1
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
2
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Zhang W, Li J, Qin W. Solid-contact polymeric membrane ion-selective electrodes using a covalent organic framework@reduced graphene oxide composite as ion-to-electron transducer. Talanta 2023; 258:124444. [PMID: 36934662 DOI: 10.1016/j.talanta.2023.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
A solid-contact ion-selective electrode (SC-ISE) based on a covalent organic framework@reduced graphene oxide (rGO) composite is proposed. The composite can be synthesized through the polycondensation of 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) on the rGO nanosheets, which shows high capacitance and good redox-active properties. By applying Cd2+-ISE as a model, the electrode exhibits a Nernstian slope of 29.7 ± 0.4 mV/decade in the activity range of 1.0 × 10-7 - 7.9 × 10-4 M and the limit of detection is 6.8 × 10-8 M. Particularly, the electrode based on DAAQ-TFP@rGO exhibits a low potential drift of 1.2 ± 0.2 μV/h over 70 h due to the large capacitance of 2.0 mF. Moreover, the DAAQ-TFP@rGO-based Cd2+-ISE shows good reproducibility and the standard deviations of the standard potentials for single batch and batch-to-batch are 0.28 (n = 4) and 0.30 mV (n = 4), respectively. The developed SC-Cd2+-ISE is not disturbed by light or gas and no aqueous layer occurs between the sensing membrane and DAAQ-TFP@rGO layer. The DAAQ-TFP@rGO composite is highly promising for construction of calibration-free SC-ISEs.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
4
|
Neo ZH, Seah GEKK, Ng SH, Safanama D, Seng DHL, Goh SS. Solution-Printable PEDOT Solid-Contact for Nitrate-Selective Electrodes: Enhanced Selectivity from Anion Dopant Exchange. Anal Chem 2022; 94:15956-15963. [DOI: 10.1021/acs.analchem.2c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Hao Neo
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Georgina E. K. K. Seah
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shi Hoe Ng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Dorsasadat Safanama
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Debbie H. L. Seng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shermin S. Goh
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| |
Collapse
|
5
|
Han T, Song T, Bao Y, Sun Z, Ma Y, He Y, Gan S, Jiang D, Han D, Bobacka J, Niu L. Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Zhang Y, Tang Y, Liang R, Zhong L, Xu J, Lu H, Xu X, Han T, Bao Y, Ma Y, Gan S, Niu L. Carbon-Based Transducers for Solid-Contact Calcium Ion-Selective Electrodes: Mesopore and Nitrogen-Doping Effects. MEMBRANES 2022; 12:903. [PMID: 36135922 PMCID: PMC9505166 DOI: 10.3390/membranes12090903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 μM to 0.1 M with a detection limit of 3.2 μM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.
Collapse
Affiliation(s)
| | | | | | - Lijie Zhong
- Correspondence: Correspondence: (L.Z.); (L.N.)
| | | | | | | | | | | | | | | | - Li Niu
- Correspondence: Correspondence: (L.Z.); (L.N.)
| |
Collapse
|
7
|
Li Y, Li J, Qin W. All-Solid-State Polymeric Membrane Ion-Selective Electrodes Based on NiCo 2S 4 as a Solid Contact. Anal Chem 2022; 94:3574-3580. [PMID: 35175037 DOI: 10.1021/acs.analchem.1c04748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The performance criteria for the design of all-solid-state ion-selective electrodes mainly include high electrode-to-electrode reproducibility and a low potential drift. Here, we introduce nickel cobalt sulfide (NiCo2S4) as a solid contact for ion-to-electron transduction based on multiple redox couples. NiCo2S4 materials with different morphologies can be prepared through a facile hydrothermal/solvothermal method. A NiCo2S4-based solid-contact Ca2+-ISE has been developed, which exhibits a Nernstian slope of 27.5 ± 0.2 mV/dec in the activity range from 1.0 × 10-6 to 2.9 × 10-2 M with a detection limit of 5.0 × 10-7 M. A variation of the standard potential E° for eight individual solid-contact electrodes can be obtained as low as 0.35 mV. Due to the synergistic effect of cobalt and nickel ions in the ternary sulfide, an excellent redox capacitance (565 μF) of the buried solid contact coated with the ion-selective membrane can be achieved and is much larger than those obtained from other redox solid-contact materials reported so far, thus yielding a high potential stability of 2.2 ± 0.4 μV/h. In addition, the NiCo2S4-based solid-contact Ca2+-ISE shows a reduced water layer at the sensing membrane/NiCo2S4 interface and provides an excellent resistance to the interferences from light, O2, and CO2. The proposed strategy utilizing NiCo2S4 as a solid contact is a promising alternative for the fabrication of calibration-free ASS-ISEs.
Collapse
Affiliation(s)
- Yanhong Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P.R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, Shandong, P.R. China
| |
Collapse
|
8
|
Liao C, Zhong L, Tang Y, Sun Z, Lin K, Xu L, Lyu Y, He D, He Y, Ma Y, Bao Y, Gan S, Niu L. Solid-Contact Potentiometric Anion Sensing Based on Classic Silver/Silver Insoluble Salts Electrodes without Ion-Selective Membrane. MEMBRANES 2021; 11:959. [PMID: 34940460 PMCID: PMC8707216 DOI: 10.3390/membranes11120959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022]
Abstract
Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl- with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl-, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl- sensor was fabricated for on-body monitoring the concentration of sweat Cl- to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.
Collapse
Affiliation(s)
- Chunxian Liao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Lijie Zhong
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yitian Tang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhonghui Sun
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Kanglong Lin
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Longbin Xu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yan Lyu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dequan He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Ying He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yingming Ma
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yu Bao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Shiyu Gan
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| |
Collapse
|
9
|
Rousseau CR, Bühlmann P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Lyu Y, Zhang Y, Xu L, Zhong L, Sun Z, Ma Y, Bao Y, Gan S, Niu L. Solid-Contact Ion Sensing Without Using an Ion-Selective Membrane through Classic Li-Ion Battery Materials. Anal Chem 2021; 93:7588-7595. [PMID: 34008950 DOI: 10.1021/acs.analchem.0c05422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The solid-contact ion-selective electrodes (SC-ISEs) are a type of potentiometric analytical device with features of rapid response, online analysis, and miniaturization. The state-of-the-art SC-ISEs are composed of a solid-contact (SC) layer and an ion-selective membrane (ISM) layer with respective functions of ion-to-electron transduction and ion recognition. Two challenges for the SC-ISEs are the water-layer formation at the SC/ISM phase boundary and the leaking of ISM components, which are both originated from the ISM. Herein, we report a type of SC-ISE based on classic Li-ion battery materials as the SC layer without using the ISM for potentiometric lithium-ion sensing. Both LiFePO4- and LiMn2O4-based SC-ISEs display good Li+ sensing properties (sensitivity, selectivity, and stability). The proposed LiFePO4 electrode exhibits comparable sensitivity and a linear range to conventional SC-ISEs with ISM. Owing to the nonexistence of ISM, the LiFePO4 electrode displays high potential stability. Besides, the LiMn2O4 electrode shows a Nernstian response toward Li+ sensing in a human blood serum solution. This work emphasizes the concept of non-ISM-based SC-ISEs for potentiometric ion sensing.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yirong Zhang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Longbin Xu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhonghui Sun
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
11
|
Cheong YH, Ge L, Lisak G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Anal Chim Acta 2021; 1162:338304. [PMID: 33926699 DOI: 10.1016/j.aca.2021.338304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The solid contact ion-selective electrodes (SC-ISEs) have been extensively studied in the field of ion sensing as they offer the possibility of miniaturization, are relatively inexpensive in comparison to other analytical techniques and allow straightforward and routine analyses of ions in a number of clinical, environmental and industrial process samples. In recent years, significant interest has grown in the development of SC-ISEs with well-defined interfacialpotentials at the membrane, solid contact, and substrate electrode interfaces. This has resulted in interesting SC-ISEs exhibiting high electrode-to-electrode potential reproducibility, for those made in a single batch of electrodes, some approaching or exceeding those observed in liquid-contact ISEs. The advancement in the potential reproducibility of SC-ISEs has been partially achieved by scrutinizing insufficiently reproducible fabrication methods of SC-ISEs, or by introducing novel control measures or modifiers to components of the ISEs. This paper provides an overview of the methods as well as the challenges in establishing and maintaining reproducible potentials during the fabrication and use of novel SC-ISEs. The rules outlined in the works reviewed may form the basis of further development of cost-effective, user-friendly, limited calibration or calibration-free potentiometric SC-ISEs to achieve reliable ion analyses here and now.
Collapse
Affiliation(s)
- Yi Heng Cheong
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Robert Bosch (South East Asia) Pte Ltd, 11 Bishan Street 21, Singapore, 573943, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
12
|
Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. MEMBRANES 2020; 10:membranes10060128. [PMID: 32585903 PMCID: PMC7345918 DOI: 10.3390/membranes10060128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- Correspondence: (S.G.); (L.N.)
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Guifu Yang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
- Correspondence: (S.G.); (L.N.)
| |
Collapse
|
13
|
Zeng X, Qin W. A solid-contact Ca2+-selective electrode based on an inorganic redox buffer of Ag@AgCl/1-tetradecyl-3-methylimidazolium chloride as ion-to-electron transducer. Talanta 2020; 209:120570. [DOI: 10.1016/j.talanta.2019.120570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
14
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
15
|
Xu J, Li F, Tian C, Song Z, An Q, Wang J, Han D, Niu L. Tubular Au-TTF solid contact layer synthesized in a microfluidic device improving electrochemical behaviors of paper-based potassium potentiometric sensors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Liu Y, Liu Y, Meng Z, Qin Y, Jiang D, Xi K, Wang P. Thiol-functionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. Talanta 2019; 208:120374. [PMID: 31816715 DOI: 10.1016/j.talanta.2019.120374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023]
Abstract
Thiol-functionalized reduced graphene oxide (TRGO) as a novel ion-to-electron transducing layer is firstly employed to develop durable solid-contact ion-selective electrodes (SC-ISEs) in this work. The performance of the sensors is evaluated by determining K+ and NO3- as an example of cation and anion. The covalent linkage of TRGO at golden electrode surface generates a stable transducing layer. No water films are observed in the proposed TRGO-based potassium (K+-TRGO-ISEs) and nitrate (NO3--TRGO-ISEs) selective SC-ISEs. The resultant electrodes exhibit Nernstian responses (60.0 ± 0.4 mV/decade for K+-TRGO-ISEs and -60.0 ± 0.5 mV/decade for NO3--TRGO-ISEs), low detection limits (2.5 × 10-6 M for K+-TRGO-ISEs and 4.0 × 10-6 M for NO3--TRGO-ISEs) and good selectivity behavior. More importantly, the TRGO-based SC-ISEs display a much longer lifetime of 2 weeks than that of reduced graphene oxide-based SC-ISEs in continuous flowing solutions using a longer peristaltic pump. These improvements push TRGO a general and reliable transducer for the development of durable SC-ISEs.
Collapse
Affiliation(s)
- Yueling Liu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Yunzhong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Zhen Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yu Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
17
|
Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9516-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Hassan SSM, Abdelbasir SM, Fathy MA, Amr AEGE, Al-Omar MA, Kamel AH. Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1160. [PMID: 31416119 PMCID: PMC6723907 DOI: 10.3390/nano9081160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Solid-contact potentiometric ion-selective electrodes (SC-ISEs) for thallium determination have been designed using multiwall carbon nanotubes (MWCNTs) as the ion-to-electron transducer. Dispersed MWCNTs were drop-casted over a gold plate electrode. Two different crown ethers were used in the sensing membrane for the recognition of thallium (I). Sensorsbased on dibenzo-18-crown-6 (DB18C6) as a neutral carrier and NaTPB as an anionic additive exhibited a near Nernstian response of 57.3 mV/decade towards Tl+ ions over the activity range 4.5 × 10-6-7.0 × 10-4 M, with a limit of detection of 3.2 × 10-7 M. The time required to achieve 95% of the steadyequilibrium potential was <10 s. The complex formation constant (log βML) between dibenzo-18-crown-6 and thallium (I) (i.e., 5.99) was measured using the sandwich membrane technique. The potential response was pH independent over the range 3.0-9.5. The introduction of MWCNTs as an electron-ion-transducer layer between gold plate and the sensing membrane lead to a smaller membrane resistance and a large double layer capacitance, which was proven using impedance spectra and chronopotentiometry (i.e., 114.9 ± 12 kΩ, 52.1 ± 3.3 pF, 200 ± 13.2 kΩ, and 50 ± 4.2 µF). Additionally, reduction ofthe water layer between the sensing membrane and the underlying conductor wastested. Thus, it is clear that MWCNTs can be used as a transducing layer in SC-ISEs. The proposed sensor was introduced as an indicator electrode for potentiometric titration of single and ternary mixtures of I-, Br-, and S2- anions.
Collapse
Affiliation(s)
- Saad S M Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| | - Sabah M Abdelbasir
- Electro Chemical Treatment Dept., Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
| | - M Abdelwahab Fathy
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Giza, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| |
Collapse
|
19
|
Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Joon NK, He N, Ruzgas T, Bobacka J, Lisak G. PVC-Based Ion-Selective Electrodes with a Silicone Rubber Outer Coating with Improved Analytical Performance. Anal Chem 2019; 91:10524-10531. [DOI: 10.1021/acs.analchem.9b01490] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Narender Kumar Joon
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland
| | - Ning He
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | - Johan Bobacka
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland
| | - Grzegorz Lisak
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, 1 Cleantech Loop, CleanTech, Singapore 637141, Singapore
| |
Collapse
|
21
|
Liu K, Jiang X, Song Y, Liang R. Robust fabrication of nanomaterial-based all-solid-state ion-selective electrodes. RSC Adv 2019; 9:16713-16717. [PMID: 35516404 PMCID: PMC9064413 DOI: 10.1039/c9ra02770j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Currently, nanomaterial-based all-solid-state ion-selective electrodes (ASS-ISEs) have become attractive tools for ion sensing in environmental and biological applications. However, nanomaterial solid contact can easily fall off the electrode surface owing to poor adhesion. This poses serious limits to the wide use of these sensors. Herein, we report a general and facile method for the robust fabrication of nanomaterial-based ASS-ISEs. It is based on the silver-based conductive adhesive (CA) with excellent electronic conductivity and strong adhesion ability as the binder to construct nanomaterial-based solid contact. The solid-contact Ca2+-ISE based on single-walled carbon nanotubes (SWCNTs) is chosen as a model. The proposed electrode based on CA-SWCNTs shows a linear response in the concentration range of 10−6 to 10−3 M with a slope of 25.96 ± 0.36 mV per decade and a detection limit of 1.7 × 10−7 M. In addition, the CA-SWCNT-based Ca2+-ISE exhibits an improved potential stability and reduced water film compared to the coated-wire ISE. Above all, experiments also show that the CA-SWCNT-based electrode exhibits nearly the same electrochemical characteristics as the classical only SWCNT-based electrode in term of resistance, capacitance and potential stability. We believe that CA-nanomaterial-based solid contacts provide an appealing substitute for traditional solid contacts based on nanomaterials. For the first time, a general and facile approach for the robust fabrication of nanomaterial-based solid contact ISEs is reported.![]()
Collapse
Affiliation(s)
- Kaikai Liu
- School of Environmental and Material Engineering
- Yantai University
- Yantai
- P. R. China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Xiaojing Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- P. R. China
| | - Yuehai Song
- School of Environmental and Material Engineering
- Yantai University
- Yantai
- P. R. China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- P. R. China
| |
Collapse
|
22
|
Criscuolo F, Taurino I, Stradolini F, Carrara S, De Micheli G. Highly-stable Li + ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal Chim Acta 2018; 1027:22-32. [PMID: 29866266 DOI: 10.1016/j.aca.2018.04.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
Abstract
Nowadays the development of stable and highly efficient Solid-Contact Ion-Selective Electrodes (SC-ISEs) attracts much attention in the research community because of the great expansion of portable analytical devices. In this work, we present highly stable Li+ all-solid-state ISEs exploiting noble metals nanostructures as ion-to-electron transducers. The detection of lithium is essential for therapeutic drug monitoring of bipolar patients. In addition, greater environmental exposure to this ion is occurring due to the large diffusion of lithium-ion batteries. However, only a limited number of SC Li+ ISEs already exists in literature based on Conductive Polymers (CPs) and carbon nanotubes. The use of noble metals for ion-to-electron transduction offers considerable advantages over CPs and carbon materials, including fast and conformal one-step deposition by electrochemical means, non-toxicity and high stability. We investigate for the first time the use of gold nanocorals obtained by means of a one-step electrodeposition process to improve sensor performance and we compare it to all-solid-state ISEs based on electrodeposited platinum nanoflowers. In addition, the effect of substrate electrode material, membrane thickness and conditioning concentration on the potentiometric response is carefully analysed. Scanning Electron Microscopy (SEM) and Current Reversal Chronopotentiometry (CRC) techniques are used to characterize the morphology and the electrochemical behaviour of the different ISEs. The use of nanostructured gold and platinum contacts allows the increase of the SC capacitance by one or two orders of magnitude, respectively, with respect to the flat metal, while the SC resistance is significantly reduced. We show that the microfabricated sensors offer Nernstian behaviour (58.7±0.8 mV/decade) in the activity range from 10-5 to 0.1 M, with short response time (∼15 s) and small potential drift during CRC measurements (dEdt=3×10-5±2×10-5 V/s). The exceptional response stability is verified also when no potential is applied. The sensor shows high selectivity towards all clinically important ions, with values very similar to conventional ISEs. Furthermore, to our knowledge, the selectivity towards Ca+2 is the best ever reported for SC-ISEs. In conclusion, the present study opens up new interesting perspectives towards the development of simple and reproducible fabrication protocols to obtain high-quality and high-stability all-solid-state ISEs.
Collapse
Affiliation(s)
| | - Irene Taurino
- Laboratory of Integrated System, EPFL, CH-1015, Lausanne, Switzerland
| | | | - Sandro Carrara
- Laboratory of Integrated System, EPFL, CH-1015, Lausanne, Switzerland
| | | |
Collapse
|
23
|
A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal Chim Acta 2017; 982:72-77. [DOI: 10.1016/j.aca.2017.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022]
|
24
|
He N, Papp S, Lindfors T, Höfler L, Latonen RM, Gyurcsányi RE. Pre-Polarized Hydrophobic Conducting Polymer Solid-Contact Ion-Selective Electrodes with Improved Potential Reproducibility. Anal Chem 2017; 89:2598-2605. [DOI: 10.1021/acs.analchem.6b04885] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ning He
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Soma Papp
- Department
of Inorganic and Analytical Chemistry, MTA-BME “Lendület”
Chemical Nanosensors Research Group, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - Tom Lindfors
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Lajos Höfler
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Rose-Marie Latonen
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Róbert E. Gyurcsányi
- Department
of Inorganic and Analytical Chemistry, MTA-BME “Lendület”
Chemical Nanosensors Research Group, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| |
Collapse
|
25
|
Simple and Efficient Synthesis of Gold Nanoclusters and Their Performance as Solid Contact of Ion Selective Electrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Yin T, Li J, Qin W. An All-solid-state Polymeric Membrane Ca2+-selective Electrode Based on Hydrophobic Alkyl-chain-functionalized Graphene Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tanji Yin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
| | - Jinghui Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
- University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
| |
Collapse
|
27
|
An Q, Jiao L, Jia F, Ye J, Li F, Gan S, Zhang Q, Ivaska A, Niu L. Robust single-piece all-solid-state potassium-selective electrode with monolayer-protected Au clusters. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Pięk M, Piech R, Paczosa-Bator B. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Vanamo U, Hupa E, Yrjänä V, Bobacka J. New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes. Anal Chem 2016; 88:4369-74. [DOI: 10.1021/acs.analchem.5b04800] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ulriika Vanamo
- Laboratory
of Analytical Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
- Laboratory
of Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Elisa Hupa
- Laboratory
of Analytical Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
- Graduate
School in Chemical Engineering (GSCE), Åbo Akademi University, Tavastgatan
13, FI-20500 Åbo, Finland
| | - Ville Yrjänä
- Laboratory
of Analytical Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
| | - Johan Bobacka
- Laboratory
of Analytical Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
| |
Collapse
|
30
|
Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Mahmoud AM, Abd El-Rahman MK, Elghobashy MR, Rezk MR. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Li F, Gan S, Han D, Niu L. Graphene-Based Nanohybrids for Advanced Electrochemical Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Sun Q, Li W, Su B. Highly hydrophobic solid contact based on graphene-hybrid nanocomposites for all solid state potentiometric sensors with well-formulated phase boundary potentials. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Yin T, Pan D, Qin W. All-Solid-State Polymeric Membrane Ion-Selective Miniaturized Electrodes Based on a Nanoporous Gold Film as Solid Contact. Anal Chem 2014; 86:11038-44. [DOI: 10.1021/ac5029209] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanji Yin
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation
and Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (YICCAS), Yantai, Shandong 264003, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dawei Pan
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation
and Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (YICCAS), Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation
and Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (YICCAS), Yantai, Shandong 264003, P. R. China
| |
Collapse
|
35
|
Zou XU, Chen LD, Lai CZ, Bühlmann P. Ionic Liquid Reference Electrodes With a Well-Controlled Co(II)/Co(III) Redox Buffer as Solid Contact. ELECTROANAL 2014. [DOI: 10.1002/elan.201400274] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Zou XU, Zhen XV, Cheong JH, Bühlmann P. Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact. Anal Chem 2014; 86:8687-92. [DOI: 10.1021/ac501625z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xu U. Zou
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Xue V. Zhen
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Jia H. Cheong
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.134] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Zhang X, Han Y, Li J, Zhang L, Jia X, Wang E. Portable, Universal, and Visual Ion Sensing Platform Based on the Light Emitting Diode-Based Self-Referencing-Ion Selective Field-Effect Transistor. Anal Chem 2014; 86:1380-4. [DOI: 10.1021/ac403312f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowei Zhang
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yanchao Han
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Libing Zhang
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaofang Jia
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State Key
Laboratory of Electroanalytical Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
39
|
|
40
|
Zou XU, Cheong JH, Taitt BJ, Bühlmann P. Solid contact ion-selective electrodes with a well-controlled Co(II)/Co(III) redox buffer layer. Anal Chem 2013; 85:9350-5. [PMID: 24047234 DOI: 10.1021/ac4022117] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid contact ion-selective electrodes (ISEs) typically have an intermediate layer between the ion-selective membrane and the underlying solid electron conductor that is designed to reduce the irreproducibility and instability of the measured electromotive force (emf). Nevertheless, the electrode-to-electrode reproducibility of the emf of current solid contact ISEs is widely considered to be unsatisfactory. To address this problem, we report here a new method of constructing this intermediate layer based on the lipophilic redox buffer consisting of the Co(III) and Co(II) complexes of 1,10-phenanthroline ([Co(phen)3](3+/2+)) paired with tetrakis(pentafluorophenyl)borate as counterion. The resulting electrodes exhibit emf values with an electrode-to-electrode standard deviation as low as 1.7 mV after conditioning of freshly prepared electrodes for 1 h. While many prior examples of solid contact ISEs also used intermediate layers that contained redox active species, the selection of a balanced ratio of the reduced and oxidized species has typically been difficult and was often ignored, contributing to the emf irreproducibility. The ease of the control of the [Co(phen)3](3+)/[Co(phen)3](2+) ratio explains the high emf reproducibility, as confirmed by the emf decrease of 58 mV per 10-fold increase in the ratio of the reduced and oxidized redox buffer species. Use of a gold electrode modified with a self-assembled 1-hexanethiol monolayer as underlying electron conductor suppresses the formation of a water layer and results in an electrode-to-electrode standard deviation of E° of 1.0 mV after 2 weeks of exposure to KCl solution.
Collapse
Affiliation(s)
- Xu U Zou
- Department of Chemistry, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
41
|
Yuan X, Chai Y, Yuan R, Zhao Q. Improved potentiometric response of solid-contact lanthanum (III) selective electrode. Anal Chim Acta 2013; 779:35-40. [DOI: 10.1016/j.aca.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
|
42
|
Ping J, Wang Y, Fan K, Tang W, Wu J, Ying Y. High-performance flexible potentiometric sensing devices using free-standing graphene paper. J Mater Chem B 2013; 1:4781-4791. [DOI: 10.1039/c3tb20664e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Yu S, Yuan Q, Li F, Liu Y. Improved potentiometric response of all-solid-state Pb(2+)-selective electrode. Talanta 2012; 101:546-9. [PMID: 23158362 DOI: 10.1016/j.talanta.2012.07.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/27/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
Abstract
Zero-current ion-flux has a great influence on the characteristics of the ion-selective electrodes. In this work the improvement of analytical performance of all-solid-state Pb(2+)-selective membrane electrodes was demonstrated by adjusting the transmembrane ion flux. The study is focused on the relationship between the conditioning solution and the linear working range of the obtained electrodes for different sample matrixes. Results show that the electrode with appropriate conditioning keeps good reproducibility within linear working range. The utility of the electrode has been tested by successfully determining Pb(2+) concentration in real water samples.
Collapse
Affiliation(s)
- Shunyang Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, Shandong 264003, PR China.
| | | | | | | |
Collapse
|
44
|
Abstract
Abstract
Collapse
|