1
|
Microfluidic ion stripper for removal of trifluoroacetic acid from mobile phases used in HILIC-MS of intact proteins. Anal Bioanal Chem 2021; 413:4379-4386. [PMID: 34050389 PMCID: PMC8245364 DOI: 10.1007/s00216-021-03414-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/01/2022]
Abstract
Trifluoroacetic acid (TFA) is commonly used as mobile phase additive to improve retention and peak shape characteristics in hydrophilic interaction liquid chromatography (HILIC) of intact proteins. However, when using electrospray ionization-mass spectrometry (ESI-MS) detection, TFA may cause ionization suppression and adduct formation, leading to reduced analyte sensitivity. To address this, we describe a membrane-based microfluidic chip with multiple parallel channels for the selective post-column removal of TFA anions from HILIC. An anion-exchange membrane was used to physically separate the column effluent from a stripper flow solution comprising acetonitrile, formic acid, and propionic acid. The exchange of ions allowed the post-column removal of TFA used during HILIC separation of model proteins. The multichannel design of the device allows the use of flow rates of 0.2 mL/min without the need for a flow splitter, using mobile phases containing 0.1% TFA (13 mM). Separation selectivity and efficiency were maintained (with minor band broadening effects) while increasing the signal intensity and peak areas by improving ionization and reducing TFA adduct formation.
Collapse
|
2
|
Mao Y, Kleinberg A, Zhao Y, Raidas S, Li N. Simple Addition of Glycine in Trifluoroacetic Acid-Containing Mobile Phases Enhances the Sensitivity of Electrospray Ionization Mass Spectrometry for Biopharmaceutical Characterization. Anal Chem 2020; 92:8691-8696. [DOI: 10.1021/acs.analchem.0c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Andrew Kleinberg
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Shivkumar Raidas
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
3
|
Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S. High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3647-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Nshanian M, Lakshmanan R, Chen H, Ogorzalek Loo RR, Loo JA. Enhancing Sensitivity of Liquid Chromatography-Mass Spectrometry of Peptides and Proteins Using Supercharging Agents. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:157-164. [PMID: 29750076 PMCID: PMC5937529 DOI: 10.1016/j.ijms.2017.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
5
|
Hung SH, Yu MJ, Wang NH, Hsu RY, Wei GJ, Her GR. An integrated electrophoretic mobility control device with split design for signal improvement in liquid chromatography–electrospray ionization mass spectrometry analysis of aminoglycosides using a heptafluorobutyric acid containing mobile phase. Anal Chim Acta 2016; 933:156-63. [DOI: 10.1016/j.aca.2016.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/08/2016] [Accepted: 05/22/2016] [Indexed: 11/25/2022]
|
6
|
Chen J, Liu Z, Wang F, Mao J, Zhou Y, Liu J, Zou H, Zhang Y. Enhancing the performance of LC-MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray. Chem Commun (Camb) 2015; 51:14758-60. [DOI: 10.1039/c5cc06072a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop an acidic vapor assisted electrospray ionization strategy within an enclosed electrospray ionization source to counteract the ion suppression effects caused by trifluoroacetic acid.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Ye Zhou
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Jing Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Yukui Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| |
Collapse
|
7
|
Liu Y, Miao Z, Lakshmanan R, Ogorzalek Loo RR, Loo JA, Chen H. Signal and Charge Enhancement for Protein Analysis by Liquid Chromatography-Mass Spectrometry with Desorption Electrospray Ionization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 325-327:161-166. [PMID: 25878557 PMCID: PMC4394628 DOI: 10.1016/j.ijms.2012.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We recently reported the use of desorption electrospray ionization (DESI) as a novel interface to couple high-performance liquid chromatography (HPLC) with mass spectrometry (MS) (Chem. Commun. 2011, 47, 4171). One of the benefits of such an interface is that post-column derivatization of separated analytes can be integrated with ionization via a "reactive" DESI approach in which a derivatizing reagent is doped into the spray solvent. The reactive DESI interface allows analyte desorption/ionization from the end of the chromatographic column with prompt MS detection; a short time delay of ~20 ms was demonstrated. In this study, we extended this application by "supercharging" proteins following HPLC separation using a DESI spray solvent containing supercharging reagents, m-nitrobenzyl alcohol (m-NBA) or sulfolane. Proteins (insulin, ubiquitin, lysozyme and α-lactalbumin) eluted out of the LC column can be supercharged with the protein charge state distributions (CSDs) significantly increased (to higher charge), which would be advantageous for subsequent top-down MS analysis of proteins. Interestingly, supercharging combined with reactive DESI enhances tolerance towards trifluoroacetic acid (TFA), which is known to be a superior additive in the mobile phase for premium peptide/protein chromatographic separation but has severe signal suppression effects for conventional electrospray ionization (ESI). In comparison to electrosonic spray ionization (ESSI), a variant form of ESI, the sensitivity of protein analysis using LC/DESI-MS with the mobile phase containing TFA can be improved by up to 70-fold for lysozyme and α-lactalbumin by including m-NBA in the DESI spray solvent. Presumably, by reducing TFA dissociation in the droplet, supercharging agents lower trifluoroacetate anion concentrations and concomitantly reduce ion pairing to analyte cationic sites. The reduced ion pairing therefore decreases the TFA signal suppression effect. The supercharging capability and the reduction of TFA signal suppression suggest that LC/DESI-MS is a valuable method for protein analysis.
Collapse
Affiliation(s)
- Yan Liu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Zhixin Miao
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA ; Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| |
Collapse
|
8
|
Zhou Z, Zhang J, Xing J, Bai Y, Liao Y, Liu H. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1289-1292. [PMID: 22528206 DOI: 10.1007/s13361-012-0385-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins.
Collapse
Affiliation(s)
- Zhigui Zhou
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|