the imaging of critical neurokine signaling and permissive transcriptional cellular events unreliable and difficult in many cases. METHODS In this manuscript, we developed a method for background-free imaging of the transcriptional events that precede neurokine signaling using targeted mRNA transcripts labeled with luminescent lanthanide chelates and imaged via time-gated microscopy. To provide examples of the usefulness this method can offer to the field, the mRNA expression of toll-like receptor 4 (TLR4) was visualized with traditional fluorescent in situ hybridization (FISH) or luminescent lanthanide chelate-based in situ hybridization (LISH) in mouse BV2 microglia or J774 macrophage phenotype cells following lipopolysaccharide stimulation. TLR4 mRNA staining using LISH- and FISH-based methods was also visualized in fixed spinal cord tissues from BALB/c mice with a chronic constriction model of neuropathic pain or a surgical sham model in order to demonstrate the application of this new methodology in CNS tissue samples. RESULTS Significant increases in TLR4 mRNA expression and autofluorescence were visualized over time in mouse BV2 microglia or mouse J774 macrophage phenotype cells following lipopolysaccharide (LPS) stimulation. When imaged in a background-free environment with LISH-based detection and time-gated microscopy, increased TLR4 mRNA was observed in BV2 microglia cells 4 h following LPS stimulation, which returned to near baseline levels by 24 h. Background-free imaging of mouse spinal cord tissues with LISH-based detection and time-gated microscopy demonstrated a high degree of regional TLR4 mRNA expression in BALB/c mice with a chronic constriction model of neuropathic pain compared to the surgical sham model. CONCLUSIONS Advantages offered by adopting this novel methodology for visualizing neurokine signaling with time-gated microscopy compared to traditional fluorescent microscopy are provided.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nima Sayyadi
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish Shrestha
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Zhu Z. Smartphone-based apparatus for measuring upconversion luminescence lifetimes. Anal Chim Acta 2018; 1054:122-127. [PMID: 30712582 DOI: 10.1016/j.aca.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 11/15/2022]
Abstract
Luminescence lifetime detection plays an important role in time-resolved detection and research. However, the traditional instruments always require expensive detectors such as time-correlated single photon counter or streak camera. Herein, a low-cost and miniaturized apparatus for measuring upconversion luminescence lifetimes was developed by using a smartphone equipped with a 980 nm CW laser and a motor. When the motor was driving the sample circling at a high linear velocity, the excited sample would emit a luminescence arc, which could be photographed by the phone camera. The rotating rate could be measured by a tuner APP and then used for transferring arc length to delay times. By analyzing the grayscale distribution of the luminescence arc, the luminescence decay curve was obtained, which was then used for exponential fit and calculating lifetimes. The images captured by different smartphones revealed similar lifetime values, suggesting a wide universality of this method. The whole system was not only remarkably cheaper but also more miniaturized than traditional instruments for measuring luminescence lifetimes, indicating the promising applications in point of care testing for time-resolved luminescence detection for bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Zece Zhu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Zhu Z, Tian D, Gao P, Wang K, Li Y, Shu X, Zhu J, Zhao Q. Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging. J Am Chem Soc 2018; 140:17484-17491. [DOI: 10.1021/jacs.8b08438] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Pengli Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | | | | | | | | | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
11
|
Aulsebrook ML, Graham B, Grace MR, Tuck KL. Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Zhu Z, Shu X. Auto-phase-locked measurement of time-gated luminescence spectra with a microsecond delay. OPTICS LETTERS 2018; 43:2575-2578. [PMID: 29856433 DOI: 10.1364/ol.43.002575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Time-resolved techniques are widely used in measuring the spectra and lifetimes of the excited states of molecules. However, the relative apparatus always requires gated detector and phase-matching circuitry, which is expensive to implement and maintain. Herein, a novel auto-phase-locked method for time-gated luminescence (TGL) spectra measurement was developed by adjusting the exciting and detecting optical paths to pass through the same chopper wheel, which simultaneously acted as a pulse generator and detecting shutter. This low-cost system needs no phase-matching circuitry or control system. It can detect TGL spectra with a delay time of only microseconds, demonstrating a high temporal resolution for thermally activated delayed fluorescence detection.
Collapse
|
13
|
Abstract
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.
Collapse
|
14
|
Sayyadi N, Justiniano I, Connally RE, Zhang R, Shi B, Kautto L, Everest-Dass AV, Yuan J, Walsh BJ, Jin D, Willows RD, Piper JA, Packer NH. Sensitive Time-Gated Immunoluminescence Detection of Prostate Cancer Cells Using a TEGylated Europium Ligand. Anal Chem 2016; 88:9564-9571. [DOI: 10.1021/acs.analchem.6b02191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nima Sayyadi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Irene Justiniano
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Russell E. Connally
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Run Zhang
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Liisa Kautto
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Arun V. Everest-Dass
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jingli Yuan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning Province 116024, China
| | - Bradley J. Walsh
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Dayong Jin
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- School of
Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Robert D. Willows
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - James A. Piper
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
15
|
A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging. Sci Rep 2016; 6:27564. [PMID: 27282464 PMCID: PMC4901361 DOI: 10.1038/srep27564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022] Open
Abstract
Luminescent lanthanide chelates have been used to label antibodies in time-gated luminescence (TGL) bioimaging. However, it is a challenging task to label directly an antibody with lanthanide-binding ligands and achieve control of the target ligand/protein ratios whilst ensuring that affinity and avidity of the antibody remain uncompromised. We report the development of a new indirect detection reagent to label antibodies with detectable luminescence that circumvents this problem by labelling available lysine residues in the linker portion of the recombinant fusion protein Linker-Protein G (LPG). Succinimide-activated lanthanide chelating ligands were attached to lysine residues in LPG and Protein G (without Linker) and the resulting Luminescence-Activating (LA-) conjugates were compared for total incorporation and conjugation efficiency. A higher and more efficient incorporation of ligands at three different molar ratios was observed for LPG and this effect was attributed to the presence of eight readily available lysine residues in the linker region of LPG. These Luminescence-Activating (LA-) complexes were subsequently shown to impart luminescence (upon formation of europium(III) complexes) to cell-specific antibodies within seconds and without the need for any complicated bioconjugation procedures. The potential of this technology was demonstrated by direct labelling of Giardia cysts and Cryptosporidium oocysts in TGL bioimaging.
Collapse
|
16
|
Sayyadi N, Connally RE, Try A. A novel biocompatible europium ligand for sensitive time-gated immunodetection. Chem Commun (Camb) 2016; 52:1154-7. [DOI: 10.1039/c5cc06811h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of a novel hydrophilic derivative of a tetradentate β-diketone europium ligand that was used to prepare an immunoconjugate probe against Giardia lamblia cysts. We used a Gated Autosynchronous Luminescence Detector (GALD) to obtain high quality delayed luminescence images of cells 30-fold faster than ever previously reported.
Collapse
Affiliation(s)
- Nima Sayyadi
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP)
- Macquarie University
- Sydney
- Australia
- Department of Chemistry and Biomolecular Sciences Macquarie University
| | | | - Andrew Try
- Department of Chemistry and Biomolecular Sciences Macquarie University
- Sydney
- Australia
| |
Collapse
|
17
|
Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|