1
|
Chen G, Yang N, Xu L, Lu S, Chen Z, Wu F, Chen J, Zhang X. Base-Stacking-Driven Catalytic Hairpin Assembly: A Nucleic Acid Amplification Reaction Using Electrode Interface as a "Booster" for SARS-CoV-2 Point-of-Care Testing. Anal Chem 2023; 95:15595-15605. [PMID: 37820038 DOI: 10.1021/acs.analchem.3c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrochemical DNA (E-DNA) biosensors based on interface-mediated hybridization reactions are promising for point-of-care testing (POCT). However, the low efficiency of target recycle amplification and the steric hindrance at the electrode interface limit their sensing performance. Herein, we propose a base-stacking-driven catalytic hairpin assembly (BDCHA), a nucleic acid amplification reaction strategy, for POCT. The introduction of the base-stacking effect in this strategy increases the thermodynamic stability of the product, thereby effectively improving the recycling efficiency. Also, it enables the interface-mediated hybridization to maintain stability with even fewer bases in the reaction-binding domain, hence minimizing DNA secondary structure formation or intertwining at the electrode surface and ameliorating the steric hindrance limitation. The introduced base-stacking effect makes the electrode serve as a "booster" by integrating the advantages of homogeneous and heterogeneous reactions, giving BDCHA an increased reaction rate of about 20-fold, compared to the conventional catalytic hairpin assembly. As a proof of concept, our BDCHA was applied in constructing a portable E-DNA biosensor for the detection of a SARS-CoV-2 N gene sequence fragment. A simple 30 min one-pot incubation is required, and the results can be readily read on a smartphone, making it portable and user-friendly for POCT.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Ning Yang
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Shi Lu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Fang Wu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Xi Zhang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| |
Collapse
|
2
|
Zhou QY, Zhong XY, Zhao LL, Wang LJ, Zhou YL, Zhang XX. High-throughput ultra-sensitive discrimination of single nucleotide polymorphism via click chemical ligation. Analyst 2020; 145:172-176. [PMID: 31724655 DOI: 10.1039/c9an01672d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have been proven to be important biomarkers for disease diagnosis, prognosis and disease pathogenesis. Here, taking the advantages of a self-assembled oligonucleotide sandwich structure and robust chemical reactions, we have developed a simple, high-throughput and effective colorimetric analytical technique termed CuAAC-based ligation-assisted assays (CuAAC-LA) for SNP detection using a DNA-BIND 96-well plate. With the 5'-azide and 3'-alkyne groups labelled on two oligonucleotide probes, the target DNA can direct a Cu(i)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. Since the small difference in duplex stability caused by a single-nucleotide mismatch was amplified by the steric effects of these reactive groups for the ligation reaction of an unstable duplex, CuAAC-LA exhibited an ultra-sensitive discrimination ability for a mutant type target in the presence of large amounts of wild type targets. As low as 0.05% SNP could be clearly detected, which was better than most previously reported methods by various DNA ligases, indicating that a simple and rapid synthetic method i.e., the DNA template-directed click reaction held the potential to replace the ligase for SNP detection.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
3
|
Kolosova AY, Sakharov IY. Triple Amplification Strategy for the Improved Efficiency of a Microplate-Based Assay for the Chemiluminescent Detection of DNA. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1539091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Y. Kolosova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Y. Sakharov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Sun Y, Lu J. Chemiluminescence-based aptasensors for various target analytes. LUMINESCENCE 2018; 33:1298-1305. [PMID: 30378250 DOI: 10.1002/bio.3557] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023]
Abstract
Aptamers (DNA or RNA) have complex three-dimensional shapes that can bind to specific targets. Relative to antibodies, aptamers benefit from their low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity. However, the true value of aptamers lies in their simplicity by which these molecules can be engineered into sensors as bio-recognition elements in diagnostics, drug discovery and therapy, environmental monitoring and food quality testing, etc. Many different types of techniques, such as optical, electrochemical, radiochemical and piezoelectronic methods, have been applied for the design of aptamer-based methods, in which chemiluminescence (CL) detection techniques have become very popular in recent years. This review focuses on the recent advances in the development of aptamer-based CL sensors for different target detection. We highlight specific examples that showcase the use of aptamers in practical applications, and provide the challenges and opportunities in this promising field.
Collapse
Affiliation(s)
- Yue Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| |
Collapse
|
5
|
Cao C, Zhang F, Goldys EM, Gao F, Liu G. Advances in structure-switching aptasensing towards real time detection of cytokines. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Microplate Chemiluminescent Assay for DNA Detection Using Apoperoxidase-Oligonucleotide as Capture Conjugate and HRP-Streptavidin Signaling System. SENSORS 2018; 18:s18041289. [PMID: 29690600 PMCID: PMC5948693 DOI: 10.3390/s18041289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
A covalent conjugate of horseradish apoperoxidase and amino-containing oligonucleotide was synthesized for the first time. Using the obtained conjugate as a capture reagent chemiluminescent microtiter plate-based assay for detection of 35-mer fragment of hepatitis B virus (HBV) DNA (proof-of-concept analyte) was developed. To detect the target DNA, a signaling system consisted of biotinylated reporter oligonucleotide and HRP-streptavidin conjugate was used. The high sensitivity of the assay was due to the enhanced chemiluminescence reaction, where 3-(10′-phenothiazinyl)propane-1-sulfonate/N-morpholinopyridine pair was used as an enhancer. Under the optimized conditions the limit of detection and a working range of the assay were 3 pM and 6⁻100 pM, respectively. The assay sensitivity was 1.6 × 10⁵ RLU/pM of target. The coefficient of variation (CV) for determination of HBV DNA within the working range was lower than 6%.
Collapse
|
7
|
Bodulev OL, Gribas AV, Sakharov IY. Microplate chemiluminescent assay for HBV DNA detection using 3-(10'-phenothiazinyl)propionic acid/N-morpholinopyridine pair as enhancer of HRP-catalyzed chemiluminescence. Anal Biochem 2017; 543:33-36. [PMID: 29203136 DOI: 10.1016/j.ab.2017.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023]
Abstract
A sensitive sandwich assay for hepatitis B virus (HBV) DNA detection based on use of commercial CL-ELISA microplates was developed. To reveal the target the covalent conjugate of reporter oligonucleotide and horseradish peroxidase (HRP) was synthesized. An employment of enhanced chemiluminescence reaction, where 3-(10'-phenothiazinyl)propionic acid/N-morpholinopyridine pair was used as enhancer of HRP-catalyzed chemiluminescence, permitted to measure the enzyme activity of the conjugate with high sensitivity. Under the favorable conditions the limit of detection and a linear range of the assay were 3 pM and 0.07-2.0 nM, respectively. The coefficient of variation (CV) for determination of HBV DNA concentrations within the working range was lower than 4%. The obtained results demonstrated that the developed assay had high sensitivity and precision.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| | - Anastasia V Gribas
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia.
| |
Collapse
|
8
|
Wang J, Cheng W, Meng F, Yang M, Pan Y, Miao P. Hand-in-hand RNA nanowire-based aptasensor for the detection of theophylline. Biosens Bioelectron 2017; 101:153-158. [PMID: 29065340 DOI: 10.1016/j.bios.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022]
Abstract
Theophylline is a popular drug for many respiratory diseases. However, certain toxic side effects may be developed and the narrow safety range raises the demand for sensitive methods to constantly monitor theophylline levels. This study presents an electrochemical approach towards theophylline detection based on the recognition by split RNA aptamers. Target induced construction of hand-in-hand RNA nanowire on the electrode surface could further absorb silver nanoparticles (Ag NPs) as electrochemical species. When theophylline is not present, RNA probes are stable and their conformations remain unchanged. In contrast, theophylline is able to trigger the hairpin opening of RNA probe and subsequent self-assembly of RNA nanowire, which could be captured by DNA tetrahedron on the electrode interface. After further decorating Ag NPs on the nanowire, silver stripping current is measured to reveal initial theophylline concentration. The developed sensing strategy shows excellent specificity and sensitivity with the limit of detection of 50nM. Its practical utility is demonstrated by quantitative determination of theophylline levels in complex biological samples.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurology, Shanghai Tenth People's Hospital Tongji University School of Medicine, Shanghai 200072, PR China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Fanyu Meng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Mo Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Peng Miao
- Department of Neurology, Shanghai Tenth People's Hospital Tongji University School of Medicine, Shanghai 200072, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| |
Collapse
|
9
|
Salimi A, Khezrian S, Hallaj R, Vaziry A. Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal Biochem 2014; 466:89-97. [PMID: 25172129 DOI: 10.1016/j.ab.2014.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023]
Abstract
Here, we describe the fabrication of an electrochemical immunoglobulin E (IgE) aptasensor using enzyme-linked aptamer in the sandwich assay method and thionine as redox probe. In this protocol, 5'-amine-terminated IgE aptamer and thionine were covalently attached on glassy carbon electrode modified with carbon nanotubes/ionic liquid/chitosan nanocomposite. Furthermore, another IgE aptamer was modified with biotin and enzyme horseradish peroxidase (HRP), which attached to the aptamer via biotin-streptavidin interaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed at each stage of the chemical modification process to confirm the resulting surface changes. The presence of IgE induces the formation of a double aptamer sandwich structure on the electrode, and the electrocatalytic reduction current of thionine in the presence of hydrogen peroxide was measured as the sensor response. Under optimized conditions and using differential pulse voltammetry as the measuring technique, the proposed aptasensor showed a low detection limit (6 pM) and high sensitivity (1.88 μA nM(-1)). This aptasensor also exhibited good stability and high selectivity for IgE detection without an interfering effect of some other proteins such as bovine serum albumin (BSA) and lysozyme. The application of the aptasensor for IgE detection in human serum sample was also investigated. The proposed protocol is quite promising as an alternative sandwich approach for various protein assays.
Collapse
Affiliation(s)
- Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran.
| | - Somayeh Khezrian
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agricultural Science, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
10
|
Huang Y, Liu X, Shi M, Zhao S, Hu K, Chen ZF, Liang H. Ultrasensitive fluorescence polarization aptasensors based on exonuclease signal amplification and polystyrene nanoparticle amplification. Chem Asian J 2014; 9:2755-60. [PMID: 25081952 DOI: 10.1002/asia.201402563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 11/08/2022]
Abstract
Here, we combine T7 exonuclease (T7 Exo) signal amplification and polystyrene nanoparticle (PS NP) amplification to develop novel fluorescence polarization (FP) aptasensors. The binding of a target/open aptamer hairpin complex or a target/single-stranded aptamer complex to dye-labeled DNA bound to PS NPs, or the self-assembly of two aptamer subunits (one of them labeled with a dye) into a target/aptamer complex on PS NPs leads to the cyclic T7 Exo-catalyzed digestion of the dye-labeled DNA or the dye-labeled aptamer subunit. This results in a substantial decrease in the FP value for the amplified sensing process. Our newly developed aptasensors exhibit a sensitivity five orders of magnitude higher than that of traditional homogeneous aptasensors and a high specificity for the target molecules. These distinct advantages of our proposed assay protocol make it a generic platform for the design of amplified aptasensors for ultrasensitive detection of various target molecules.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004 (China).
| | | | | | | | | | | | | |
Collapse
|
11
|
Bi S, Luo B, Ye J, Wang Z. Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Biosens Bioelectron 2014; 62:208-13. [PMID: 25016251 DOI: 10.1016/j.bios.2014.06.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 12/11/2022]
Abstract
Here an exonuclease III (Exo III)-assisted cascade autocatalytic recycling amplification (Exo-CARA) strategy is proposed for label-free chemiluminescent (CL) detection of platelet-derived growth factor BB (PDGF-BB) by taking advantage of both recognition property of aptamer and cleavage function of Exo III. Functionally, this system consists of a duplex DNA (aptamer-blocker hybrid), two kinds of hairpin structures (MB1 and MB2), and Exo III. Upon recognizing and binding with PDGF-BB, aptamer folds into a close configuration, which initiates the proposed Exo-CARA reaction (Recyclings I→II→III→II). Finally, numerous "caged" G-quadruplex sequences on DNAzyme1 and DNAzyme2 release that intercalate hemin to catalyze the oxidation of luminol by H2O2 to generate an amplified CL signal, achieving excellent specificity and high sensitivity with a detection limit of 6.8×10(-13) M PDGF-BB. The proposed strategy has the advantages of simple design, isothermal conditions, homogeneous reaction without separation and washing steps, effective-cost without the need of labeling, and high amplification efficiency, which might be a universal and promising protocol for the detection of a variety of biomolecules whose aptamers undergo similar conformational changes.
Collapse
Affiliation(s)
- Sai Bi
- Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Baoyu Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jiayan Ye
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zonghua Wang
- Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Zhang R, Hu Y, Li G. Development of a Cyclic System for Chemiluminescence Detection. Anal Chem 2014; 86:6080-7. [DOI: 10.1021/ac5012359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Runkun Zhang
- School of Chemistry and Chemical
Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yufei Hu
- School of Chemistry and Chemical
Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry and Chemical
Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Li H, Zhang W, Zhou H. Electrochemical biosensor based on base-stacking-dependent DNA hybridization assay for protein detection. Anal Biochem 2014; 449:26-31. [DOI: 10.1016/j.ab.2013.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/30/2013] [Accepted: 12/15/2013] [Indexed: 02/07/2023]
|
14
|
Luo Y, Zhang X, Yao D, Wen G, Liu Q, Liang A, Jiang Z. Resonance Rayleigh scattering detection of trace PDGF based on catalysis of an aptamer-modified nanogold probe in the Fehling reaction. RSC Adv 2014. [DOI: 10.1039/c4ra02857k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
|
16
|
Li C, Wang Z, Gao T, Duan A, Li G. Fabrication of hand-in-hand nanostructure for one-step protein detection. Chem Commun (Camb) 2013; 49:3760-2. [PMID: 23535737 DOI: 10.1039/c3cc40543e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy to fabricate an aptamer-protein nanowire at an electrode surface is reported in this paper, and a simple electrochemical method to determine the concentration of a protein is proposed with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
17
|
Lönne M, Zhu G, Stahl F, Walter JG. Aptamer-modified nanoparticles as biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:121-54. [PMID: 23824145 DOI: 10.1007/10_2013_231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 5, 30167, Hannover, Germany
| | | | | | | |
Collapse
|
18
|
Nie J, Deng Y, Deng QP, Zhang DW, Zhou YL, Zhang XX. A self-assemble aptamer fragment/target complex based high-throughput colorimetric aptasensor using enzyme linked aptamer assay. Talanta 2012; 106:309-14. [PMID: 23598133 DOI: 10.1016/j.talanta.2012.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/01/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
Enzyme linked aptamer assay (ELAA) uses an aptamer as recognition element and enzyme as signal readout element for establishing different kinds of aptasensors. We reported herein a high-throughput colorimetric aptasensor based on ELAA only requiring a single aptamer sequence for cocaine detection. An anti-cocaine aptamer was cleaved into two fragments, one of which was immobilized on a DNA-BIND 96-well plate via 5'-labeled primary amine and the other one was biotin labeled. The presence of two aptamer fragments and the target molecule led to the formation of aptamer fragments/target complexes. Streptavidin-horseradish peroxidase (SA-HRP) was used to react with biotin in order to obtain quantitative signals. A linear response towards cocaine concentration in the range of 5-200 μM and a detection limit down to 2.8 μM (S/N=3) were achieved. The specificity and application in real sample were validated. Furthermore, a verification test of thrombin detection in the same strategy illustrated its feasibility for not only small molecule but also biomacromolecule. With the advantage of high-throughput, easy operation, high specificity, the colorimetric assay based on ELAA requiring a single aptamer sequence opens up a new approach for detecting different kinds of targets via specific affinity recognition among target and suitably cleaved aptamer fragments.
Collapse
Affiliation(s)
- Ji Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Biochemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|