1
|
Xu H, Guo C, Yuan W, Zhang W, Sun Q, Wu J, Zhang X. Effects of additives on the performance of a laser-induced graphene sensor modified with ZrO 2 nanoparticles for OP detection. Analyst 2023; 148:5210-5220. [PMID: 37724336 DOI: 10.1039/d3an01215h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In this study, a simple and portable electrochemical sensor based on laser-induced graphene (LIG) has been developed to systematically investigate the feasibility of LIG as an electrode to detect organophosphorus pesticides (OPs). It proves that the LIG-based electrode has a relatively high electrochemically active surface area (ECSA) and heterogeneous electron transfer (HET) of 0.100 cm2 and 0.000825 cm s-1, respectively. In addition, zirconium dioxide nanoparticles (ZrO2 NPs) have been modified on the electrode with three different binders, β-cyclodextrin (β-CD), chitosan (CS) and Nafion, to improve the adsorption capacity of the electrode toward OPs, and the effect of the binders on the performance of the as-fabricated sensor has been investigated in detail. The results show that β-CD increases not only the electrochemically active surface area of the electrode but also the redox peak current of methyl parathion (MP). To evaluate the sensitivity of the sensor, differential pulse voltammetry (DPV) curves have been tested in solutions containing different concentrations of MP using ZrO2-β-CD/LIG as an electrode, which shows a detection range of 5-200 ng ml-1 and a detection limit of 0.89 ng ml-1. In summary, the LIG-based sensor has a low detection limit, high sensitivity and good interference resistance, and thus has tremendous potential for the detection of pesticides in the environment.
Collapse
Affiliation(s)
- Huiyang Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Chuang Guo
- Beijing Spacecrafts, Beijing, 100194, China
| | - Weijian Yuan
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenna Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xuelin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
R Thara C, Korah BK, Mathew S, John BK, Mathew B. Dual mode detection and sunlight-driven photocatalytic degradation of tetracycline with tailor-made N-doped carbon dots. ENVIRONMENTAL RESEARCH 2023; 216:114450. [PMID: 36209788 DOI: 10.1016/j.envres.2022.114450] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Carbon dots have emerged as one of the most promising materials with various potential applications derived from their unique photophysical and chemical properties. The present work investigates the electrochemical and photochemical properties of one-pot synthesized carbon dots for environmental sustainability. Facile microwave-assisted pyrolysis of urea and glucose yielded nitrogen doped carbon dots (N-doped carbon dots) with blue fluorescence and a quantum yield of 14.9%. As synthesized N- doped carbon dot had intense fluorescence, stability, water solubility, and biocompatibility. In the sensing studies, N-doped carbon dots appeared as a dual sensor for drug tetracycline with excellent sensitivity and selectivity. Beyond sense, the carbon dots have the potential to act as a photocatalyst for the degradation of tetracycline. Further, N-doped carbon dot could bring exhaustive degradation of tetracycline (>95%) within 10 min in the absence of any additives. This is the first time report on the utilization of raw non-metal doped carbon dots as a photocatalyst for the degradation of tetracycline.
Collapse
Affiliation(s)
- Chinnu R Thara
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Binila K Korah
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Sneha Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Bony K John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
3
|
Ma D, Liu J, Liu H, Yi J, Xia F, Tian D, Zhou C. Multiplexed electrochemical aptasensor based on mixed valence Ce(III, IV)-MOF for simultaneous determination of malathion and chlorpyrifos. Anal Chim Acta 2022; 1230:340364. [DOI: 10.1016/j.aca.2022.340364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
4
|
Arshad F, Mohd-Naim NF, Chandrawati R, Cozzolino D, Ahmed MU. Nanozyme-based sensors for detection of food biomarkers: a review. RSC Adv 2022; 12:26160-26175. [PMID: 36275095 PMCID: PMC9475342 DOI: 10.1039/d2ra04444g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Nanozymes have piqued the curiosity of scientists in recent years because of their ability to demonstrate enzyme-like activity combined with advantages such as high stability, inexpensive availability, robust activity, and tunable properties. These attributes have allowed the successful application of nanozymes in sensing to detect various chemical and biological target analytes, overcoming the shortcomings of conventional detection techniques. In this review, we discuss recent developments of nanozyme-based sensors to detect biomarkers associated with food quality and safety. First, we present a brief introduction to this topic, followed by discussing the different types of sensors used in food biomarker detection. We then highlight recent studies on nanozyme-based sensors to detect food markers such as toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, and drug residues. In the subsequent section, we discuss the challenges and possible solutions towards the development of nanozyme-based sensors for application in the food industry. Finally, we conclude the review by discussing future perspectives of this field towards successful detection and monitoring of food analytes.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The University of Queensland Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
5
|
Huang CH, Lu YJ, Pan YC, Liu HL, Chang JY, Sie JL, Pijanowska DG, Yang CM. Nanohollow Titanium Oxide Structures on Ti/FTO Glass Formed by Step-Bias Anodic Oxidation for Photoelectrochemical Enhancement. NANOMATERIALS 2022; 12:nano12111925. [PMID: 35683780 PMCID: PMC9182085 DOI: 10.3390/nano12111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
In this study, a new anodic oxidation with a step-bias increment is proposed to evaluate oxidized titanium (Ti) nanostructures on transparent fluorine-doped tin oxide (FTO) on glass. The optimal Ti thickness was determined to be 130 nm. Compared to the use of a conventional constant bias of 25 V, a bias ranging from 5 V to 20 V with a step size of 5 V for 3 min per period can be used to prepare a titanium oxide (TiOx) layer with nanohollows that shows a large increase in current of 142% under UV illumination provided by a 365 nm LED at a power of 83 mW. Based on AFM and SEM, the TiOx grains formed in the step-bias anodic oxidation were found to lead to nanohollow generation. Results obtained from EDS mapping, HR-TEM and XPS all verified the TiOx composition and supported nanohollow formation. The nanohollows formed in a thin TiOx layer can lead to a high surface roughness and photon absorbance for photocurrent generation. With this step-bias anodic oxidation methodology, TiOx with nanohollows can be obtained easily without any extra cost for realizing a high current under photoelectrochemical measurements that shows potential for electrochemical-based sensing applications.
Collapse
Affiliation(s)
- Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan;
- The College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Yong-Chen Pan
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Hui-Ling Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Jia-Yuan Chang
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
| | - Jhao-Liang Sie
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
- Correspondence: (D.G.P.); (C.-M.Y.); Tel.: +48-22-6599143 (ext. 141) (D.G.P.); +886-3-2118800 (ext. 5960) (C.-M.Y.)
| | - Chia-Ming Yang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan; (C.-H.H.); (J.-L.S.)
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan;
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-C.P.); (H.-L.L.); (J.-Y.C.)
- Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
- Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Correspondence: (D.G.P.); (C.-M.Y.); Tel.: +48-22-6599143 (ext. 141) (D.G.P.); +886-3-2118800 (ext. 5960) (C.-M.Y.)
| |
Collapse
|
6
|
Velmurugan S, C.-K. Yang T, Ching Juan J, Chen JN. Preparation of novel nanostructured WO3/CuMnO2 p-n heterojunction nanocomposite for photoelectrochemical detection of nitrofurazone. J Colloid Interface Sci 2021; 596:108-118. [DOI: 10.1016/j.jcis.2021.03.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022]
|
7
|
Ma Y, Zhang Y, Wang L. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid. Talanta 2021; 226:122105. [PMID: 33676661 DOI: 10.1016/j.talanta.2021.122105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/30/2023]
Abstract
In this manuscript, a layer of 2-methylimidazole zinc salt (ZIF-8) membrane is deposited on the surface of glassy carbon electrode (GCE) modified with platinum nanoparticles (Pt NPs) by reduction electrochemical method to obtain ZIF-8/Pt NPs/GCE, and then used for the detection of ascorbic acid (AA). The deposition of Pt NPs on the surface of GCE can not only guide the nucleation and growth of ZIF-8 membrane, but also exert a synergistic effect with it to enhance conductivity. For ZIF-8 membrane, it can increase the active area of electrode and thus improve the electrochemical response of the sensor for AA. Influence factors such as the deposition current density, deposition time on the surface morphology of the modified electrode, and the detection performance of the modified electrode during the electrochemical deposition of ZIF-8 membrane were explored to get the best performance. In addition, influence of conditions such as sweep speed and pH of the test solution on the electrochemical response signal of AA were also studied. Under the best conditions, the linear range of AA detection by this sensor is from 10 μmol L-1 to 2500 μmol L-1, and the detection limit is 5.2 μmol L-1 based on S/N = 3. What's more, the modified electrode also has good anti-interference ability, reproducibility and stability, and has achieved satisfactory results in the detection for AA in real samples.
Collapse
Affiliation(s)
- Ya Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Yunlong Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
8
|
Velmurugan S, Zhi-Xiang L, C-K Yang T, Juan JC. Rational design of built-in stannic oxide-copper manganate microrods p-n heterojunction for photoelectrochemical sensing of tetracycline. CHEMOSPHERE 2021; 271:129788. [PMID: 33556631 DOI: 10.1016/j.chemosphere.2021.129788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 μM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Liu Zhi-Xiang
- Precision and Materials Research Centre, National Taipei University of Technology, Taipei, Taiwan
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan; Precision and Materials Research Centre, National Taipei University of Technology, Taipei, Taiwan.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur-50603, Malaysia
| |
Collapse
|
9
|
Sudhan N, Sekar C. Nanostructured β‐tricalcium Phosphate (Ca3(PO4)2 Based Electrochemical Sensor for Detection of Methyl Parathion and Mercury (II) Ions. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.632652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, we have fabricated a new electrochemical sensor based on β‐tricalcium phosphate (Ca3(PO4)2) nanoparticles (NPs) modified glassy carbon electrode (GCE) for the selective nonenzymatic determination of methyl parathion and mercury (II) ions independently. β‐tricalcium phosphate (β‐TCP) NPs were prepared by chemical precipitation method and structural and morphological properties were investigated by XRD, FTIR, and SEM. The electrochemical behavior of MP and mercury (Hg2+) ions were investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques using β‐TCP/GCE. The modified electrode exhibited excellent electrocatalytic activity towards both the MP and Hg over a wide linear range from 0.15 to 141 μM and 1–381 µM with the lowest detection limits of 88 and 136.4 nM respectively. The sensor has high selectivity towards MP and Hg in the presence of major interfering compounds such as 3-nitrophenol, 4-nitrophenol, 4-aminophenol, catechol, hydroquinone and heavy metals such as lead, cadmium and arsenic. Applicability of the fabricated sensor for detection of MP and Hg (II) ions has been tested in tap water by standard addition method.
Collapse
|
10
|
Li Z, Zhu M. Detection of pollutants in water bodies: electrochemical detection or photo-electrochemical detection? Chem Commun (Camb) 2020; 56:14541-14552. [PMID: 33118579 DOI: 10.1039/d0cc05709f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The massive discharge of pollutants including endocrine-disrupting chemicals (EDCs), heavy metals, pharmaceuticals and personal care products (PPCPs) into water bodies is endangering the ecological environment and human health, and needs to be accurately detected. Both electrochemical and photo-electrochemical detection methods have been widely used for the detection of these pollutants, however, which one is better for the detection of different environmental pollutants? In this feature article, different electrochemical and photo-electrochemical detection methods are summarized, including the principles, classification, common catalysts, and applications. By summarizing the advantages and disadvantages of different detection methods, this review provides a guide for other researchers to detect pollutants in water bodies by using electrochemical and photo-electrochemical analysis.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China.
| | | |
Collapse
|
11
|
Smart A, Crew A, Pemberton R, Hughes G, Doran O, Hart J. Screen-printed carbon based biosensors and their applications in agri-food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Kanan S, Moyet MA, Arthur RB, Patterson HH. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2019. [DOI: 10.1080/01614940.2019.1613323] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sofian Kanan
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | |
Collapse
|
13
|
Itkes MP, de Oliveira GG, Silva TA, Fatibello-Filho O, Janegitz BC. Voltammetric sensing of fenitrothion in natural water and orange juice samples using a single-walled carbon nanohorns and zein modified sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Peng J, Zhuge W, Huang Y, Zhang C, Huang W. UV‐Light Photoelectrochemical Sensor Based on the Copper Tetraamino‐Phthalocyanine‐modified ITO Electrode for the Detection of Nifedipine in Drugs and Human Serum. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinyun Peng
- College of Chemistry and Chemical EngineeringGuangxi Normal University for Nationalities Chongzuo 532200 China
- School of PharmacyHenan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Wenfeng Zhuge
- School of PharmacyHenan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Yingying Huang
- College of Chemistry and Chemical EngineeringGuangxi Normal University for Nationalities Chongzuo 532200 China
| | - Cuizhong Zhang
- College of Chemistry and Chemical EngineeringGuangxi Normal University for Nationalities Chongzuo 532200 China
| | - Wei Huang
- College of Chemistry and Chemical EngineeringGuangxi Normal University for Nationalities Chongzuo 532200 China
| |
Collapse
|
15
|
He C, Peng L, Lv L, Cao Y, Tu J, Huang W, Zhang K. In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response. RSC Adv 2019; 9:15084-15091. [PMID: 35516318 PMCID: PMC9064225 DOI: 10.1039/c9ra01045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method. The combination of CDs and TiO2 NTAs enhanced the photoelectrochemical performance. Morphology, structure, and elemental composition of the CDs were characterized. No simple physical adsorption was found between the CDs and TiO2, but chemical bonds were formed. UV-vis absorption and fluorescence spectroscopy showed that the CDs could enhance the absorption of TiO2 in the visible and near-infrared regions. Owing to their up-conversion fluorescence properties, the CDs could convert low-energy photon absorption into high-energy photons, which may be used to excite TiO2 to produce a stronger photoelectric response. Moreover, the CDs could effectively transport electrons and accept holes, thus contributing to the effective separation of electrons and holes during photoexcitation. Finally, the PEC biosensor was prepared by immobilizing glucose oxidase (GOx) on the surface of the composite. The PEC biosensor exhibited a broad range of 0.1–18 mM with a detection limit of 0.027 mM under visible irradiation because the composite material reflected strong light absorption for visible light, good conductivity, and good biocompatibility. Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method.![]()
Collapse
Affiliation(s)
- Cheng He
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linkai Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linzhe Lv
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
- Qiongtai Normal University
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| |
Collapse
|
16
|
A sensitive Potentiometric resolved ratiometric Photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron 2018; 106:57-63. [PMID: 29414089 DOI: 10.1016/j.bios.2018.01.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 11/21/2022]
Abstract
In this work, a sensitive potentiometric resolved ratiometric photoelectrochemical aptasensor for Escherichia coli (E. coli) detection was successfully fabricated with non-metallic nanomaterials. To avoid the use of precious metals or heavy metals, three-dimensional graphene hydrogel-loaded carbon quantum dots (C-dots/3DGH) and graphene-like carbon nitride (g-C3N4) with excellent PEC activity and matched potential were prepared. These two materials were modified onto two adjacent areas on the ITO electrode. By applying different bias voltage, the cathodic current generated by C-dots/3DGH and the anodic current generated by g-C3N4 can be clearly distinguished and would not interfere with one another. Then E. coli aptamer was modified onto the surface of C-dots/3DGH. In the presence of targets, the binding of E. coli with aptamer lead to the steric hindrance greatly increased and the cathodic current decreased significantly. Meanwhile, the anodic current generated by g-C3N4 was not influenced and it can serve as a stable reference to evaluate the environmental factors. Therefore, the concentration of E. coli can be quantified by the ratio of cathodic current to anodic current, which can effectively eliminate these analyte-independent factors and provide a more precise analysis. In addition, this ratiometric PEC biosensor also showed a good sensitivity and a wide linear range (2.9 cfu/mL to 2.9 × 106 cfu/mL).
Collapse
|
17
|
A highly conductive thin film composite based on silver nanoparticles and malic acid for selective electrochemical sensing of trichloroacetic acid. Anal Chim Acta 2018; 1036:33-48. [PMID: 30253835 DOI: 10.1016/j.aca.2018.06.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Abstract
A highly conductive thin film composite based on silver nanoparticles (AgNPs) and malic acid (MA) was deposited on glassy carbon electrode (GCE) for the selective and sensitive electrochemical sensing of trichloroacetic acid (TCA). The casting solution containing MA functionalized AgNPs was employed as a precursor for the thermal deposition of the AgNPs integrated MA thin film composite onto the GCE surface. The uniform coverage of AgNPs within the thin film composite at GCE was obtained by field emission scanning electron microscopy (FESEM). A significantly high charge transfer resistance of the modified electrode (85.7 Ω for AgNPs-MA/GCE in 2 mM [Fe(CN)6]3-/4- at a bias of +0.235 V as compared to bare GCE (38.01 Ω) verified the optimum coating of AgNPs-MA composite at the surface of the electrode. The AgNPs-MA composite deposited GCE revealed substantial electrocatalytic activity toward TCA reduction with significantly enhanced reduction current. The novel electrode manifested a linear square wave voltammetric (SWV) response over the concentration ranges of 0.1-2 (R2 = 0.9953) and 4-100 μM (R2 = 0.9969) with a limit of detection (LOD) and limit of quantification (LOQ) of 30 nM and 92.5 nM, respectively. The modified electrode exhibited an excellent long-term stability (30 days) with the retention of >95% of initial current. The selectivity of the proposed electrode for the determination of TCA was examined in the presence of dichloroacetic acid (DCA) and monochloroacetic acid (MCA) with the retention of high recovery percentages.
Collapse
|
18
|
Khairy M, Ayoub HA, Banks CE. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 2018; 255:104-111. [DOI: 10.1016/j.foodchem.2018.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/21/2017] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
|
19
|
One-step green synthesis of colloidal gold nano particles: A potential electrocatalyst towards high sensitive electrochemical detection of methyl parathion in food samples. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Al-Qasmi N, Hameed A, Khan AN, Aslam M, Ismail IM, Soomro MT. Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S, Villalba-Rodríguez AM, Parra-Saldivar R, Iqbal HMN. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. BIOSENSORS 2018; 8:E29. [PMID: 29587374 PMCID: PMC6023016 DOI: 10.3390/bios8020029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/05/2023]
Abstract
The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio)-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.
Collapse
Affiliation(s)
- Gustavo Hernandez-Vargas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Sara Saldarriaga-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
- Exact and Natural Sciences, Institute of Biology, University of Antioquia, St. 67 No. 53-108, Medellín 050021, Colombia.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
22
|
Oliveira Monteiro T, Costa dos Santos C, Santos Damos F, de Cássia Silva Luz R. Light-emitting Diode-assisted Determination of 2-(1,1-Dimethylethyl)-1,4-Benzenediol in Cosmetic Samples Exploiting TiO2
Sensitized with Lithium 7,7′,8,8′-Tetracyanoquinodimethanide. ELECTROANAL 2018. [DOI: 10.1002/elan.201700745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thatyara Oliveira Monteiro
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| | | | - Flávio Santos Damos
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| | - Rita de Cássia Silva Luz
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| |
Collapse
|
23
|
Rahmani T, Hajian A, Afkhami A, Bagheri H. A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters. NEW J CHEM 2018. [DOI: 10.1039/c8nj00425k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present manuscript, a modified glassy carbon electrode with BSA templated Au–Ag bimetallic nanoclusters (Au–Ag@BSA/GCE) was employed for the rapid, selective and sensitive determination of methyl parathion (MP) as an enzyme-less electrochemical biosensor.
Collapse
Affiliation(s)
- Turaj Rahmani
- Faculty of Chemistry
- Shahid Beheshti University
- G. C., Evin
- Tehran 1983963113
- Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems
- TU Wien
- 1040 Vienna
- Austria
| | - Abbas Afkhami
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center
- Systems Biology and Poisonings Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
24
|
Liu X, Huo X, Liu P, Tang Y, Xu J, Liu X, Zhou Y. Assembly of MoS 2 nanosheet-TiO 2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Nanomaterials-Based Platforms for Environmental Monitoring. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
26
|
Wang Y, Sun C, Zhao X, Cui B, Zeng Z, Wang A, Liu G, Cui H. The Application of Nano-TiO 2 Photo Semiconductors in Agriculture. NANOSCALE RESEARCH LETTERS 2016; 11:529. [PMID: 27896791 PMCID: PMC5126030 DOI: 10.1186/s11671-016-1721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/04/2016] [Indexed: 05/08/2023]
Abstract
Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Guoqiang Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- Nanobiotechnology Research Center, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
28
|
A highly selective and picomolar level photoelectrochemical sensor for PCB 101 detection in environmental water samples. Biosens Bioelectron 2016; 81:503-509. [DOI: 10.1016/j.bios.2016.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/27/2022]
|
29
|
Shu J, Qiu Z, Zhou Q, Lin Y, Lu M, Tang D. Enzymatic Oxydate-Triggered Self-Illuminated Photoelectrochemical Sensing Platform for Portable Immunoassay Using Digital Multimeter. Anal Chem 2016; 88:2958-66. [DOI: 10.1021/acs.analchem.6b00262] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Shu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Zhenli Qiu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Qian Zhou
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Youxiu Lin
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Minghua Lu
- Institute
of Environmental and Analytical Science, School of Chemistry and Chemical
Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
30
|
Singh VV. Recent Advances in Electrochemical Sensors for Detecting Weapons of Mass Destruction. A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201501088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Lü Y, Sun Q, Hu B, Chen X, Miao R, Fang Y. Synthesis and sensing applications of a new fluorescent derivative of cholesterol. NEW J CHEM 2016. [DOI: 10.1039/c5nj02601f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Hg2+ quenched emission of a specially designed fluorophore could be fully turned on upon the introduction of organophosphorus pesticides.
Collapse
Affiliation(s)
- Yanchao Lü
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| | - Qingqing Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| | - Baolong Hu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| | - Xiangli Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- P. R. China
| |
Collapse
|
32
|
Bai J, Chen Y, Li P, Sun D, Tang Y. Phosphonate-functionalized three-dimensional gold nanocomposite as a sensitive interface for facile electrochemical stripping detection of trace copper(II) ions. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Jin D, Xu Q, Yu L, Mao A, Hu X. A novel sensor for the detection of acetamiprid in vegetables based on its photocatalytic degradation compound. Food Chem 2015; 194:959-65. [PMID: 26471640 DOI: 10.1016/j.foodchem.2015.08.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 11/15/2022]
Abstract
An electrochemical method for the indirect determination of acetamiprid was studied, using titanium dioxide photocatalysts coupled with a carbon paste electrode. The cyclic voltammetric results indicated that the photocatalytic degradation compound of acetamiprid had electroactivity in neutral solutions. The amount of acetamiprid was further indirectly determined by differential pulse anodic stripping voltammetric analysis as a sensitive detection technique. The experimental parameters were optimized with regard to the photocatalytic degradation time, pH of buffer solution, accumulation potential and accumulation time. Under optimal conditions, the proposed electrochemical method could detect acetamiprid concentrations ranging from 0.01 to 2.0μM, with a detection limit (3S/N) of 0.2nM. Moreover, the proposed method displays excellent selectivity, good reproducibility, and acceptable operational stability and can be successfully applied to acetamiprid determination in vegetable samples with satisfying results.
Collapse
Affiliation(s)
- Dangqin Jin
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China; College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Liangyun Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China; School of Textiles and Clothing, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Airong Mao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China; School of Textiles and Clothing, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
34
|
CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosens Bioelectron 2015; 66:565-71. [DOI: 10.1016/j.bios.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
|
35
|
Li B, Li X, Wang M, Yang Z, Yin H, Ai S. Photoelectrochemical biosensor for highly sensitive detection of microRNA based on duplex-specific nuclease-triggered signal amplification. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2747-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Ahmed MU, Hossain MM, Safavieh M, Wong YL, Abd Rahman I, Zourob M, Tamiya E. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol 2015; 36:495-505. [PMID: 25578718 DOI: 10.3109/07388551.2014.992387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Screen printing technology provides a cheap and easy means to fabricate disposable electrochemical devices in bulk quantities which are used for rapid, low-cost, on-site, real-time and recurrent industrial, pharmaceutical or environmental analyses. Recent developments in micro-fabrication and nano-characterization made it possible to screen print reproducible feature on materials including plastics, ceramics and metals. The processed features forms screen-printed disposable biochip (SPDB) upon the application of suitable bio-chemical recognition receptors following appropriate methods. Adequacy of biological and non-biological materials is the key to successful biochip development. We can further improve recognition ability of SPDBs by adopting new screen printed electrode (SPE) configurations. This review covers screen-printing theory with special emphasis on the technical impacts of SPE architectures, surface treatments, operational stability and signal sensitivity. The application of SPE in different areas has also been summarized. The article aims to highlight the state-of-the-art of SPDB at the laboratory scale to enable us in envisaging the deployment of emerging SPDB technology on the commercial scale.
Collapse
Affiliation(s)
- Minhaz Uddin Ahmed
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | | | - Mohammadali Safavieh
- c Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Yen Lu Wong
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | - Ibrahim Abd Rahman
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | - Mohammed Zourob
- d Center of Biomedical Engineering, Cranfield University , Bedfordshire , UK , and
| | - Eiichi Tamiya
- e Nanobioengineering Laboratory, Department of Applied Physics , Graduate School of Engineering, Osaka University , Osaka , Japan
| |
Collapse
|
37
|
Du X, Jiang D, Hao N, Liu Q, Qian J, Dai L, Mao H, Wang K. An ON1–OFF–ON2 electrochemiluminescence response: combining the intermolecular specific binding with a radical scavenger. Chem Commun (Camb) 2015; 51:11236-9. [DOI: 10.1039/c5cc04029a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The electrochemiluminescence (ECL) technique was combined with the “ON1–OFF–ON2” strategy based on the chemical reactions and specific binding among different small chemical compounds for the highly sensitive detection of nonelectroactive organophosphate pesticides.
Collapse
Affiliation(s)
- Xiaojiao Du
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ding Jiang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Liming Dai
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Hanping Mao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|
38
|
Abstract
This review provides a panoramic snapshot of the state of the art in the dynamically developing field of photoelectrochemical bioanalysis.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
39
|
Wang Y, Jin J, Yuan C, Zhang F, Ma L, Qin D, Shan D, Lu X. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst 2015; 140:560-6. [DOI: 10.1039/c4an00981a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs).
Collapse
Affiliation(s)
- Yonglan Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Jun Jin
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Caixia Yuan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Fan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Linlin Ma
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Dongdong Qin
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- P. R. China
| |
Collapse
|
40
|
Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens Bioelectron 2014; 64:1-5. [PMID: 25173731 DOI: 10.1016/j.bios.2014.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/27/2014] [Accepted: 08/03/2014] [Indexed: 11/21/2022]
Abstract
A sensitive photoelectrochemical (PEC) biosensor for detection of organophosphorus pesticides (OPs) using the nanocomposite of CdSe@ZnS quantum dots (QDs) and graphene deposited on the ITO coated glass electrode as a photoactive electrode is presented. The integration of CdSe@ZnS/graphene nanocomposite with biomolecules acetylcholinesterase (AChE) as a biorecognition element yields a novel biosensing platform. Under visible light irradiation, the AChE-CdSe@ZnS/graphene nanocomposite can generate a stable photocurrent and the photocurrent is found to be inversely dependent on the concentration of OPs. Under the optimal experimental conditions, the photocurrents were proportional to the logarithm of paraoxon and dichlorvos within the concentration range of 10(-12)-10(-6) M. The detection limits (LOD) of the proposed biosensor for paraoxon and dichlorvos are as low as 10(-14) M and 10(-12) M. The photoelectrochemical biosensor shows good sensitivity, reproducibility, stability, and could be successfully applied to detection of OPs in real fruit samples.
Collapse
|
41
|
Yang Z, Jian Z, Chen X, Li J, Qin P, Zhao J, Jiao X, Hu X. Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO₂ nanorods. Biosens Bioelectron 2014; 63:190-195. [PMID: 25089816 DOI: 10.1016/j.bios.2014.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/04/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
Bovine interferon gamma (BoIFN-γ) released by T cells plays very important roles in early diagnosis of Mycobacterium tuberculosis (MTB) infections and control of bovine tuberculosis. In this work, a label-free electrochemical impedance immunosensor is for the first time developed for highly sensitive determination of BoIFN-γ. Cylinder-shaped TiO2 nanorods are synthesized by a facile hydrothermal method, and show high surface area and good hydrophicility. The immunosensor is fabricated by the immobilization of BoIFN-γ monoclonal antibody on the TiO2 nanorods modified glassy carbon electrode. The prepared TiO2 and immunosensor are characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, contact angle measurement, cyclic voltammetry, and electrochemical impedance spectra. The BoIFN-γ concentration is measured through the relative increase of impedance values in corresponding specific binding of BoIFN-γ antigen and BoIFN-γ antibody. The relative increased impedance values are proportional to the logarithmic value of BoIFN-γ concentrations in a wide range of 0.0001 to 0.1 ng/mL with a low detection limit of 0.1 pg/mL. The developed BoIFN-γ immunosensor shows a 249-fold decrease in detection limit in comparison with current enzyme-linked immunosorbent assay. This study provides a new, simple, and highly sensitive approach for very potential application in early diagnosis of MTB infections and control of bovine tuberculosis.
Collapse
Affiliation(s)
- Zhanjun Yang
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Zhiqin Jian
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiang Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225002, PR China
| | - Juan Li
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Piya Qin
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jie Zhao
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xin'an Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
42
|
Affiliation(s)
- Wei-Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
43
|
Hayat A, Marty JL. Disposable screen printed electrochemical sensors: tools for environmental monitoring. SENSORS (BASEL, SWITZERLAND) 2014; 14:10432-53. [PMID: 24932865 PMCID: PMC4118360 DOI: 10.3390/s140610432] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/04/2022]
Abstract
Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from "lab-to-market" for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.
Collapse
Affiliation(s)
- Akhtar Hayat
- Images, Universite´De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France.
| | - Jean Louis Marty
- Images, Universite´De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France.
| |
Collapse
|
44
|
Affiliation(s)
- Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | | |
Collapse
|
45
|
Wang M, Yin H, Shen N, Xu Z, Sun B, Ai S. Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosens Bioelectron 2014; 53:232-7. [DOI: 10.1016/j.bios.2013.09.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/07/2023]
|
46
|
Yin H, Wang M, Zhou Y, Zhang X, Sun B, Wang G, Ai S. Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid. Biosens Bioelectron 2014; 53:175-81. [DOI: 10.1016/j.bios.2013.09.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022]
|
47
|
Ma W, Han D, Zhou M, Sun H, Wang L, Dong X, Niu L. Ultrathin g-C3N4/TiO2composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem Sci 2014. [DOI: 10.1039/c4sc00826j] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Using utg-C3N4/TiO2, a photoelectrochemical platform was designed for the sensing of global antioxidant capacity, which presented a rapid response, and anti-fouling and colour-interference-proof properties.
Collapse
Affiliation(s)
- Weiguang Ma
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Dongxue Han
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Hao Sun
- College of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Lingnan Wang
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Xiandui Dong
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory for Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| |
Collapse
|
48
|
Si Y, Zhang N, Sun Z, Li S, Zhao L, Li R, Wang H. A phosphorylation-sensitive tyrosine-tailored magnetic particle for electrochemically probing free organophosphates in blood. Analyst 2014; 139:5466-71. [DOI: 10.1039/c4an01074d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation-sensitive tyrosine was coated onto Fe3O4 particles, resulting in a “lab-on-a-particle”-based electrochemical detection protocol for probing free organophosphates in blood.
Collapse
Affiliation(s)
- Yanmei Si
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Ning Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Zongzhao Sun
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Shuai Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Liyang Zhao
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Rui Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Hua Wang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| |
Collapse
|
49
|
Liu Q, Cai J, Huan J, Dong X, Wang C, Qiu B, Wang K. A visible light photoelectrochemical biosensor coupling enzyme-inhibition for organophosphates monitoring based on a dual-functional Cd0.5Zn0.5S-reduced graphene oxide nanocomposite. Analyst 2014; 139:1121-6. [DOI: 10.1039/c3an02044d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Li H, Xue Y, Wang W. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator. Biosens Bioelectron 2013; 54:317-22. [PMID: 24291750 DOI: 10.1016/j.bios.2013.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 02/01/2023]
Abstract
An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051, PR China
| | - Yan Xue
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051, PR China; School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Wei Wang
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051, PR China; School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, PR China.
| |
Collapse
|