1
|
Wang Q, Fang F, Sun L. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics. Anal Bioanal Chem 2023; 415:4521-4531. [PMID: 37017721 PMCID: PMC10540245 DOI: 10.1007/s00216-023-04677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphorylation is a vital and common post-translational modification (PTM) in cells, modulating various biological processes and diseases. Comprehensive top-down proteomics of phosphorylated proteoforms (phosphoproteoforms) in cells and tissues is essential for a better understanding of the roles of protein phosphorylation in fundamental biological processes and diseases. Mass spectrometry (MS)-based top-down proteomics of phosphoproteoforms remains challenging due to their relatively low abundance. Herein, we investigated magnetic nanoparticle-based immobilized metal affinity chromatography (IMAC, Ti4+, and Fe3+) for selective enrichment of phosphoproteoforms for MS-based top-down proteomics. The IMAC method achieved reproducible and highly efficient enrichment of phosphoproteoforms from simple and complex protein mixtures. It outperformed one commercial phosphoprotein enrichment kit regarding the capture efficiency and recovery of phosphoproteins. Reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) analyses of yeast cell lysates after IMAC (Ti4+ or Fe3+) enrichment produced roughly 100% more phosphoproteoform identifications compared to without IMAC enrichment. Importantly, the phosphoproteoforms identified after Ti4+-IMAC or Fe3+-IMAC enrichment correspond to proteins with much lower overall abundance compared to that identified without the IMAC treatment. We also revealed that Ti4+-IMAC and Fe3+-IMAC could enrich different pools of phosphoproteoforms from complex proteomes and the combination of those two methods will be useful for further improving the phosphoproteoform coverage from complex samples. The results clearly demonstrate the value of our magnetic nanoparticle-based Ti4+-IMAC and Fe3+-IMAC for advancing top-down MS characterization of phosphoproteoforms in complex biological systems.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Peng C, Li S, Wang Y, Ge L, Zhang S, Cai Q, Zhen D, Chen P. Preparation of Er-Nd-TiO2 nanocomposite for the highly selective enrichment of phosphotyrosine peptides. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Garcia-Garcia T, Douché T, Giai Gianetto Q, Poncet S, El Omrani N, Smits WK, Cuenot E, Matondo M, Martin-Verstraete I. In-Depth Characterization of the Clostridioides difficile Phosphoproteome to Identify Ser/Thr Kinase Substrates. Mol Cell Proteomics 2022; 21:100428. [PMID: 36252736 PMCID: PMC9674922 DOI: 10.1016/j.mcpro.2022.100428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ∆stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase-substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Transito Garcia-Garcia
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,Hub de bioinformatique et biostatistiques, Departement de Biologie computationelle, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sandrine Poncet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nesrine El Omrani
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elodie Cuenot
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France,Institut Universitaire de France, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| |
Collapse
|
4
|
Ren Y, Zhou J, Ali MM, Zhang X, Hu L. Isoform-specific recognition of phosphopeptides by molecular imprinting nanoparticles with double-binding mode. Anal Chim Acta 2022; 1219:340034. [PMID: 35715134 DOI: 10.1016/j.aca.2022.340034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Phosphorylation is one of the most important post-translational modifications of proteins, but due to the low abundance of phosphopeptides, enrichment is an essential step before mass spectrometric analysis. Although there are a number of enrichment methods developed targeting different forms of proteins phosphorylations, there are few reports on specific recognition and capture of single phosphopeptide. Herein, based on the advantages of dual affinity of TiO2 and urea to a phosphate group and molecular imprinting towards the peptide sequence, the precise recognition of intact phosphorylated peptides was successfully achieved. The same peptide sequence with different phosphorylation forms (c.a. Ser, Thr and Tyr) were used as templates for proof-of-principle study, and the imprinted particles were successfully synthesized, characterized, and have the capacity to specifically recognize the targeted unique phosphorylation excluding even its isoforms. In addition, the produced molecularly imprinted nanoparticles have numerous important advantages, including strong affinity, high specificity toward single phosphopeptides, tolerance to interferences, fast binding kinetics, substantial binding capacity, excellent stability and reusability, making them an ideal sorbent for specific enrichment of unique phosphopeptides. Finally, different phosphorylation forms were specifically enriched from both standard peptides' mixture and casein/milk digests.
Collapse
Affiliation(s)
- Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Juntao Zhou
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xue Zhang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Yang X, Zhang X, Li Y, Li X, Liang X, Tian Y, Jiang L. TiO 2 with Confined Water Boosts Ultrahigh Selective Enrichment of Phosphorylated Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19067-19075. [PMID: 35420410 DOI: 10.1021/acsami.2c03158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the selective enrichment of phosphorylated proteins (PPs) from biological samples, the non-phosphorylated proteins (NPPs) adhered onto enrichment adsorbents due to the hydrophobic interaction, resulting in poor selectivity and low recovery of target PPs. Herein, superhydrophilic TiO2-coated porous SiO2 microspheres are prepared and boost remarkable selectivity toward standard PP spiked with 2000 mass-fold NPP interference. The outstanding performance of the superhydrophilic microspheres is attributed to the coordination interaction between TiO2 and PPs, and the confined water layer generated from superhydrophilicity avoids the irreversible adsorption of NPPs by keeping NPP inner hydrophobic regions in a compact structure, which is verified by single molecule force spectroscopy, circular dichroism, and quartz crystal microbalance. This strategy for enrichment is expected to solve the challenge in proteomics and sheds light on the interactions between biomolecules and superwettability.
Collapse
Affiliation(s)
- Xiaotao Yang
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Yulong Li
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins. Anal Chim Acta 2022; 1195:339430. [DOI: 10.1016/j.aca.2022.339430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/05/2021] [Accepted: 01/01/2022] [Indexed: 11/23/2022]
|
7
|
Liu Y, Zhao Q, Xu F, Wang K, Zhao Y, Chen H, He W, Wang W, Zhang J, Zhang J. Dysregulation of phosphoproteins in hepatocellular carcinoma revealed via quantitative analysis of the phosphoproteome. Oncol Lett 2020; 21:117. [PMID: 33408763 PMCID: PMC7779902 DOI: 10.3892/ol.2020.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed types of cancer in the world. Post-translational modifications, such as phosphorylation, serve an essential role during cancer development. To identify aberrant phosphorylation in HCC, a multiplexed tandem mass tag approach combined with liquid chromatography tandem-mass spectrometry was used in the present study. The results are available via ProteomeXchange (identifier no. PXD013934). A total of 4,780 phosphorylated sites distributed on 2,209 proteins were identified and quantified, including 74 and 459 phosphorylated upregulated and downregulated proteins, respectively. Bioinformatic analysis revealed differences and similarities between HCC and normal tissues. Gene Ontology enrichment analysis provided information on biological processes, molecular functions, cellular components and sub-cellular localizations. Protein domains enrichment of differentially expressed proteins was analyzed using InterPro database. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed pathways that may potentially be involved in HCC. Integrative analysis of the functions, pathways, motifs of phosphorylated peptides, protein domains and protein interactions established a profile of the phosphoproteome of HCC, which may contribute to identify novel biomarkers for the diagnosis and prognosis of HCC, as well as novel therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Yixian Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qianwei Zhao
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Xu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kaijuan Wang
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ying Zhao
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiping Chen
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei He
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weidong Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jintao Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
8
|
Zhang W, Liu X, Li P, Zhang W, Wang H, Tang B. In Situ Fluorescence Imaging of the Levels of Glycosylation and Phosphorylation by a MOF-Based Nanoprobe in Depressed Mice. Anal Chem 2020; 92:3716-3721. [PMID: 32028759 DOI: 10.1021/acs.analchem.9b04878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elucidating the relationship between glycosylation and phosphorylation of protein post-translational modifications is of great significance for understanding most diseases. Mass spectrometry has been widely used in research of protein phosphorylation and glycosylation. However, to realize in situ and dynamic analysis of the levels of phosphorylation and glycosylation in cells and in vivo, mass spectrometry still has certain difficulties. Herein, a nano-MOF-based fluorescent probe with Zr(IV) and boric acid as the active center was designed and prepared. Fluorescence detection and imaging of phosphate is achieved through the specific interaction of Zr(IV) and phosphate. With aim to achieve specific recognition of glycosylation sites, the boronic acid group was modified in the MOF structure, and the fluorescence of the MOFs was regulated by the alizarin red. Thus, the glycosylation sites were recognized by the competition between alizarin red and glycosyl. Finally, the nanoprobe was successfully applied for in situ fluorescence imaging of the levels of glycosylation and phosphorylation in depressed mice.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaolei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
9
|
Yu Y, Qi Y, Jin Y. Milk digestion peptidomics: Tracking caseinophosphopeptides in simulated gastrointestinal digestion. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Zhu B, Zhou Q, Zhen D, Wang Y, Cai Q, Chen P. Preparation of TiO2/Bi/Fe/Zr nanocomposite for the highly selective enrichment of phosphopeptides. Talanta 2019; 194:870-875. [DOI: 10.1016/j.talanta.2018.10.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
11
|
Chen D, Ludwig KR, Krokhin OV, Spicer V, Yang Z, Shen X, Hummon AB, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line. Anal Chem 2019; 91:2201-2208. [PMID: 30624053 DOI: 10.1021/acs.analchem.8b04770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoproteomics requires better separation of phosphopeptides to boost the coverage of the phosphoproteome. We argue that an alternative separation method that produces orthogonal phosphopeptide separation to the widely used LC needs to be considered. Capillary zone electrophoresis (CZE) is one important alternative because CZE and LC are orthogonal for phosphopeptide separation and because the migration time of peptides in CZE can be accurately predicted. In this work, we coupled strong cation exchange (SCX)-reversed-phase LC (RPLC) to CZE-MS/MS for large-scale phosphoproteomics of the colon carcinoma HCT116 cell line. The CZE-MS/MS-based platform identified 11,555 phosphopeptides. The phosphopeptide data set is at least 100% larger than that from previous CZE-MS/MS studies and will be a valuable resource for building a model for predicting the migration time of phosphopeptides in CZE. Phosphopeptides migrate significantly slower than corresponding unphosphopeptides under acidic conditions of CZE separations and in a normal polarity. According to our modeling data, phosphorylation decreases peptide's charge roughly by one charge unit, resulting in dramatic decrease in electrophoretic mobility. Preliminary investigations demonstrate that electrophoretic mobility of phosphopeptides containing one phosphoryl group can be predicted with the same accuracy as for nonmodified peptides ( R2 ≈ 0.99). The CZE-MS/MS and LC-MS/MS were complementary in large-scale phosphopeptide identifications and produced different phosphosite motifs from the HCT116 cell line. The data highlight the value of CZE-MS/MS for phosphoproteomics as a complementary separation approach for not only improving the phosphoproteome coverage but also providing more insight into the phosphosite motifs.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | | | | | - Zhichang Yang
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43201 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
12
|
Preparation of titanium ion functionalized polydopamine coated ferroferric oxide core-shell magnetic particles for selective extraction of nucleotides from Cordyceps and Lentinus edodes. J Chromatogr A 2019; 1591:24-32. [PMID: 30660442 DOI: 10.1016/j.chroma.2019.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/31/2023]
Abstract
In this study, a titanium ion (Ti4+) functionalized polydopamine coated ferroferric oxide (Fe3O4@PDA@Ti4+) core-shell magnetic particle was prepared for the selective extraction of nucleotides. Firstly, different metal ions including Ti4+, Zr4+, Fe3+, Al3+, Cu2+, Zn2+, Ni2+ and Mg2+ were respectively immobilized onto Fe3O4@PDA particles and their extraction efficiency for five nucleotides [cytidine-5'-monophosphate (CMP), uridine-5'-monophosphate (UMP), guanosine-5'-monophosphate (GMP), thymidine-5'-monophosphate (TMP) and adenosine-5'-monophosphate (AMP)] were compared. Among these prepared materials, Fe3O4@PDA@Ti4+, which exhibited the highest extraction efficiency for nucleotides, was further characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. After being optimized of the extraction parameters including adsorbent amounts, extraction time, extraction temperature, type and concentration of the eluent, the prepared Fe3O4@PDA@Ti4+ magnetic particles were successfully applied for the selective extraction and determination of CMP, UMP, GMP, TMP and AMP in Cordyceps and Lentinus edodes. Good linearity (varying from 0.063 to 19.000 μg/mL, R2 > 0.999) and low limit of detection (LODs) (ranging between 0.0047 and 0.0141 μg/mL) for target analytes were achieved. These results demonstrated that the synthesized material in this study had potential for selective extraction of phosphorylated small molecular compounds in complicated matrix.
Collapse
|
13
|
GO-META-TiO2 composite monolithic columns for in-tube solid-phase microextraction of phosphopeptides. Talanta 2019; 192:360-367. [DOI: 10.1016/j.talanta.2018.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 02/09/2023]
|
14
|
Zhen D, Gao C, Zhu B, Zhou Q, Li C, Chen P, Cai Q. Preparation of Bi0.15Fe0.15TiO2 Nanocomposites for the Highly Selective Enrichment of Phosphopeptides. Anal Chem 2018; 90:12414-12421. [DOI: 10.1021/acs.analchem.8b00606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deshuai Zhen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China
| | - Chan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baode Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, P. R. China
| | - Qian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, P. R. China
| | - Chenyi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ping Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, P. R. China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
15
|
Hanfa Zou, 1961–2016. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Facile fabrication of hydrophilic PAA-Ti/TiO2 nanocomposite for selective enrichment and detection of phosphopeptides from complex biological samples. Anal Chim Acta 2017; 949:67-75. [DOI: 10.1016/j.aca.2016.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023]
|
17
|
Zhu GT, He XM, He S, Chen X, Zhu SK, Feng YQ. Synthesis of Polyethylenimine Functionalized Mesoporous Silica for In-Pipet-Tip Phosphopeptide Enrichment. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32182-32188. [PMID: 27933851 DOI: 10.1021/acsami.6b10948] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthesis of functionalized mesoporous silica material with large particle size remains a chanllenge. In this work, polyethylenimine (PEI) functionalized mesoporous silica (PFMS) with particle size as large as 100 μm was successfully synthesized by a facile method. In the synthesis process, PEI served as four roles simultaneously, including functionalized reagent, alkaline catalyst, template for particle formation, and pore-structure-directing agent. The surface areas of the products were higher than 260 m2/g. Benefiting from the large particle size and high surface area, PFMS was packed in a pipet tip to fabricate a convenient and miniaturized solid phase extraction apparatus for sample preparation. Additionally, based on the extremely abundant basic sites in the organic units of PFMS, the in-pipet-tip system was used as an anion-exchanger for phosphopeptide enrichment. The specificity of the developed method was investigated by capture of phosphopeptides from tryptic digests of standard protein mixtures, tryptic digests of nonfat milk, and human serum. Furthermore, the method was utilized to analyze phosphopeptides in tryptic digests of rat brain lysate, and 2251 unique phosphopeptides were successfully detected.
Collapse
Affiliation(s)
- Gang-Tian Zhu
- Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences , Wuhan 430074, P.R. China
| | - Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | - Sheng He
- Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences , Wuhan 430074, P.R. China
| | - Xi Chen
- Wuhan Institute of Biotechnology , Wuhan 430072, P.R. China
| | - Shu-Kui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
18
|
Angeleri M, Muth-Pawlak D, Aro EM, Battchikova N. Study of O-Phosphorylation Sites in Proteins Involved in Photosynthesis-Related Processes in Synechocystis sp. Strain PCC 6803: Application of the SRM Approach. J Proteome Res 2016; 15:4638-4652. [DOI: 10.1021/acs.jproteome.6b00732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martina Angeleri
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Dorota Muth-Pawlak
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
19
|
Yang H, Deng C, Zhang X. Preparation of Ti4+-immobilized modified silica capillary trapping column for on-line selective enrichment of phosphopeptides. Talanta 2016; 153:285-94. [DOI: 10.1016/j.talanta.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 01/25/2023]
|
20
|
Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A 2016; 1437:137-144. [DOI: 10.1016/j.chroma.2016.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
|
21
|
Lai JH, Yang JT, Chern J, Chen TL, Wu WL, Liao JH, Tsai SF, Liang SY, Chou CC, Wu SH. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17. Mol Cell Proteomics 2015; 15:12-25. [PMID: 26499836 DOI: 10.1074/mcp.m115.051052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies.
Collapse
Affiliation(s)
- Juo-Hsin Lai
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jhih-Tian Yang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ¶Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
| | - Jeffy Chern
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Te-Li Chen
- ‡‡Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan; §§Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; ¶¶Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Wan-Ling Wu
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jiahn-Haur Liao
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Shih-Feng Tsai
- ‖‖Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Suh-Yuen Liang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsiung Wu
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
22
|
Abstract
Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.
Collapse
Affiliation(s)
- Ayse Nur Polat
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey.
| | | |
Collapse
|
23
|
Ludwig KR, Sun L, Zhu G, Dovichi NJ, Hummon AB. Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation. Anal Chem 2015; 87:9532-7. [PMID: 26399161 PMCID: PMC4605816 DOI: 10.1021/acs.analchem.5b02457] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultraperformance liquid chromatography (UPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) is typically employed for phosphoproteome analysis. Alternatively, capillary zone electrophoresis (CZE)-ESI-MS/MS has great potential for phosphoproteome analysis due to the significantly different migration times of phosphorylated and unphosphorylated forms of peptides. In this work, we systematically compared UPLC-MS/MS and CZE-MS/MS for phosphorylated peptide identifications (IDs) using an enriched phosphoproteome from the MCF-10A cell line. When the sample loading amount of UPLC was 10 times higher than that of CZE (2 μg vs 200 ng), UPLC generated more phosphorylated peptide IDs than CZE (3313 vs 1783). However, when the same sample loading amounts were used for CZE and UPLC (2-200 ng), CZE-MS/MS consistently and significantly outperformed UPLC-MS/MS in terms of phosphorylated peptide and total peptide IDs. This superior performance is most likely due to the higher peptide intensity generated by CZE-MS/MS. More importantly, compared with UPLC data from a 2 μg sample, CZE-MS/MS can identify over 500 unique phosphorylated peptides from a 200 ng sample, suggesting that CZE and UPLC are complementary for phosphorylated peptide IDs. With further improved loading capacity via a dynamic pH junction method, 2313 phosphorylated peptides were identified with single-shot CZE-MS/MS in a 100 min analysis. This number of phosphorylated peptide IDs is over 1 order of magnitude higher than the number of phosphorylated peptide IDs previously reported by single-shot CZE-MS/MS.
Collapse
Affiliation(s)
- Katelyn R. Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
24
|
LIN L, LUO SS, WANG LJ, YANG J, SHEN HN, TIAN RJ. Progress and Application of LC-MS Technologies for Characterizing Protein Post Translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60866-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Yue X, Schunter A, Hummon AB. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal Chem 2015; 87:8837-44. [PMID: 26237447 PMCID: PMC4766865 DOI: 10.1021/acs.analchem.5b01833] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment.
Collapse
Affiliation(s)
- Xiaoshan Yue
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Alissa Schunter
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Li XS, Chen X, Yuan BF, Feng YQ. Phosphonate-modified metal oxides for the highly selective enrichment of phosphopeptides. RSC Adv 2015. [DOI: 10.1039/c4ra13878c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphonate-modified metal oxides display higher selectivity than unmodified ones for the effective enrichment of phosphopeptides.
Collapse
Affiliation(s)
- Xiao-Shui Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Xi Chen
- Wuhan Institute of Biotechnology
- Wuhan 430072
- China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
27
|
Hu Y, Shan CX, Wang J, Zhu JM, Gu CQ, Ni WT, Zhu D, Zhang AH. Fabrication of functionalized SiO2/TiO2 nanocomposites via amidation for the fast and selective enrichment of phosphopeptides. NEW J CHEM 2015. [DOI: 10.1039/c5nj01091h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An effective system was developed for the fast and highly selective enrichment of phosphopeptides using functionalized SiO2/TiO2 nanocomposites as sorbents.
Collapse
Affiliation(s)
- Yue Hu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Chen Xiao Shan
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Jun Wang
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Jun-Ming Zhu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Chao-Qian Gu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Wen-Ting Ni
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Dong Zhu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Ai-Hua Zhang
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| |
Collapse
|
28
|
Perovskite for the highly selective enrichment of phosphopeptides. J Chromatogr A 2015; 1376:143-8. [DOI: 10.1016/j.chroma.2014.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 11/17/2022]
|
29
|
Li J, Liu X, Chu H, Fu X, Li T, Hu L, Xing S, Li G, Gu J, Zhao ZJ. Specific dephosphorylation of Janus Kinase 2 by protein tyrosine phosphatases. Proteomics 2014; 15:68-76. [PMID: 25354842 DOI: 10.1002/pmic.201400146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 01/06/2023]
Abstract
Many protein kinases are activated through phosphorylation of an activation loop thereby turning on downstream signaling pathways. Activation of JAK2, a nonreceptor tyrosine kinase with an important role in growth factor and cytokine signaling, requires phosphorylation of the 1007 and 1008 tyrosyl residues. Dephosphorylation of these two sites by phosphatases presumably inactivates the enzyme, but the underlying mechanism is not known. In this study, we employed MALDI-TOF/TOF and triple quadrupole mass spectrometers to analyze qualitatively and quantitatively the dephosphorylation process by using synthetic peptides derived from the tandem autophosphorylation sites (Y1007 and Y1008) of human JAK2. We found that tyrosine phosphatases catalyzed the dephosphorylation reaction sequentially, but different enzymes exhibited different selectivity. Protein tyrosine phosphatase 1B caused rapid dephosphorylation of Y1008 followed by Y1007, while SHP1 and SHP2 selectively dephosphorylated Y1008 only, and yet HePTP randomly removed a single phosphate from either Y1007 or Y1008, leaving behind mono-phosphorylated peptides. The specificity of dephosphorylation was further confirmed by molecular modeling. The data reveal multiple modes of JAK2 regulation by tyrosine phosphatases, reflecting a complex, and intricate interplay between protein phosphorylation and dephosphorylation.
Collapse
Affiliation(s)
- Jianzhuo Li
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang J, Wang F, Ye M, Zou H. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. J Chromatogr A 2014; 1372C:1-17. [DOI: 10.1016/j.chroma.2014.10.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022]
|
31
|
Wu Y, Wang F, Liu Z, Qin H, Song C, Huang J, Bian Y, Wei X, Dong J, Zou H. Five-plex isotope dimethyl labeling for quantitative proteomics. Chem Commun (Camb) 2014; 50:1708-10. [PMID: 24394284 DOI: 10.1039/c3cc47998f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stable isotope dimethyl labeling, a widely used method for quantitative proteomics, was extended to five channels for the first time. Comprehensive proteome and phosphoproteome quantification validated the high quantification accuracy and throughput of this five-plex method.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang J, Qin H, Dong J, Song C, Bian Y, Dong M, Cheng K, Wang F, Sun D, Wang L, Ye M, Zou H. In situ sample processing approach (iSPA) for comprehensive quantitative phosphoproteome analysis. J Proteome Res 2014; 13:3896-904. [PMID: 25072903 DOI: 10.1021/pr500454g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current sample preparation protocols for quantitative phosphoproteome analysis are tedious and time-consuming. Here, a facile in situ sample processing approach (iSPA) is developed by using macroporous Ti(IV)-IMAC microspheres as the preparation "beds", where all sample preparation procedures including the enrichment of phosphoproteins, tryptic digestion of proteins, enrichment, and isotope labeling of phosphopeptides are performed in situ sequentially. As a result of the in situ processing design and the seamless procedures, extra steps for desalting and buffer exchanging, which are always required in conventional approaches, are avoided, and the sample loss and contamination could be greatly reduced. Thus, better sensitivity and accuracy for the quantitative phosphoproteome analysis were obtained. This strategy was further applied to differential phosphoproteome analysis of human liver tissues with or without hepatocellular carcinoma (HCC). In total, 8548 phosphorylation sites were confidently quantified from three replicate analyses of 0.5 mg of human liver protein extracts.
Collapse
Affiliation(s)
- Junfeng Huang
- CAS Key Lab of Separation Sciences for Analytical Chemistry National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu B, Wang F, Song C, Sun Z, Cheng K, Tan Y, Wang H, Zou H. Large-scale proteome quantification of hepatocellular carcinoma tissues by a three-dimensional liquid chromatography strategy integrated with sample preparation. J Proteome Res 2014; 13:3645-54. [PMID: 24972180 DOI: 10.1021/pr500200s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most fatal cancers worldwide. In this study, a reversed-phase-strong cation exchange-reversed-phase three-dimensional liquid chromatography strategy was established and coupled with mass spectrometry to investigate the differential proteome expression of HCC and normal liver tissues. In total, 2759 proteins were reliably quantified, of which, 648 proteins were dysregulated more than 3-fold in HCC liver tissues. Some important proteins that relate to HCC pathology were significantly dysregulated, such as NAT2 and AKR1B10. Furthermore, 2307 phosphorylation sites from 1264 phosphoproteins were obtained in our previous phosphoproteome quantification, and the nonphosphorylated counterparts of 445 phosphoproteins with 983 phosphorylation sites were reliably quantified in this work. It was observed that 337 (34%) phosphorylation sites exhibit significantly different expression trends from that of their corresponding nonphosphoproteins. Some novel phosphorylation sites with important biological functions in the progression of HCC were reliably quantified, such as the significant downregulation of pT185 for ERK2 and pY204 for ERK1.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Song C, Wang F, Cheng K, Wei X, Bian Y, Wang K, Tan Y, Wang H, Ye M, Zou H. Large-Scale Quantification of Single Amino-Acid Variations by a Variation-Associated Database Search Strategy. J Proteome Res 2013; 13:241-8. [DOI: 10.1021/pr400544j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chunxia Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- SINOPEC Research Institute of Petroleum Processing, 18 Xueyuan Road, Beijing 100083, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaoluan Wei
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yexiong Tan
- The
International Cooperation Laboratory on Signal Transduction of Eastern
Hepatobiliary Surgery Institute, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Hongyang Wang
- The
International Cooperation Laboratory on Signal Transduction of Eastern
Hepatobiliary Surgery Institute, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
35
|
Li XS, Pan YN, Zhao Y, Yuan BF, Guo L, Feng YQ. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. J Chromatogr A 2013; 1315:61-9. [PMID: 24090595 DOI: 10.1016/j.chroma.2013.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023]
Abstract
As one of the most important post-translational modifications, reversible phosphorylation of protein plays crucial roles in a large number of biological processes. Moreover, endogenous phosphopeptides are also associated with certain human diseases. An efficient enrichment and separation method is the premise for successful identification and quantification of phosphopeptides. In this work, titanium grafted magnetic mesoporous silica (Fe3O4@Ti-mSiO2) was developed and applied for the enrichment of endogenous phosphopeptides. Fe3O4@Ti-mSiO2 particles were prepared by grafting titanocene dichloride on the inner walls of magnetic mesoporous silica and then being calcined to remove cyclopentadienyl ligand. The physicochemical properties of the prepared materials were characterized by energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption-desorption analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). For selective enrichment of phosphopeptides, the prepared Fe3O4@Ti-mSiO2 particles were applied for tryptic digests of β-casein, mixtures of β-casein and bovine serum albumin (BSA), and low-fat milk. Finally, Fe3O4@Ti-mSiO2 was successfully applied for the enrichment of endogenous phosphopeptides from human serum.
Collapse
Affiliation(s)
- Xiao-Shui Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
36
|
Lu J, Deng C, Zhang X, Yang P. Synthesis of Fe3O4/graphene/TiO2 composites for the highly selective enrichment of phosphopeptides from biological samples. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7330-7334. [PMID: 23883739 DOI: 10.1021/am401662b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, Fe3O4/graphene/TiO2 composites with a large surface area were designed and synthesized for the selective extraction and enrichment of phosphopeptides from biological samples. First, magnetic graphene was prepared according to our previous method. Next, we made the Fe3O4/graphene/TiO2 composite precursor using tetrabutyl titanate. Fe3O4/graphene/TiO2 composites were obtained after solvothermal and calcination treatments. We used standard protein-digestion solutions and human liver samples to test the enrichment ability of the obtained Fe3O4/graphene/TiO2 composites. The experimental results demonstrate that Fe3O4/graphene/TiO2 composites have a good phosphopeptide enrichment ability.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry & Institutes of Biomedical Science, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
37
|
Kalli A, Smith GT, Sweredoski MJ, Hess S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 2013; 12:3071-86. [PMID: 23642296 DOI: 10.1021/pr3011588] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass-spectrometry-based proteomics has evolved as the preferred method for the analysis of complex proteomes. Undoubtedly, recent advances in mass spectrometry instrumentation have greatly enhanced proteomic analysis. A popular instrument platform in proteomics research is the LTQ-Orbitrap mass analyzer. In this tutorial, we discuss the significance of evaluating and optimizing mass spectrometric settings on the LTQ-Orbitrap during CID data-dependent acquisition (DDA) mode to improve protein and peptide identification rates. We focus on those MS and MS/MS parameters that have been systematically examined and evaluated by several researchers and are commonly used during DDA. More specifically, we discuss the effect of mass resolving power, preview mode for FTMS scan, monoisotopic precursor selection, signal threshold for triggering MS/MS events, number of microscans per MS/MS scan, number of MS/MS events, automatic gain control target value (ion population) for MS and MS/MS, maximum ion injection time for MS/MS, rapid and normal scan rate, and prediction of ion injection time. We furthermore present data from the latest generation LTQ-Orbitrap system, the Orbitrap Elite, along with recommended MS and MS/MS parameters. The Orbitrap Elite outperforms the Orbitrap Classic in terms of scan speed, sensitivity, dynamic range, and resolving power and results in higher identification rates. Several of the optimized MS parameters determined on the LTQ-Orbitrap Classic and XL were easily transferable to the Orbitrap Elite, whereas others needed to be reevaluated. Finally, the Q Exactive and HCD are briefly discussed, as well as sample preparation, LC-optimization, and bioinformatics analysis. We hope this tutorial will serve as guidance for researchers new to the field of proteomics and assist in achieving optimal results.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
38
|
Messana I, Cabras T, Iavarone F, Vincenzoni F, Urbani A, Castagnola M. Unraveling the different proteomic platforms. J Sep Sci 2012; 36:128-39. [PMID: 23212829 DOI: 10.1002/jssc.201200830] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 01/06/2023]
Abstract
This review is addressed to scientists working outside the field of proteomics and wishes to shed a light on the possibility offered by the latest proteomics strategies. Bottom-up and top-down platforms are critically examined outlining advantages and limitations of their application to qualitative and quantitative investigations. Discovery, directed and targeted proteomics as different options for the management of the MS instrument are defined emphasizing their integration in the experimental plan to accomplish meaningful results. The issue of data validation is analyzed and discussed. The most common qualitative proteomic platforms are described, with a particular emphasis on enrichment methods to elucidate PTMs codes (i.e. ubiquitin and histone codes). Label-free and labeled methods for relative and absolute quantification are critically compared. The possible contribution of proteomics platforms to the transition from structural proteomics to functional proteomics (study of the functional connections between different proteins) and to the challenging system biology (integrated study of all the functional cellular functions) is also briefly discussed.
Collapse
Affiliation(s)
- Irene Messana
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Pan L, Iliuk A, Yu S, Geahlen RL, Tao WA. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers. J Am Chem Soc 2012; 134:18201-4. [PMID: 23088311 DOI: 10.1021/ja308453m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events.
Collapse
Affiliation(s)
- Li Pan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Krásný L, Pompach P, Strohalm M, Obsilova V, Strnadová M, Novák P, Volný M. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1294-302. [PMID: 23019160 DOI: 10.1002/jms.3081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.
Collapse
Affiliation(s)
- Lukáš Krásný
- Institute of Microbiology of the ASCR, vvi, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Fully automated isotopic dimethyl labeling and phosphopeptide enrichment using a microfluidic HPLC phosphochip. Anal Bioanal Chem 2012; 404:2507-12. [DOI: 10.1007/s00216-012-6395-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 12/29/2022]
|
42
|
Wang ST, Wang MY, Su X, Yuan BF, Feng YQ. Facile Preparation of SiO2/TiO2 Composite Monolithic Capillary Column and Its Application in Enrichment of Phosphopeptides. Anal Chem 2012; 84:7763-70. [DOI: 10.1021/ac301258q] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shao-Ting Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Meng-Ya Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Su
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
43
|
Tang LAL, Wang J, Lim TK, Bi X, Lee WC, Lin Q, Chang YT, Lim CT, Loh KP. High-performance graphene-titania platform for detection of phosphopeptides in cancer cells. Anal Chem 2012; 84:6693-700. [PMID: 22839352 DOI: 10.1021/ac301119r] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphopeptides play a crucial role in many biological processes and constitute some of the most powerful biomarkers in disease detection. However they are often present in very low concentration, which makes their detection highly challenging. Here, we demonstrate the use of a solution-dispersible graphene-titania platform for the selective extraction of phosphopeptides from peptide mixtures. This is followed by direct analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The efficient charge and energy exchange between graphene and TiO(2) during laser irradiation in SELDI-TOF MS promotes the soft ionization of analytes and affords a detection limit in the attomole range, which is 10(2)-10(5) more sensitive than conventional platforms. The graphene-titania platform can also be used for detecting phosphopeptides in cancer cells (HeLa cells), where it shows high specificity (94%). An expanded library of 967 unique phosphopeptides is detected using significantly reduced loading of extraction matrixes compared to conventional TiO(2) bead-based assays.
Collapse
Affiliation(s)
- Lena Ai Ling Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
High mass accuracy phosphopeptide identification using tandem mass spectra. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:104681. [PMID: 22844594 PMCID: PMC3403174 DOI: 10.1155/2012/104681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022]
Abstract
Phosphoproteomics is a powerful analytical platform for identification and quantification of phosphorylated peptides and assignment of phosphorylation sites. Bioinformatics tools to identify phosphorylated peptides from their tandem mass spectra and protein sequence databases are important part of phosphoproteomics. In this work, we discuss general informatics aspects of mass-spectrometry-based phosphoproteomics. Some of the specifics of phosphopeptide identifications stem from the labile nature of phosphor groups and expanded peptide search space. Allowing for modifications of Ser, Thr, and Tyr residues exponentially increases effective database size. High mass resolution and accuracy measurements of precursor mass-to-charge ratios help to restrict the search space of candidate peptide sequences. The higher-order fragmentations of neutral loss ions enhance the fragment ion mass spectra of phosphorylated peptides. We show an example of a phosphopeptide identification where accounting for fragmentation from neutral loss species improves the identification scores in a database search algorithm by 50%.
Collapse
|
45
|
Sachdeva A, Chandra M, Chandrasekar J, Silverman SK. Covalent tagging of phosphorylated peptides by phosphate-specific deoxyribozymes. Chembiochem 2012; 13:654-7. [PMID: 22315198 DOI: 10.1002/cbic.201200048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Amit Sachdeva
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
46
|
Xu B, Zhou L, Wang F, Qin H, Zhu J, Zou H. Selective capture of phosphopeptides by hierarchical Ti-aluminophosphate-5 molecular sieves. Chem Commun (Camb) 2012; 48:1802-4. [DOI: 10.1039/c2cc16662c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
47
|
Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in Top-Down Proteomics. Anal Chem 2011; 84:720-34. [DOI: 10.1021/ac202882y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Zhibing Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| |
Collapse
|