1
|
Fang C, Awoyemi OS, Naidu R. Is paper bag plastic-free, without plastic in colourful logo area? JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134403. [PMID: 38669922 DOI: 10.1016/j.jhazmat.2024.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The concern over plastic contamination has led to bans on plastic shopping bags, often replaced by paper ones. However, logos painted or printed on paper bags may still contain plastics, as investigated herein. In some logos, for example, white pigment of titanium dioxide (TiO2) nanoparticles are bound with plastic binder onto the cellulose surface of the paper. This hybrid of plastic and nanoparticle is examined using scanning electron microscope (SEM) to characterise morphology physically, and Raman imaging to identify and visualise them chemically. Raman imaging scans the sample to separate images and identify not only plastic but also the co-formulated pigment. The scan generates a hyperspectral matrix containing hundreds to thousands of spectra, and subsequent analysis can enhance the signal-to-noise ratio. Decoding the hyperspectral matrix using chemometrics like principal component analysis (PCA) can effectively map plastic and pigment separately with increased certainty. The image can be further refined through 3-dimensional surface fitting for deconvolution, providing direct visualisation of the plastic-nanoparticle hybrid at a density of approximately 7.3 million particles per square millimetre. Overall, caution should be exercised when using paper bags, as they may not be entirely free of plastics. Raman imaging proves to be an effective method for identifying and visualising complex components, including plastics and nanoparticles. ENVIRONMENTAL IMPLICATION: The concern over plastic contamination has led to bans on plastic shopping bags, replaced by paper alternatives. However, some logos on paper bags may still contain plastics, which is investigated to confirm the presence of plastic-nanoparticle hybrid using SEM and Raman imaging. By employing decoding algorithms such as PCA to separately map plastic and pigment, and utilising 3D surface fitting to deconvolute the image, the hybrid plastic-nanoparticle is estimated at a density of approximately 7.3 million particles per square millimetre. It's important to exercise caution and not assume these items are plastic-free. This aspect of plastics may have been overlooked as another potential source of contamination.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Olalekan Simon Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Reinle-Schmitt M, Šišak Jung D, Morin M, Costa F, Casati N, Gozzo F. Exploring high-throughput synchrotron X-Ray powder diffraction for the structural analysis of pharmaceuticals. Int J Pharm X 2023; 6:100221. [PMID: 38146324 PMCID: PMC10749245 DOI: 10.1016/j.ijpx.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Synchrotron radiation offers a host of advanced properties, surpassing conventional laboratory sources with its high brightness, tunable phonon energy, photon beam coherence for advanced X-ray imaging, and a structured time profile, ideal for capturing dynamic atomic and molecular processes. However, these benefits come at the cost of operational complexity and expenses. Three decades ago, synchrotron radiation facilities, while technically open to all scientists, primarily served a limited community. Despite substantial accessibility improvements over the past two decades, synchrotron measurements still do not qualify as routine analyses. The intrinsic complexity of synchrotron science means experiments are pursued only when no alternatives suffice. In recent years, strides have been made in technology transfer offices, intermediate synchrotron-based analytical service companies, and the development of high-throughput synchrotron systems at various facilities, reshaping the perception of synchrotron science. This article investigates the practical application of synchrotron X-Ray Powder Diffraction (s-XRPD) techniques in pharmaceutical analysis. By utilizing concrete examples, we demonstrate how high-throughput systems have the potential to revolutionize s-XRPD applications in the pharmaceutical industry, rapidly generating XRPD patterns of comparable or superior quality to those obtained in state-of-the-art laboratory XRPD, all in less than 5 s. Additional cases featuring well-established pharmaceutical active ingredients (API) and excipients substantiate the concept of high throughput in pharmaceuticals, affirming data quality through structural refinements aligned with literature-derived unit cell parameters. Synchrotron data need not always be state-of-the-art to compete with lab-XRPD data. The key lies in ensuring user-friendliness, reproducibility, accessibility, cost-effectiveness, and the streamlined efforts associated with synchrotron instrumentation to remain highly competitive with their laboratory counterparts.
Collapse
Affiliation(s)
- M. Reinle-Schmitt
- Excelsus Structural Solutions (Swiss) AG, PARK INNOVAARE, 5234 Villigen, Switzerland
| | - D. Šišak Jung
- DECTRIS, Täfernweg 1, 5405 Baden-Dättwil, Switzerland
| | - M. Morin
- Excelsus Structural Solutions (Swiss) AG, PARK INNOVAARE, 5234 Villigen, Switzerland
| | - F.N. Costa
- Excelsus Structural Solutions (Swiss) AG, PARK INNOVAARE, 5234 Villigen, Switzerland
| | - N. Casati
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - F. Gozzo
- Excelsus Structural Solutions (Swiss) AG, PARK INNOVAARE, 5234 Villigen, Switzerland
| |
Collapse
|
3
|
Yasunaga T, Fukuoka T, Yamaguchi A, Ogawa N, Yamamoto H. Microtaggant Technology for Ensuring Traceability of Pharmaceutical Formulations: Potential for Anti-counterfeiting Measures, Distribution and Medication Management. YAKUGAKU ZASSHI 2022; 142:1255-1265. [DOI: 10.1248/yakushi.22-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiya Yasunaga
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | | | - Akinobu Yamaguchi
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo
| | - Noriko Ogawa
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | - Hiromitsu Yamamoto
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
4
|
Yasunaga T, Fukuoka T, Yamaguchi A, Ogawa N, Yamamoto H. Physical stability of stealth nanobeacon using surface-enhanced Raman scattering for anti-counterfeiting and monitoring medication adherence: Deposition on various coating tablets. Int J Pharm 2022; 624:121980. [DOI: 10.1016/j.ijpharm.2022.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
5
|
Zhang H, Hua D, Huang C, Samal SK, Xiong R, Sauvage F, Braeckmans K, Remaut K, De Smedt SC. Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905486. [PMID: 32009266 DOI: 10.1002/adma.201905486] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Indexed: 05/28/2023]
Abstract
The globalization of drug trade leads to the expansion of pharmaceutical counterfeiting. The immense threat of low quality drugs to millions of patients is considered to be an under-addressed global health challenge. Analytical authentication technologies are the most effective methods to identify active pharmaceutical ingredients and impurities. However, most of these analytical testing techniques are expensive and need skilled personnel. To combat counterfeiting of drugs, the package of an increasing number of drugs is being protected through advanced package labeling technologies. Though, package labeling is only effective if the drugs are not repackaged. Therefore "in-drug labeling," instead of "drug package labeling," may become powerful tools to protect drugs. This review aims to overview how advanced micro- and nanomaterials might become interesting markers for the labeling of tablets and capsules. Clearly, how well such identifiers can be integrated into "solid drugs" without compromising drug safety and efficacy remains a challenge. Also, incorporation of tags has so far only been reported for the protection of solid drug dosage forms. No doubts that in-drug labeling technologies for "liquid drugs," like injectables which contain expensive peptides, monoclonal antibodies, vaccines, dermal fillers, could help to protect them from counterfeiting as well.
Collapse
Affiliation(s)
- Heyang Zhang
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Dawei Hua
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, 751023, Bhubaneswar, India
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Thakral NK, Zanon RL, Kelly RC, Thakral S. Applications of Powder X-Ray Diffraction in Small Molecule Pharmaceuticals: Achievements and Aspirations. J Pharm Sci 2018; 107:2969-2982. [PMID: 30145209 DOI: 10.1016/j.xphs.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Since the discovery of X-ray diffraction and its potential to elucidate crystal symmetry, powder X-ray diffraction has found diverse applications in the field of pharmaceutical sciences. This review summarizes significant achievements of the technique during various stages of dosage form development. Improved understanding of the principle involved and development of automated hardware and reliable software have led to increased instrumental sensitivity and improved data analysis. These advances continue to expand the applications of powder X-ray diffraction to emerging research fields such as amorphous systems, mechanistic understanding of phase transformations, and "Quality by Design" in formulation development.
Collapse
Affiliation(s)
| | - Roger L Zanon
- Upsher-Smith Laboratories LLC, Maple Grove, Minnesota 55369
| | | | - Seema Thakral
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
7
|
Zou WB, Yin LH, Jin SH. Advances in rapid drug detection technology. J Pharm Biomed Anal 2018; 147:81-88. [DOI: 10.1016/j.jpba.2017.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022]
|
8
|
Estimation of Drug Particle Size in Intact Tablets by 2-Dimensional X-Ray Diffractometry. J Pharm Sci 2018; 107:231-238. [DOI: 10.1016/j.xphs.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
|