1
|
Ibrahim N, Hefnawy MA, Fadlallah SA, Medany SS. Recent advances in electrochemical approaches for detection of nitrite in food samples. Food Chem 2025; 462:140962. [PMID: 39241683 DOI: 10.1016/j.foodchem.2024.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Collapse
Affiliation(s)
- Nora Ibrahim
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar A Fadlallah
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Yu Z, Tong W, Shi J, Chen S, Shui L, Chen H, Shi L, Jin J, Zhu Y. Droplet Impedance Feedback-Enabled Microsampling Microfluidic Device for Precise Chemical Information Monitoring. Anal Chem 2024; 96:16946-16954. [PMID: 39387494 DOI: 10.1021/acs.analchem.4c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microelectrodes have transformed our understanding of spatiotemporal responses to electrical stimulation. However, biological signals are often molecular, complicating the capture of intricate chemical signals. The microfluidic chip developed in this paper accurately measures droplet volume by using impedance analysis. The utilization of droplet volume as a feedback signal for precise microsampling pressure control ensures that microsampling remains unaffected by droplet volume influence. Once the microsampling is complete, chemiluminescence detection enables high temporal resolution and continuous and sensitive monitoring of chemical information within the droplets. Experimental verification shows that the chip can avoid volume influence through impedance feedback, achieving consistent and stable microampling at the nanoliter level (0-3 nL). In just 0.3 s, it can perform sensitive chemiluminescence detection of H2O2 and glucose within droplets. The linear detection ranges for these analytes are 10-50,000 and 20-600 μM, respectively, with the limit of detection being 0.648 and 0.334 μM. The significance of this chip lies in its ability to reveal changes in both electrical and chemical signals during transient biological processes. Its potential applications are numerous, encompassing a wide range of emerging areas such as single-cell analysis, cell communication, and cellular immunity.
Collapse
Affiliation(s)
- Zhihang Yu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Wenqiang Tong
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jiaming Shi
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lingling Shui
- Joint International Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang X, Guo Y, Zhao L, Yang Y, Wei P, Yi T. Conditionally restricted detection of nitrite under acidic conditions by activatable fluorescent probes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135495. [PMID: 39181006 DOI: 10.1016/j.jhazmat.2024.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
As a commonly used food additive, excessive nitrite intake seriously affects people's health in daily life. As the stomach is the main organ involved in nitrite intake, achieving fast and in situ detection of nitrite in the stomach is of great significance for avoiding the hazards caused by nitrite. However, owing to the poor stability or low sensitivity of existing fluorescent probes under acidic conditions, their application for nitrite detection within the stomach remains challenging. To solve this problem, we developed novel probes specifically designed to maintain stability and demonstrate high sensitivity to nitrite under acidic conditions. Utilizing the optimized probe (DHUROS-11), nitrite levels in environmental and real samples were successfully quantified. Notably, tracing of nitrite within the stomach of mice in real time was realized by using DHUROS-11 as the probe.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Guo
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Long Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Yin X, Wang C, Wei S, Liu M, Hu K, Song X, Sun G, Lu L. Carbon dots-based dual-mode sensor for highly selective detection of nitrite in food substrates through diazo coupling reaction. Food Chem 2024; 463:141213. [PMID: 39270494 DOI: 10.1016/j.foodchem.2024.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
As an antioxidant and preservative agent, nitrite (NO2-) plays an essential role in the food industry to maintain freshness or inhibit microbial growth. However, excessive addition of NO2- is detrimental to health, so accurate and portable detection of NO2- is critical for food quality control. Notably, the selectivity of most carbon dots (CDs)-based fluorescence sensors was not enough due to the nonspecific interaction mechanism of hydrogen bond, electrostatic interaction and inner filter effect etc. Herein, a novel fluorescence/UV-vis absorption (FL/UV-vis) dual-mode sensor was developed on basis of mC-CDs, which were prepared by simple solvothermal treatment of m-Phenylenediamine (m-PDA) and cyanidin cation (CC). The fluorescence of these mC-CDs could be selectively responded by NO2- through the specific diazo coupling reaction between NO2- and amino groups on the surface of mC-CDs, thus effectively improving the selectivity of NO2- detection. The CDs-based fluorescence sensor possessed a low detection limit of 0.091 μM and 0.143 μM for FL and UV-vis methods and the excellent linear range of 0.0-60.0 μM. Furthermore, the mC-CDs sensor was employed to detect NO2- in real samples with a recovery rate of 97.11 %-104.15 % for quantitative addition. Moreover, the smartphone-assisted fluorescence sensing platform developed could identify the subtle color changes that could not be distinguished by the naked eye, and had the advantages of fast detection speed and intelligence. More importantly, the portable solid phase sensor based on mC-CDs had been successfully applied to the specific fluorescence identification and concentration monitoring of NO2-. Accordingly, the designed sensor provided a new strategy for the highly selective and convenient sensing of NO2- in food substrates, and paved the way for the wide application of CDs-based nanomaterials in the detection of food safety.
Collapse
Affiliation(s)
- Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Min Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Kaixin Hu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
5
|
Liu C, Gao S, Han X, Tian Y, Ma J, Wang W, Chen XW, Chen ML, Zhang Y. A violet light-emitting diode-based gas-phase molecular absorption device for measurement of nitrate and nitrite in environmental water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124423. [PMID: 38759395 DOI: 10.1016/j.saa.2024.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
A simple and sensitive device for the detection of nitrite and nitrate in environmental waters was developed based on visible light gas-phase molecular absorption spectrometry. By integrating a detection cell (DC), semiconductor refrigeration temperature-controlling system (SRTCY), and nitrite reactor into a sequential injection analysis system, trace levels of nitrite and nitrate in complex matrices were successfully measured. A low energy-consuming light-emitting diode (violet, 400-405 nm) was coupled with a visible light-to-voltage converter (TSL257) to measure the gas-phase molecular absorption. To reduce the interference of water vapor, an SRTCY was used to condense the water vapor on-line before the gas-phase analyte entered the DC. The DC was radiatively heated by the SRTCY to avoid water vapor condensation in the light path. As a result, the obtained baseline noise reduced 3.75 times than that of without SRTCY. Under the optimized conditions, the device achieved limits of detection (3σ/k) of 0.055 and 0.36 mmol/L (0.77 and 5.04 mg N/L) for nitrite and nitrate, respectively, and the linear calibration ranges were 0.1-15 mmol/L (R2 = 0.9946) and 1-10 mmol/L (R2 = 0.9995), respectively. Precisions of 5.2 % and 9.0 % were achieved for ten successive determinations of 0.3 mmol/L nitrite and 1.0 mmol/L nitrate, and the analytical times for nitrite and nitrate determination were 5 and 13 min, respectively. This method was validated against standard methods and recovery tests, and it was applied to the measurement of nitrite and nitrate in environmental waters. Moreover, a device was designed to enable the field measurement of nitrite and nitrate in complex matrices.
Collapse
Affiliation(s)
- Chuanyu Liu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shuo Gao
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xiaoxuan Han
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Weiliang Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, and Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yanfeng Zhang
- Intelligent Policing Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
6
|
Gong H, Zhou Y, Ma P, Xiao X, Liu H. Cobalt-Modified Black Phosphorus Nanosheets-Enabled Ferrate (VI) Activation for Efficient Chemiluminescence Detection of Thiabendazole. ACS Sens 2024; 9:2465-2475. [PMID: 38682311 DOI: 10.1021/acssensors.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.
Collapse
Affiliation(s)
- Hui Gong
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yuxian Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Peihua Ma
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Houjing Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zeng L, Ke Y, Yang X, Lan M, Zhao S, Zhu B. Intramolecular cascade reaction sensing platform for rapid, specific and ultrasensitive detection of nitrite. Food Chem 2024; 438:138044. [PMID: 37995585 DOI: 10.1016/j.foodchem.2023.138044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Nitrite is a carcinogenic substance in food. Excessive consumption of nitrite severely endangers human health. However, rapid and accurate quantification of nitrite by a simple tool is still very challenging. In this work, we designed a practical sensing platform based on 8-(o-phenylenediamine)-boron dipyrromethene (BDP-OPD) to determine nitrite in food. BDP-OPD can take a specific diazotization-cyclization cascade reaction with nitrite to form boron dipyrromethene (BODIPY), giving rise to a remarkable chromogenic reaction along with high contrast fluorescence turn-on response towards nitrite. BDP-OPD has high sensitivity, rapid response, and good selectivity. Furthermore, a portable smartphone-based fluorescence device integrated with a self-programmed Python program was fabricated, which has been successfully used to determine nitrite in food with the advantages of rapid response, low cost, ease of operation, portability, and satisfactory recoveries (92-112%). The good sensing performance rendered BDP-OPD a promising fluorescence platform for on-site visual detection of nitrite.
Collapse
Affiliation(s)
- Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaorui Yang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
8
|
Ding S, Liu C, Zhu Y, Li J, Shi G, Zhu A. Rare Earth-Carbon Dots Nanocomposite-Modified Glass Nanopipettes: Electro-Optical Detection of Bacterial ppGpp. Anal Chem 2024; 96:4521-4527. [PMID: 38442333 DOI: 10.1021/acs.analchem.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
As an important alarmone nucleotide, guanosine 3'-diphosphate-5'-diphosphate (ppGpp) can regulate the survival of bacteria under strict environmental conditions. Direct detection of ppGpp in bacteria with high sensitivity and selectivity is crucial for elucidating the role of ppGpp in bacterial stringent response. Herein, the terbium-carbon dots nanocomposite (CDs-Tb) modified glass nanopipet was developed for the recognition of ppGpp. The CDs-Tb in glass nanopipette preserved their fluorescence properties as well as the coordination capacity of Tb3+ toward ppGpp. The addition of ppGpp not only led to the fluorescence response of CDs-Tb but also triggered variations of surface charge inside the glass nanopipet, resulting in the ionic current response. Compared with nucleotides with similar structures, this method displayed good selectivity toward ppGpp. Moreover, the dual signals (fluorescence and ionic current) offered a built-in correction for potential interference. Apart from the high selectivity, the proposed method can determine the concentration of ppGpp from 10-13 to 10-7 M. Taking advantage of the significant analytical performance, we monitored ppGpp in Escherichia coli under different nutritional conditions and studied the relationship between ppGpp and DNA repair, which is helpful for overcoming antibiotic resistance and promoting the development of potential drugs for antibacterial treatment.
Collapse
Affiliation(s)
- Shushu Ding
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Chunyan Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Yue Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
9
|
Gou J, Sun T, Zhou Y, Liu H. Phosphorous nitride dots induced efficient advanced oxidation with intrinsic chemiluminescence for organic pollutant degradation. Chem Commun (Camb) 2024; 60:2962-2965. [PMID: 38376355 DOI: 10.1039/d3cc06081k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this work, we introduced new metal-free catalysts, phosphorus nitride dots (PNDs), into an environmentally friendly H2O2-SO32- system to generate abundant reactive oxygen species (O2˙-, ˙OH and SO4˙-) with strong intrinsic chemiluminescence (CL). The excellent catalytic ability of PNDs not only improved the degradation efficiency of organic pollutants, but also provided a promising prospect for deeply probing the mechanism of advanced oxidation processes (AOPs) by combining with CL.
Collapse
Affiliation(s)
- Jing Gou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Tong Sun
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yuxian Zhou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Houjing Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
10
|
Ibarra-Prieto HD, Garcia-Garcia A, Aguilera-Granja F, Navarro-Ibarra DC, Rivero-Espejel I. One-Pot, Optimized Microwave-Assisted Synthesis of Difunctionalized and B-N Co-Doped Carbon Dots: Structural Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2753. [PMID: 37887903 PMCID: PMC10609325 DOI: 10.3390/nano13202753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
In this work, we employed a novel microwave-assisted synthesis method to produce nitrogen and boron co-doped carbon dots (B-N co-doped CDs). To achieve optimal synthesis, we conducted a comprehensive parameter modulation approach, combining various synthesis temperatures, times, and precursor concentrations, while keeping the power constant at 150 W and pH 5. Using maximum fluorescence emission as our response variable, the best conditions were identified as 120 °C, 3 min, and a precursor concentration of 1 mg/mL. Characterization using field emission scanning electron microscopy revealed these CDs to have a spherical morphology with an average size of 10.9 ± 3.38 nm. Further high-resolution transmission electron microscopy showed an interplanar distance of 0.23 nm, which is in line with prior findings of CDs that present a 0.21 nm distance corresponding to the (100) plane of graphite. Optical properties were ascertained through UV-vis absorption, identifying distinct π-π* and n-π* transitions. Fluorescence spectroscopy highlighted an emission peak at 375 nm when excited at 295 nm, achieving a quantum yield of 56.7%. Fourier-transform infrared spectroscopy and Raman spectroscopy analyses confirmed the boronic acid and amine groups' presence, underscoring the graphitic nature of the core and the co-doping of boron and nitrogen. These empirical observations were compared with theoretical investigations through simulated Raman spectra, proposing a potential structure for the CDs. X-ray photoelectron spectroscopy further endorsed the co-doping of nitrogen and boron, along with the detection of the specified functional groups. All these characteristics could lend this nanomaterial to different types of applications such as fluorescent probes for a broad range of analytes and for fluorescent cell imaging.
Collapse
Affiliation(s)
- Hector Daniel Ibarra-Prieto
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Subsede Monterrey, Av. Alianza Norte 202, Parque PIIT, Apodaca 66628, Nuevo León, Mexico
- Grupo de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales-CIMAV, Subsede Monterrey, Monterrey 66628, Nuevo León, Mexico
| | - Alejandra Garcia-Garcia
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Subsede Monterrey, Av. Alianza Norte 202, Parque PIIT, Apodaca 66628, Nuevo León, Mexico
- Grupo de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales-CIMAV, Subsede Monterrey, Monterrey 66628, Nuevo León, Mexico
| | - Faustino Aguilera-Granja
- Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78000, San Luis Potosí, Mexico
| | - Diana Carolina Navarro-Ibarra
- Tecnológico Nacional de Mexico, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo 68230, Oaxaca, Mexico
| | - Ignacio Rivero-Espejel
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana 22000, Baja California, Mexico
| |
Collapse
|
11
|
Cai Y, Zhou H, Li W, Yao C, Wang J, Zhao Y. A chemiluminescence method induced by microplasma jet for nitrites detection and the miniature detection system using smartphone. Anal Chim Acta 2023; 1267:341339. [PMID: 37257970 DOI: 10.1016/j.aca.2023.341339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
A method of luminol-diazonium chemiluminescence (CL) induced by microplasma for hazardous substance detection is proposed. The luminol-diazonium CL is caused by microplasma jet, rather than hydrogen peroxide reagent or other oxidizing agents. The CL intensity is increased by the concentration of nitrites. Based on the process of microplasma generation and CL mechanism, the optimal work conditions of the method are obtained. The linear range for nitrites detection is 0.03-1 mmol L-1 with the limit of detection (LOD) of 0.01 mmol L-1. Furthermore, a miniature system using test paper and smartphone is designed for nitrites detection in emergency. The detection system is confined in the custom-tailored shell which is only 28 cm in length, 18 cm in width and 10 cm in height. After microplasma jet treatment, the color of the test paper changes with the NO2- concentration. The photographs of the test paper are taken by the built-in camera of smartphone and analyzed by visiting the website via smartphone. The LOD is 1 mmol L-1 obtained by the CL miniature detection system based on test paper and smartphone. The accuracy, reliability and practicability of the proposed method is verified in this paper.
Collapse
Affiliation(s)
- Yi Cai
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Han Zhou
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Li
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Cheng Yao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yong Zhao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
12
|
Huang C, Zhou W, Wu R, Guan W, Ye N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111726. [PMID: 37299629 DOI: 10.3390/nano13111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) play important roles in organisms and are closely related to various physiological and pathological processes. Due to the short lifetime and easy transformation of ROS, the determination of ROS content in biosystem has always been a challenging task. Chemiluminescence (CL) analysis has been widely used in the detection of ROS due to its advantages of high sensitivity, good selectivity and no background signal, among which nanomaterial-related CL probes are rapidly developing. In this review, the roles of nanomaterials in CL systems are summarized, mainly including their roles as catalysts, emitters, and carriers. The nanomaterial-based CL probes for biosensing and bioimaging of ROS developed in the past five years are reviewed. We expect that this review will provide guidance for the design and development of nanomaterial-based CL probes and facilitate the wider application of CL analysis in ROS sensing and imaging in biological systems.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
13
|
Alsafrani AE, Adeosun WA, Alruwais RS, Marwani HM, Asiri AM, Khan A. Metal-organic frameworks (MOFs) composite of polyaniline-CNT@aluminum succinate for non-enzymatic nitrite sensor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26965-8. [PMID: 37160857 DOI: 10.1007/s11356-023-26965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Nitrite has been linked to a variety of health issues, as well as cancer and oxygen deficiency when its allowable limit is exceeded. Nitrite monitoring and detection are required due to the negative effects on public health. Metal-organic frameworks (MOFs)-based nanomaterials/composites have recently been shown to have the potential for various biological and medical applications like sensing, imaging, and drug delivery. As a result, this research creates an efficient electrochemical sensor by incorporating MOFs into polyaniline (PANI)/carbon nanotube (CNT) cast on the GCE. In situ oxidative polymerization was used to construct an aluminum succinate MOF (Al-Succin)-incorporated CNT/PANI nanocomposite (PANI/CNT@Al-Succin) and well characterized by various characterization techniques, namely, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential thermal analysis (TGA-DTA), cyclic voltammetry (CV), and four probes to measure DC electrical conductivity. Cyclic voltammetry and linear sweep voltammetry techniques were employed to detect nitrite on the surface of PANI/CNT@Al-Succin-modified glassy carbon electrode (GCE). PANI/CNT@Al-Succin-modified GCE demonstrated good current response and electrocatalytic property towards nitrite compared to bare GCE. The newly synthesized electrode exhibited a high electrocatalytic activity towards nitrite oxidation and showed a linear response ranging from 5.7 to 74.1 μM for CV and 8.55-92.62 μM for LSV. The obtained LOD values for CV (1.16 μM) and LSV (0.08 μM) were significantly below the WHO-defined acceptable nitrite limit in drinking water. Results of recovery studies for real samples of apple juice, orange juice, and bottled water were 98.92%, 99.38%, and 99.90%, respectively. These values show practical usability of PANI/CNT@Al-Succin in real samples.
Collapse
Affiliation(s)
- Amjad E Alsafrani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Waheed A Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia.
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Wang F, Li Y, Yan C, Ma Q, Yang X, Peng H, Wang H, Du J, Zheng B, Guo Y. Bismuth-Decorated Honeycomb-like Carbon Nanofibers: An Active Electrocatalyst for the Construction of a Sensitive Nitrite Sensor. Molecules 2023; 28:molecules28093881. [PMID: 37175296 PMCID: PMC10180303 DOI: 10.3390/molecules28093881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 μA mM-1 cm-2) in a wide range of 0.1~800 μM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.
Collapse
Affiliation(s)
- Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Ye Li
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Chenglu Yan
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaofeng Yang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huaqiao Peng
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Huiyong Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| | - Juan Du
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Guo
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
15
|
Hou Y, Guo Y, Ma X, Lv C, Yang M, Yao S, Jin Y, Li B, Liu W. Ring-Oven-Assisted In Situ Synthesis of Metal-Organic Frameworks on the Lab-On-Paper Device for Chemiluminescence Detection of Nitrite in Whole Blood. Anal Chem 2023; 95:4362-4370. [PMID: 36802515 DOI: 10.1021/acs.analchem.2c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In situ synthesis of metal-organic frameworks (MOFs) on flexible materials for the fabrication of functional platforms and micro-devices is challenging. The time-/precursor-consuming procedure and uncontrollable assembly are stumbling blocks for constructing this platform. Herein, a novel in situ MOF synthesis method on paper substrates by use of the ring-oven-assisted technique was reported. Utilizing the ring-oven's heating and washing function, MOFs can be synthesized in 30 min on the designated position of paper chips with extremely low-volume precursors. The principle of this method was explained by steam condensation deposition. The MOFs' growth procedure was theoretically calculated by crystal sizes and the results conformed to the Christian equation. As different MOFs (Cu-MOF-74, Cu-BTB, Cu-BTC) can be synthesized successfully on paper-based chips, the ring-oven-assisted in situ synthesis method has great generality. Then, the prepared Cu-MOF-74 loading paper-based chip was applied to the chemiluminescence (CL) detection of nitrite (NO2-), based on the catalysis effect of Cu-MOF-74 on the NO2--H2O2 CL system. Also, by the delicate design of the paper-based chip, NO2- can be detected with the detection limit (DL) of 0.5 nM in whole blood samples without sample pretreatment. This work establishes a distinctive method for the in situ synthesis of MOFs and the application of MOFs on paper-based CL chips.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Xiaohu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Shiyin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
16
|
Teng X, Ling Q, Liu T, Li L, Lu C. Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
17
|
Fu Z, He J, Li Y, Ding H, Gao X, Cui F. A novel and ultrasensitive fluorescent probe derived from labeled carbon dots for recognitions of copper ions and glyphosate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122052. [PMID: 36356396 DOI: 10.1016/j.saa.2022.122052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Labeling materials with special functional groups are very valuable for the creation of novel probes. Hence, a novel fluorescent probe was constructed by conjugating 4-butyl-3-thiosemicarbazide (BTSC) with carbon dots (CDs). The CDs labeled by BTSC (BTSC-CDs) displayed a strong capability for recognition of Cu2+ and Cu2+ could quench the emission of BTSC-CDs significantly. The fluorescence quenching was proved to be a static quenching which was resulted from the interaction between BTSC-CDs and Cu2+ to form a ground-state BTSC-CDs/Cu2+complex, and the fluorescence intensities showed a good linear correlation with Cu2+ concentrations in the range of 0.20-30 μM. What is more important, by adding glyphosate into the sensor system of BTSC-CDs/Cu2+ the fluorescence of the probe turned on again owing to the stronger chelating between glyphosate and Cu2+ than between BTSC-CDs and Cu2+. This could realize the specific detection of glyphosate and the limit of detection was low to 0.27 μM. Detecting glyphosate using the complex BTSC-CDs/Cu2+ system in actual samples with satisfactory outcomes indicated that a novel fluorescent probe for Cu2+ and subsequent glyphosate detections has been provided.
Collapse
Affiliation(s)
- Zheng Fu
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Jiantong He
- Clinical Laboratory, Xinxiang Maternal and Child Health Hospital, Henan, Xinxiang 453003, PR China
| | - Yameng Li
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Hai Ding
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Xiaoxiao Gao
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China.
| |
Collapse
|
18
|
A smartphone-adaptable dual-signal readout chemosensor for rapid detection of nitrite in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Yuan X, Yan S, Wei C, Zhang Y, Su Y, Lv Y. Strong enhancement of the chemiluminescence of cerium (IV)-Na2S system by mono-dispersed N-CDs generated in situ. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
20
|
Tian M, Zhou W, Guan W, Lu C. Real-Time Imaging of Stress in Single Spherulites and Its Relaxation at the Single-Particle Level in Semicrystalline Polymers. Anal Chem 2022; 94:17716-17724. [PMID: 36480806 DOI: 10.1021/acs.analchem.2c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystallization-induced microscopic stress and its relaxation play a vital role in understanding crystallization behavior and mechanism. However, the real-time measurements for stress and its relaxation seem to be an unachievable task due to difficulties in simultaneous labeling, spatiotemporal discrimination, and continuous quantification. We designed a micron-sized fluorescent probe, whose fluorescence can respond to stress-induced environmental rigidity and whose three-dimensional (3D) flow can respond to stress relaxation. Using the as-prepared fluorescent probe, we established a versatile strategy to realize the real-time 3D imaging of stress and its relaxation in the crystallization process. The rigidity-responsive fluorescence clearly indicated the stress, while the 3D flow movement could quantify the stress relaxation. It is revealed that stress in spherulites increased dramatically as a result of the suppression of stress relaxation in polymer melts. The developed method provides a novel avenue to simultaneously detect stress and its relaxation in various semicrystalline polymers at the single-particle level. This success would achieve the microscopic ways to guide the development of advanced crystallization-dependent materials.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100089, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Yu Y, Zhang L, Gao X, Feng Y, Wang H, Lei C, Yan Y, Liu S. Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. BIOSENSORS 2022; 12:1158. [PMID: 36551125 PMCID: PMC9775108 DOI: 10.3390/bios12121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Food safety is connected to public health, making it crucial to protecting people's health. Food analysis and detection can assure food quality and effectively reduce the entry of harmful foods into the market. Carbon dots (CDs) are an excellent choice for food analysis and detection attributable to their advantages of good optical properties, water solubility, high chemical stability, easy functionalization, excellent bleaching resistance, low toxicity, and good biocompatibility. This paper focuses on the optical properties, synthesis methods, and applications of CDs in food analysis and detection, including the recent advances in food nutritional composition analysis and food quality detection, such as food additives, heavy metal ions, foodborne pathogens, harmful organic pollutants, and pH value. Moreover, this review also discusses the potentially toxic effects, current challenges, and prospects of CDs in basic research and applications. We hope that this review can provide valuable information to lay a foundation for subsequent research on CDs and promote the exploration of CDs-based sensing for future food detection.
Collapse
Affiliation(s)
- Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lili Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Gao
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanmiao Feng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongyuan Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caihong Lei
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Yanhong Yan
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuiping Liu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
22
|
Liu H, Mo T, Zhou Y, Gong H, Zhao D. Electron-rich silicon quantum dots-based charge transfer probe for highly selective chemiluminescence detection of Fe2+ in PM2.5. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Amal NM, Shiddiq M, Armynah B, Tahir D. High reactive oxygen species produced from fluorescence carbon dots for anticancer and photodynamic therapies: A review. LUMINESCENCE 2022; 37:2006-2017. [PMID: 36136299 DOI: 10.1002/bio.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
High-photoluminescence carbon dots (CDs) were synthesized from various sources and various methods using two approaches, namely bottom up and top down, with emission-dependent excitation wavelength. Electronic transition from the higher-occupied molecular orbital (HOMO) state to the lowest-unoccupied molecular orbital(LUMO) state, surface defect states, wider excitation spectrum, higher quantum yield, efficient energy transfer, and element doping affected the fluorescence properties of CDs. Using 102 references listed in this review, the authors studied the relationship between fluorescence mechanism and reactive oxygen species (ROS) produced for photodynamic therapy (PDT) and materials anticancer applications. We described how the radical atom or ROS work as anticancer therapy and PDT and described the chemical reaction of high-resolution fluorescence CDs. We summarized experimental techniques that are used for producing CDs and discussed their characteristics. Finally, conclusions and future prospects in this field are also discussed. The important characteristics of CD-based design for high ROS may usher in new prospects and challenges for high efficiency and stability of PDT and anticancer therapy. In conclusion, we have provided perspectives and challenges of the future development of CD s.
Collapse
Affiliation(s)
| | - Muhandis Shiddiq
- Research Center for Physics, Indonesia Institute of Sciences, Puspiptek, Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
24
|
Asghar M, Yaqoob M, Munawar N, Nabi A. Determination of thiram residues in fresh water using flow injection diperiodatonickelate(IV)-quinine chemiluminescence detection. LUMINESCENCE 2022; 37:2041-2049. [PMID: 36150887 DOI: 10.1002/bio.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
This study developed a simple flow injection (FI) method based on diperiodatonickelate(IV)-sulfuric acid reaction using chemiluminescence (CL) detection for the determination of thiram (THI) fungicide in fresh water using quinine as the sensitizer. The possible mechanism of the CL reaction was described using UV-Vis. absorption and CL spectra. Experimental variables were optimized by applying a univariate approach, and a linear calibration curve was obtained in the range of 1.0 × 10-3 -2.0 mg L-1 (R2 = 0.9994, n = 9) with a limit of detection of 5.0 × 10-4 mg L-1 (S/N = 3) and an injection throughput of 200 h-1 . This approach was successfully applied to determine THI in fresh water by using solid-phase extraction and achieved a good recovery rate of 94%-110% with a relative standard deviation of 1.9%-3.7% (n = 4). The results obtained were compared with the reported FI-CL and high-performance liquid chromatography-ultraviolet methods, and the three methods did not differ significantly at the 95% confidence limit.
Collapse
Affiliation(s)
- Muhammad Asghar
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Mohammad Yaqoob
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Nusrat Munawar
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Abdul Nabi
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
25
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Kumar N, Yadav S, Sadique MA, Khan R. Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker. BIOSENSORS 2022; 12:bios12110966. [PMID: 36354475 PMCID: PMC9688700 DOI: 10.3390/bios12110966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/25/2023]
Abstract
An innovative electrochemical biosensor based on graphene quantum dots (GQDs) is developed for a simple, rapid, and highly sensitive primary diagnosis of the breast cancer biomarker cluster of differentiation-44 (CD44) antigen. Herein, electrochemical exfoliation of waste dry batteries provides facile, eco-friendly, and cost-effective synthesis of GQDs. Transmission electron microscopy (TEM) analysis reveals that GQDs exhibit spherical shapes with an average diameter of 4.75 nm. Further, electrochemical analysis through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) reveals that the electrochemical properties of GQDs are suitable for biosensing applications. Subsequently, GQDs have a large electroactive surface area that has been utilized for the immobilization of CD44 antibodies to fabricate the electrochemical biosensor. The electroanalytical performance of GQDs for CD44 biosensing capabilities is studied by differential pulse voltammetry (DPV). The developed electrochemical biosensor has high sensitivity with the lowest detection limit (LOD) of 2.11 fg/mL in the linear range of 0.1 pg/mL to 100.0 ng/mL in phosphate buffer saline (PBS). Further, the linear response of the electrochemical biosensor for CD44 antigen concentration is in the range of 1.0 pg/mL to 100.0 ng/mL with a LOD of 2.71 fg/mL in spiked serum samples. The outcomes suggest that the synthesized GQDs demonstrate promising attributes to be utilized as a viable nanomaterial in biosensing applications.
Collapse
Affiliation(s)
- Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Wang X, Lin T, Wu W, Wu H, Yan D. Synthesis of N-doped carbon dots for highly selective and sensitive detection of metronidazole in real samples and its cytotoxicity studies. ENVIRONMENTAL TECHNOLOGY 2022; 43:4213-4226. [PMID: 34184621 DOI: 10.1080/09593330.2021.1946164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
The current investigation reports the synthesis of N-CDs using glucosamine, ascorbic acid, and ethylenediamine precursors by a simple hydrothermal technique. The formation of N-CDs was proved by various characterisation techniques such as X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Fourier-Transform Infrared Spectrophotometer (FT-IR). The optical properties were investigated by fluorescence and UV-vis spectrophotometer. Also, N-CDs showed high selectivity in detecting the MTZ compared to several other analytes. However, the metronidazole serves as an antibiotic against several microbial diseases but also a genotoxic, carcinogenic to the human when used in excessive dosage. The synthesised N-CDs showed high selectivity in detecting the MTZ compared to several other analytes. Besides, the cytotoxicity of the N-CDs was studied to evaluate its toxicity against the HeLa cancer cells. It showed 65.6% cell viability and 34.3% toxicity against the cancerous cells, and similarly 71% of cells viability against H9C2 cells. Thus, the current investigation explores the promising selective sensing of N-CDs against MTZ, along with that, it proved its cytotoxicity against HeLa cancerous cells and non-toxicity against H9C2 cells. The synthesised CDs can be better MTZ sensors and anti-cancer agents on further development at the industrial scale.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Ministry of Education Key Laboratory of Integrated Regulations and Resource Department on Shallow Lakes, College of Environment, Hohai University, Nanjing, People's Republic of China
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, People's Republic of China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulations and Resource Department on Shallow Lakes, College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Wei Wu
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, People's Republic of China
| | - Haisuo Wu
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, People's Republic of China
| | - Dongdong Yan
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, People's Republic of China
| |
Collapse
|
28
|
Jeevika A, Alagarsamy G, Celestina JJ. Biogenic synthesis of carbon quantum dots from garlic peel bio-waste for use as a fluorescent probe for sensing of quercetin. LUMINESCENCE 2022; 37:1991-2001. [PMID: 36063384 DOI: 10.1002/bio.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Highly fluorescent and water-soluble carbon quantum dots (CQDs) were synthesized from the bio-waste source of garlic peels (renovation of bio-waste into bio-asset) using a controlled carbonization method. Synthesized CQDs were characterized by various analytical methods and explored as a fluorogenic probe for the recognition of quercetin (QT). UV-Vis result shows an absorption maximum at 275 nm attributed to the conjugation of C=C and C=O of CQDs and demonstrates a blue emission in the range of 330-410 nm. Selectivity was performed with various biomolecules, except for QT, all other do not exhibit any considerable change in the fluorescence of CQDs. On the interaction with QT, emission was completely quenched due to FET, confirming the high selective to QT. Effect of pH, sensitivity, and stability studies displayed excellent results under optimized conditions. The LOD fluorescent probe was found to be 6.73 μM. Our approach may suggest a new platform for the development of quick and low-cost CQDs-based sensors for environmental and biological purposes.
Collapse
Affiliation(s)
- Alagan Jeevika
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | | | - Joseph Jone Celestina
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| |
Collapse
|
29
|
Zhang L, Yang X, Yin Z, Sun L. A Review on Carbon Quantum Dots: Synthesis, Photoluminescence Mechanisms and Applications. LUMINESCENCE 2022; 37:1612-1638. [PMID: 35906748 DOI: 10.1002/bio.4351] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/06/2022]
Abstract
Carbon quantum dots (CQDs), having outstanding biocompatibility, attractive catalytic performance, excellent optical properties, and valuable environment friendliness, are emerging as a new paradigm to design luminescent devices and show great potential in application fields such as biomedical sensors, optical and photonic devices. And CQDs are known as one of the most promising carbon based nanomaterials in the 21st century. Therefore, it has attracted a lot of attention since it was first discovered in 2004. In this review, we explain the accepted photoluminescence mechanism of CQDs, including fluorescence and phosphorescence. There are two main types of synthesis strategies: top-down approach and bottom-up approach. At the same time, the main application fields, including ion detection, anti-counterfeiting, biological imaging, food safety, sensors, lubrication additives, are reviewed. Finally, the existing bottlenecks, pending problems and prospects for the future of CQDs are discussed.
Collapse
Affiliation(s)
- Likang Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Xue Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Linlin Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| |
Collapse
|
30
|
Jariah A, Shiddiq M, Armynah B, Tahir D. Sensor Heavy Metal from Natural Resources for a Green Environment: A Review Relation Between Synthesis Method and Luminescence Properties of Carbon Dots. LUMINESCENCE 2022; 37:1246-1258. [PMID: 35671060 DOI: 10.1002/bio.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022]
Abstract
Carbon dots are 10-nm nanomaterial classes as excellent candidates in various applications: physics, biology, chemistry, and food science due to high stable biocompatibility and high surface expansive. Carbon dots (CDs) produced from natural materials have received wide attention due to their unique benefits, easy availabilities, sufficient costs, and harmless to the ecosystem. The various properties of CDs can be obtained from various synthesis methods: hydrothermal, microwave-assisted, and pyrolysis. The CDs have shown enormous potential in metal particle detection, colorimetric sensors, electrochemical sensors, and pesticide sensor. This review provides systematic information on a synthesis method based on natural resources and the application to the environmental sensors for supporting the clean environment. We hopefully this review, useful as a reference source in providing the guidance or roadmap of new researchers to develop new strategy in increasing luminescence properties CDs for multi detection of heavy metal in the environment.
Collapse
Affiliation(s)
- Ainun Jariah
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Muhandis Shiddiq
- Research Centre for Physics, Indonesian Institute of Science, Pupiptek Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
31
|
A novel ZIF-8@ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Ning G, Mu P, Li B, Liu J, Xiao Q, Huang S. Fluorine and nitrogen co-doped near-infrared carbon dots for fluorescence "on-off-on" determination of nitrite. Mikrochim Acta 2022; 189:230. [PMID: 35612770 DOI: 10.1007/s00604-022-05337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
A fluorescence "on-off-on" strategy was established for the determination of nitrite in aqueous solution based on fluorine and nitrogen co-doped near-infrared carbon dots (NIR-CDs). NIR-CDs were prepared via one-step hydrothermal method by using N-(4-aminophenyl)-acetamide and 4,5-difluorobenzene-1,2-diamine as precursors. The photoluminescence quantum yield of NIR-CDs reaches to 17.4%, and the optimal emission peak of NIR-CDs is 675 nm under excitation of 530 nm. The Stokes shift of NIR-CDs (145 nm) is higher than that of some CDs with longer emission wavelengths. The red bathophenanthroline disulfonic acid (BPS)-Fe2+ complex can quench the fluorescence of NIR-CDs via inner filter effect and static quench modes. Nitrite can oxidize Fe2+ to produce Fe3+ in acidic environment, resulting in not only the formation of colorless and unstable BPS-Fe3+ complex but also the fluorescence recovery of NIR-CDs. This fluorescence "on-off-on" phenomenon also comes with the color variation of the mixture, resulting in both the fluorescence and the visual determination of nitrite. Under optimal conditions, this assay exhibits a good linear range from 1 to 50 μM and a low detection limit of 0.056 μM for nitrite determination. The method showed good applicability for nitrite determination in soil extract, human urine, and water samples with acceptable results. A convenient fluorescence "on-off-on" strategy for nitrite detection based on fluorine and nitrogen co-doped near-infrared carbon dots (NIR-CDs) and bathophenanthroline disulfonic acid (BPS)-Fe2+ complex was innovatively established. This probe showed a low detection limit of 0.056 μM for nitrite in authentic samples, which offered a new sight for fluorescent and visual detection of nitrite in environmental protection and human health areas.
Collapse
Affiliation(s)
- Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
33
|
Cai M, Gan W, Ding Z, Cai H, Wei L, Cheng X. Studies on reaction mechanisms and distinct chemiluminescence from cyanoimino neonicotinoids triggered by peroxymonosulfate in advanced oxidation processes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Khan MS, Asghar M, Yaqoob M, Ali S, Haider Shah S, Siddiqui MA. Determination of lansoprazole in pharmaceuticals using flow injection with rhodamine 6G-diperiodatoargentate (III)-chemiluminescence detection. LUMINESCENCE 2022; 37:1126-1134. [PMID: 35470954 DOI: 10.1002/bio.4266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
A chemiluminescence (CL) method based on rhodamine 6G (R6G)-diperiodatoargentate (III) (silver (III) complex) reaction in acid solution is reported for the determination of lansoprazole (LNP) combined with flow injection (FI) technique. The most likely mechanism for CL reaction was elucidated considering reported data, spectrophotometric and spectrofluorimetric studies. The weak CL reaction between R6G and silver (III) complex could be magnanimously increased in the presence of LNP with a limit of detection (LOD) of 0.002 mg L-1 (S/N = 3), the linear range of 0.01-10 mg L-1 (R2 = 0.9997, n = 7), relative standard deviations (RSD) of 1.2-3.2% (n = 4) and injection throughput of 140 h-1 . No interference activity of commonly found excipients in LNP was detected. After LNP extraction from pharmaceutical samples, the recovery rate ranged from 93-110% (RSD, 1.4-3.3%, n = 4) was calculated. The results of proposed flow CL method were assessed with a spectrophotometric approach applying paired Student's t-test and the calculated value (0.178) was lower than the distributed value (2.20) at a 95% confidence limit.
Collapse
Affiliation(s)
- Muhammad Shoaib Khan
- Department of Chemistry, University of Balochistan, Sariab Road, Quetta, Pakistan
| | - Muhammad Asghar
- Department of Chemistry, University of Balochistan, Sariab Road, Quetta, Pakistan
| | - Mohammed Yaqoob
- Department of Chemistry, University of Balochistan, Sariab Road, Quetta, Pakistan
| | - Samar Ali
- Department of Chemistry, University of Balochistan, Sariab Road, Quetta, Pakistan
| | | | | |
Collapse
|
35
|
Jung H, Sapner VS, Adhikari A, Sathe BR, Patel R. Recent Progress on Carbon Quantum Dots Based Photocatalysis. Front Chem 2022; 10:881495. [PMID: 35548671 PMCID: PMC9081694 DOI: 10.3389/fchem.2022.881495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
As a novel carbon allotrope, carbon quantum dots (CQDs) have been investigated in various fields, including photocatalysis, bioimaging, optoelectronics, energy and photovoltaic devices, biosensing, and drug delivery owing to their unique optical and electronic properties. In particular, CQDs' excellent sunlight harvesting ability, tunable photoluminescence (PL), up-conversion photoluminescence (UCPL), and efficient photo-excited electron transfer have enabled their applications in photocatalysis. This work focuses on the recent progress on CQDs-related materials' synthesis, properties, and applications in photocatalysis.
Collapse
Affiliation(s)
- Hwapyung Jung
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Vijay S. Sapner
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad, Seoul, South Korea
| | | | - Bhaskar R. Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad, Seoul, South Korea,*Correspondence: Bhaskar R. Sathe, ; Rajkumar Patel,
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea,*Correspondence: Bhaskar R. Sathe, ; Rajkumar Patel,
| |
Collapse
|
36
|
Tan Y, Wan X, Zhou T, Wang L, Yin X, Ma A, Wang N. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127349. [PMID: 34879556 DOI: 10.1016/j.jhazmat.2021.127349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel adsorbent made from kiwi branch biochar modified with Zn-Fe (KB/Zn-Fe) was compared with original biochar to the Pb(II)'s adsorptivity from waste water. The adsorbent was synthetized by liquid-phase deposition. Batches of sorption tests were performed, and the biochars' representative properties were tested. Characterizations revealed the physicochemical properties of biochars and showed that the KB/Zn-Fe composites were successfully synthesized. The Langmuir model and pseudo-second-order kinetic model were proven to satisfactorily fit the original biochar and KB/Zn-Fe. The KB/Zn-Fe showed Langmuir maximum adsorption ability to Pb (II) in aqueous solution of 161.29 mg g-1, compared with 36.76 mg g-1 for original biochar. The adsorption ability of Pb(II) decreased and the Pb(II) removal efficiency increased with increasing biochar dose. The effect of co-existence of NO3- to the absorptive capacity of KB/Zn-Fe on Pb(II) was unremarkable, but Cl- could increase the absorptive capacity. Multiple Pb(II) adsorption mechanisms by KB/Zn-Fe include surface precipitation of metal hydroxides, complexation with active functional groups and ion-exchange. This work provides guidance for future production of biochar with efficient adsorption ability, which could be used to remove Pb(II) ions from wastewater.
Collapse
Affiliation(s)
- Yuehui Tan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xirui Wan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Le Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Aisheng Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture of the People's Republic of China, Tianjin 300191, China
| |
Collapse
|
37
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
38
|
Alsaiari M, Saleem A, Alsaiari R, Muhammad N, Latif U, Tariq M, Almohana A, Rahim A. SiO 2/Al 2O 3/C grafted 3-n propylpyridinium silsesquioxane chloride-based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite in food products. Food Chem 2022; 369:130970. [PMID: 34500207 DOI: 10.1016/j.foodchem.2021.130970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The excessive uptake of nitrite is perilous and detrimental for human health that prone to cancer disease. Herein, described the synthesis of SiO2/Al2O3/C material through the sol-gel procedure followed by grafting with 3-n propylpyridinium silsesquioxane chloride organic ligand for enhancing electrochemical activity. H-NMR, 13C NMR, and 29Si studies were performed for confirmation of surface functionalization through the grafting technique. The surface morphology was evaluated through SEM and TEM techniques. The material showed an irregular and flakes-like structure that exhibited more compactness and conglomerate structure with no segregation in phase was observed after grafting. The elemental composition was confirmed from EDX analysis. The electrochemical measurements were performed with cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The prepared hybrid inorganic-organic composite Si/C/Al/SiPy+Cl- was applied for the modification of the glassy carbon (GC) electrode and assessed as a sensor for nitrite determination. The sensor showed the low limit of detection (0.01 μM), low limit of quantification (0.08 μM), wide linear response range (0.2-280 μM), and high sensitivity (410 μA·μM-1). It gave a quick response time of <1 s in the presence of 70 μM nitrite. The fabricated sensor showed high sensitivity, chemical stability, and insignificant interference from co-existing species present in sausage meat and food industry discharges. The repeatability of the sensor was evaluated as 2.5 % R.S.D.; for n = 10 at 50 μM nitrite.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia.
| | - Amina Saleem
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Raiedhah Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University KPK, Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdulaziz Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O.BOX 800, Riyadh, 11421, Saudi Arabia
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan.
| |
Collapse
|
39
|
Meng A, Hong X, Zhang Y, Li S, Sheng L, Li Z. Curly fish scales-like Ni 2.5Mo 6S 6.7 electrodeposited on PEDOT-rGO with uneven surface as ultrafast response electrode for electrocatalytic glucose, nitrite and hydrogen peroxide. J Colloid Interface Sci 2021; 608:131-141. [PMID: 34626962 DOI: 10.1016/j.jcis.2021.09.172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
The difficulty to achieve rapid detection is the limitation of many enzyme-free sensors today. Thus, designing tri-functionalsensors with ultra-fast and efficientdeterminationis a challenging taskin biological science. Herein, curly fish scales-like Ni2.5Mo6S6.7 active materials was anchored on poly (3,4-ethylenedioxythiophene)-reduced graphene oxide (PEDOT-rGO) hybrid membranes with uneven surface (Ni2.5Mo6S6.7/PEDOT-rGO) as a high-performance tri-functional catalyst for glucose, nitrite and hydrogen peroxide determination.The sensor constructed under optimal conditions exhibited ultrafast response performance towards glucose and nitrite within 2 s, and hydrogen peroxide within 1 s. Meanwhile, it provided the wide linear range with a low detection limit towards glucose (as low as 0.001 mM and up to 15.000 mM, and 0.33 μM), nitrite (as low as 0.001 mM and up to 10.000 mM, and 0.33 µM) and hydrogen peroxide (from 0.010 mM to 7.000 mM, and 0.79 μM), respectively. In addition, the sensor demonstrated satisfied selectivity, repeatability, reproducibility and stability. Furthermore, the sensor has potential application in real samples. This study may provide a new strategy for the construction of tri-functional electrode materials with the ultra-fast response.
Collapse
Affiliation(s)
- Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Xiaocheng Hong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Shaoxiang Li
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Liying Sheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| | - Zhenjiang Li
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong 266061, PR China.
| |
Collapse
|
40
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
41
|
Chen Y, Lin J, Zhang R, He S, Ding Z, Ding L. Electrochemiluminescence of water-dispersed nitrogen and sulfur doped carbon dots synthesized from amino acids. Analyst 2021; 146:5287-5293. [PMID: 34338251 DOI: 10.1039/d1an00991e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A facile one-pot hydrothermal approach for synthesizing water-dispersed nitrogen and sulfur doped carbon dots (NS-CDs) with high luminescence quantum yield was explored, using cysteine and tryptophan as precursors. The NS-CDs were characterized by means of FT-IR spectroscopy, XRD, TEM, etc. It was found that the absolute photoluminescence quantum yield (QY) of the NS-CDs determined with an integrating sphere can reach up to 73%, with an average decay time of 17.06 ns. Electrochemiluminescence (ECL) behaviors and mechanisms of the NS-CDs/K2S2O8 coreactant system were investigated. When the working electrode was modified with the prepared NS-CDs, the ECL efficiency of the NS-CDs with K2S2O8 was 24%, relative to Ru(bpy)3Cl2/K2S2O8. This work shows great potential for the NS-CDs to be used in bioanalytical applications.
Collapse
Affiliation(s)
- Yanhua Chen
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | | | | | | | | | | |
Collapse
|
42
|
Delnavaz E, Amjadi M. A chemiluminescence probe enhanced by cobalt and nitrogen-doped carbon dots for the determination of a nitrosative stress biomarker. Mikrochim Acta 2021; 188:278. [PMID: 34322749 DOI: 10.1007/s00604-021-04932-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023]
Abstract
A chemiluminometric method is introduced for the determination of the stress biomarker, 3-nitrotyrosine (3-NT) based on the H2O2-NaIO4 reaction enhanced by cobalt and nitrogen-doped carbon dots (Co,N-CDs). In this chemiluminescence (CL) system, the emission proved to be originated from the excited-state Co,N-CDs (λmax = 504 nm). Comparing the effect of Co,N-CDs with that of some other metal ion-doped CDs and undoped CDs indicated the high efficiency of Co,N-CDs in the CL amplification (about 1980-fold). This was attributed to the fact that Co,N-CDs, in addition to other functions, could act as catalytic center, to accelerate the decomposition of H2O2 and to increase the number of hydroxyl radicals. It was found that 3-NT inhibits the action of Co,N-CDs by an electron transfer process, leading to a decline in the CL intensity of the system. Therefore, a new CL sensing platform was introduced for the assay of 3-NT in the range 5.0 to 300 nM with a detection limit of 1.5 nM. The probe was utilized for the analysis of biological samples.
Collapse
Affiliation(s)
- Elnaz Delnavaz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
43
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
44
|
Zhang L, Shi M, Zhou W, Guan W, Lu C. Disordered Assembly of Donors and Acceptors on Layered Double Hydroxides for High-Efficiency Chemiluminescence Resonance Energy Transfer. Anal Chem 2021; 93:7724-7731. [PMID: 34000804 DOI: 10.1021/acs.analchem.1c01136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-efficiency chemiluminescence (CL) resonance energy transfer (CRET) can be obtained by shortening the donor-acceptor distance and/or improving the luminescence efficiency of CRET acceptors. However, careful design and stringent experimental conditions are usually required for the ordered assembly of CRET acceptors on support materials to avoid aggregation-caused quenching problems. In this work, an aggregation-induced emission (AIE)-active fluorophore was disorderly adsorbed on the surface of layered double hydroxides (LDHs), which could exhibit high-efficiency luminescence. On the other hand, the positively charged LDHs can further adsorb peroxynitrite (ONOO-) on the surface of LDHs. Therefore, the LDH-supported AIE fluorophore could dramatically amplify weak CL signals from ONOO- donors as a result of ultra-high CRET efficiency by coupling the shorter donor-acceptor distance with efficient CRET acceptors. The proposed CL system has been successfully applied for the detection of NaNO2 in the concentration range from 1.0 to 100 μM with a detection limit as low as 0.5 μM. Satisfactory recoveries (98-106%) and good accuracy were achieved for sausage samples. Our success will open new avenues for the convenient design of high-efficiency CRET systems.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meina Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Humaera NA, Fahri AN, Armynah B, Tahir D. Natural source of carbon dots from part of a plant and its applications: a review. LUMINESCENCE 2021; 36:1354-1364. [PMID: 33982393 DOI: 10.1002/bio.4084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Carbon dots (CDs) are carbon nanoparticles with a size of less than 10 nm, and are synthesized from various sources; they have been of great interest to scientists worldwide due to their unique optical, electrical, and chemical properties. Sources of carbon are inexpensive and can be classified as a renewable natural resources. Many researchers use CDs because of their low toxicity, better water solubility, high biocompatibility, and stable photoluminescence. The simple methods for producing CDs are hydrothermal and use inexpensive equipment, have low energy consumption, simple manipulation, and one-step preparation. Since the discovery of CDs, researchers have used them in various applications such as sensing, bioimaging, drug delivery, and catalysis. In this review, CDs synthesized from natural resources such as samples from herbs, roots, leaves, flowers, and fruit and some applications are described. This review provides a summary of carbon dots that is expected to provide further information for development of new CDs.
Collapse
Affiliation(s)
| | | | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
46
|
Tan A, Yang G, Wan X. Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119583. [PMID: 33652271 DOI: 10.1016/j.saa.2021.119583] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of carbon quantum dots (CQDs) with ultra-high quantum yield, simple synthesis path, and satisfying output to facilitate their wide applications in numerous fields are always the research focus. In this work, nitrogen-doped carbon quantum dots (N-CQDs) with strong blue fluorescence were synthesized with a simple one-step hydrothermal method using citric acid and o-phenylenediamine as raw materials, and the absolute quantum yield was as high as 92.1%. The detailed research results demonstrate that the N-CQDs have outstanding fluorescence stability, high selectivity, and anti-interference in Hg2+ detection. The obtained N-CQDs also possess excellent biocompatibility, which can also be successfully applied in cell imaging and intracellular Hg2+ detection. Most importantly, due to their high quantum yield and excellent dispersibility, the N-CQDs solution can be used as a quick-drying fluorescent ink for ink-jet printing. Therefore, the as-prepared N-CQDs have great potential in fluorescence sensing, biomedical diagnosis, data encryption, and anti-counterfeiting.
Collapse
Affiliation(s)
- Anzhong Tan
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Guanghui Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xuejuan Wan
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
47
|
Yang R, Lin Y, Yang J, He L, Tian Y, Hou X, Zheng C. Headspace Solid-Phase Microextraction Following Chemical Vapor Generation for Ultrasensitive, Matrix Effect-Free Detection of Nitrite by Microplasma Optical Emission Spectrometry. Anal Chem 2021; 93:6972-6979. [PMID: 33926187 DOI: 10.1021/acs.analchem.0c05254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new chemical vapor generation method coupled with headspace solid-phase microextraction miniaturized point discharge optical emission spectrometry (HS-SPME-μPD-OES) for the sensitive and matrix effect-free detection of nitrite in complex samples is described. In an acidic medium, the volatile cyclohexene was generated from cyclamate in the presence of nitrite, which was volatilized to the headspace of the container, efficiently separated, and preconcentrated by HS-SPME. Consequently, the SPME fiber was transferred to a laboratory-constructed thermal desorption chamber wherein the cyclohexene was thermally desorbed and swept into μPD-OES for its sensitive quantification via monitoring the carbon atomic emission line at 193.0 nm. As a result, the quantification of nitrite was accomplished through the determination of cyclohexene. The application of HS-SPME as a sampling technique not only simplifies the experimental setup of μPD-OES but it also preconcentrates and separates cyclohexene from N2 and sample matrices, thus eliminating the interference from water vapor and N2 and significantly improving the analytical performance on the determination of nitrite. Under the optimum experimental conditions, a limit of detection of 0.1 μg L-1 was obtained, which is much better than that obtained by conventional methods. The precision, expressed as relative standard deviation, was better than 3.0% at a concentration of 10 μg L-1. The proposed method provides several advantages of portability, simplicity, high sensitivity, and low energy consumption and eliminates expensive instruments and matrix interference, thus retaining a promising potential for the rapid, sensitive, and field analysis of nitrite in various samples.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiahui Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liangbo He
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
48
|
Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide–polyaniline–Au nanoparticles nanocomposite. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
50
|
Zhang W, Ge CY, Jin L, Yoon S, Kim W, Xu GR, Jang H. Nickel nanoparticles incorporated Co, N co-doped carbon polyhedron derived from core-shell ZIF-8@ZIF-67 for electrochemical sensing of nitrite. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|