1
|
Iqfath M, Wali SN, Amer S, Hernly E, Laskin J. Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review. ACS MEASUREMENT SCIENCE AU 2024; 4:475-487. [PMID: 39430971 PMCID: PMC11487661 DOI: 10.1021/acsmeasuresciau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.
Collapse
Affiliation(s)
- Mushfeqa Iqfath
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Syeda Nazifa Wali
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sara Amer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
FNU PIJ, Tanim-Al-Hassan M, Yaroshuk T, Ai Y, Chen H. Absolute Quantitation of Peptides and Proteins by Coulometric Mass Spectrometry After Derivatization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117153. [PMID: 38009161 PMCID: PMC10673616 DOI: 10.1016/j.ijms.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Peptide/protein quantitation using mass spectrometry (MS) is advantageous due to its high sensitivity. Traditional absolute peptide quantitation methods rely on making calibration curves using peptide standards or isotope-labelled peptide standards, which are expensive and take time to synthesize. A method which can eliminate the need for using standards would be beneficial. Recently, we developed coulometric mass spectrometry (CMS) which can be used to quantify peptides that are oxidizable (e.g., those containing tyrosine or tryptophan), without using peptide standard. The method is based on electrochemical oxidation of peptides followed by MS to measure the oxidation yield. However, it cannot be directly used to quantify peptides without oxidizable residues. To extend this method for quantifying peptides/proteins in general, in this study, we adopted a derivatization strategy, in which a target peptide is first tagged with an electroactive reagent such as monocarboxymethylene blue NHS ester (MCMB-NHS ester), followed with quantitation by CMS. To illustrate the power of this method, we have analyzed peptides MG and RPPGFSPFR. The quantification error was less than 5%. Using RPPGFSPFR as an example, the quantitation sensitivity of the technique was found to be 0.25 pmol. Furthermore, we also used the strategy to quantify proteins cytochrome C and β-casein with an error of 2-26%.
Collapse
Affiliation(s)
- Praneeth Ivan Joel FNU
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Md. Tanim-Al-Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Timothy Yaroshuk
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
3
|
Bai J, Bao M, Wang S, Wen T, Li Y, Zhang J, Mei T, Guo Y. Insights into electrogenerated intermediates and rapid screening of electrochemical reactions by surface-modified carbon fiber paper redox spray ionization mass spectrometry. Anal Chim Acta 2023; 1279:341794. [PMID: 37827687 DOI: 10.1016/j.aca.2023.341794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The combination of electrochemistry and mass spectrometry is a powerful analytical tool for studying redox reaction mechanisms and identifying products or intermediates. However, the previously reported devices all require bespoke fabrication and are too complicated to be assembled and used by others. Crucially, the long ion transport distance and small spray volumes make it difficult to capture the short-lived intermediates. We present a practical mass spectrometric method in which surface-modified carbon fiber paper is innovatively applied to detect electrogenerated intermediates. Treating carbon fiber paper with dilute nitric acid removes its surface impurities, enhancing the capability of electro-redox. Electrospray ionization and redox reaction occur simultaneously on the tip of the paper. Transient electro-redox species generate and transfer into gas phase as soon as the appearance of spray. Rapid transport of quantities of electrogenerated ions to the mass spectrometer inlet makes it possible for mass spectrometric identification on the millisecond scale. The short-lived radical cations and iminium ions were successfully captured, reflecting the starting step of the cross-dehydrogenation coupling reaction. The real-time oxidation and online functionalization reactions of tertiary amines were achieved using this device without additional oxidants and electrolytes. In this way we could achieve in-depth mechanistic understanding and rapid screening of serial reactions.
Collapse
Affiliation(s)
- Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingmai Bao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shanshan Wang
- College of Science, Chang'an University, Xi'an, 710064, China
| | - Tianlun Wen
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Tiansheng Mei
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Dai D, Zhu Y, Zhu Z, Qian R, Zhuo S, Liu A, Li X, Li W, Chen Q. Studies of Dopamine Oxidation Process by Atmospheric Pressure Glow Discharge Mass Spectrometry. Molecules 2023; 28:molecules28093844. [PMID: 37175253 PMCID: PMC10179796 DOI: 10.3390/molecules28093844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
An atmospheric pressure glow discharge ionisation source was constructed and utilized to study the dopamine (DA) oxidation process coupling with mass spectrometry. During the DA oxidation process catalysed by polyphenol oxidase (PPO), six cationic intermediates were directly detected by the atmospheric pressure glow discharge mass spectrometry (APGD-MS). Combined with tandem mass spectrometry, the structures of the dopamine o-semiquinone radical (DASQ) and leukodopaminochrome radical (LDAC●) intermediates and structures of the isomers of dopaminochrome (DAC) and 5,6-dihydroxyindole (DHI) were further characterised with the introduction of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and deuterium oxide (D2O) to APGD-MS. Meanwhile, UV-Vis studies confirmed the important role of PPO in catalyzing the DA oxidation reaction. Based on APGD-MS studies, a possible mechanism could be proposed for DA oxidation catalysed by PPO. Furthermore, APGD-MS could provide possibilities for the effective detection and characterisation of short-lived intermediates, even in complicated systems.
Collapse
Affiliation(s)
- Dongli Dai
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqin Zhu
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rong Qian
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangjun Zhuo
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Liu
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Li
- National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiao Chen
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
5
|
Toward Depth-Resolved Analysis of Plant Metabolites by Nanospray Desorption Electrospray Ionization Mass Spectrometry. Molecules 2022; 27:molecules27217582. [DOI: 10.3390/molecules27217582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is one of the ambient desorption ionization methods for mass spectrometry (MS), and it utilizes a steady-state liquid junction formed between two microcapillaries to directly extract analytes from sample surfaces with minimal sample damage. In this study, we employed nano-DESI MS to perform a metabolite fingerprinting analysis directly from a Hypericum leaf surface. Moreover, we investigated whether changes in metabolite fingerprints with time can be related to metabolite distribution according to depth. From a raw Hypericum leaf, the mass spectral fingerprints of key metabolites, including flavonoids and prenylated phloroglucinols, were successfully obtained using ethanol as a nano-DESI solvent, and the changes in their intensities were observed with time via full mass scan experiments. In addition, the differential extraction patterns of the obtained mass spectral fingerprints were clearly visualized over time through selected ion monitoring and pseudo-selected reaction monitoring experiments. To examine the correlation between the time-dependent changes in the metabolite fingerprints and depth-wise metabolite distribution, we performed a nano-DESI MS analysis against leaves whose surface layers were removed multiple times by forming polymeric gum Arabic films on their surfaces, followed by detaching. The preliminary results showed that the changes in the metabolite fingerprints according to the number of peelings showed a similar pattern with those obtained from the raw leaves over time.
Collapse
|
6
|
Cheng H, Yang T, Edwards M, Tang S, Xu S, Yan X. Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through in Situ Anodically Generated Cationic Pd. J Am Chem Soc 2022; 144:1306-1312. [PMID: 35015550 DOI: 10.1021/jacs.1c11179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Zhang X, Lu W, Ma C, Wang T, Zhu JJ, Zare RN, Min Q. Insights into Electrochemiluminescence Dynamics by Synchronizing Real-Time Electrical, Luminescent, and Mass Spectrometric Measurements. Chem Sci 2022; 13:6244-6253. [PMID: 35733885 PMCID: PMC9159085 DOI: 10.1039/d2sc01317g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemiluminescence (ECL) comprises a sophisticated cascade of reactions. Despite advances in mechanistic studies by electrochemistry and spectroscopy, a lack of access to dynamic molecular information renders many plausible ECL pathways unclear or unproven. Here we describe the construction of a real-time ECL mass spectrometry (MS) platform (RT-Triplex) for synchronization of dynamic electrical, luminescent, and mass spectrometric outputs during ECL events. This platform allows immediate and continuous sampling of newly born species at the Pt wire electrode of a capillary electrochemical (EC) microreactor into MS, enabling characterization of short-lived intermediates and the multi-step EC processes. Two ECL pathways of luminol are validated by observing the key intermediates α-hydroxy hydroperoxide and diazaquinone and unraveling their correlation with applied voltage and ECL emission. Moreover, a “catalytic ECL route” of boron dipyrromethene (BODIPY) involving homogeneous oxidation of tri-n-propylamine with the BODIPY radical cation is proposed and verified. A real-time electrochemiluminescence mass spectrometry platform (RT-Triplex) was developed for revealing ECL mechanisms by synchronization of dynamic electrical, luminescent, and mass spectrometric signals at the electrode–electrolyte interface.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Tao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
8
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|
9
|
Li W, Sun J, Gao Y, Zhang Y, Ouyang J, Na N. Monitoring of electrochemical reactions on different electrode configurations by ambient mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Lee G, Cha S. Depth-Dependent Chemical Analysis of Handwriting by Nanospray Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:315-321. [PMID: 33176422 DOI: 10.1021/jasms.0c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) has been utilized in direct sampling mass spectrometry (MS) that requires highly spatially resolved sampling with minimal sample destruction. In this study, we explored the applicability of nano-DESI MS for the forensic chemical analysis of ink directly from handwriting on paper. Nano-DESI readily ionizes dyes, including the polyanionic ones, with minimal fragmentation and produces chemical fingerprints of ballpoint pens directly from a paper surface. Further, we specifically focused on how the potential of nano-DESI that changes the mass spectral profiles over time could reflect the differential distribution of analytes in a vertical direction because mildly extracted analytes are immediately transferred and analyzed in real time. To test this, we wrote the character "X" with various combinations of two different pens and analyzed the crosspoints by nano-DESI MS. As a result, the time-course changes in the chemical fingerprints of the ink, which were consistent with the order of the pen strokes, were successfully obtained by nano-DESI MS in most cases. After confirming the capability of the depth-dependent analysis of nano-DESI MS, we analyzed a simulated forgery in which the original and forged writings were made before and after affixing a seal and clearly distinguished the two portions based on the time-dependent changes in the profile of the ink compound.
Collapse
Affiliation(s)
- Gwangbin Lee
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
11
|
Hu J, Zhang N, Zhang P, Chen Y, Xia X, Chen H, Xu J. Coupling a Wireless Bipolar Ultramicroelectrode with Nano‐electrospray Ionization Mass Spectrometry: Insights into the Ultrafast Initial Step of Electrochemical Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Hu
- School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Pan‐Ke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Hu J, Zhang N, Zhang P, Chen Y, Xia X, Chen H, Xu J. Coupling a Wireless Bipolar Ultramicroelectrode with Nano‐electrospray Ionization Mass Spectrometry: Insights into the Ultrafast Initial Step of Electrochemical Reactions. Angew Chem Int Ed Engl 2020; 59:18244-18248. [DOI: 10.1002/anie.202008577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/01/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jun Hu
- School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Pan‐Ke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Kazimi SGT, Iqbal MS, Mulligan CC, Frank Shaw C, Iram F, Stelmack AR, Campbell IS. Ligand Exchange/Scrambling Study of Gold(I)-Phosphine Complexes in the Solid Phase by DESI-MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2289-2296. [PMID: 31502222 DOI: 10.1007/s13361-019-02319-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/04/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Only a few analytical techniques are available for the characterization of mechanochemical synthetic reaction products. We demonstrate here that DESI-MS is a powerful technique for this purpose, combining the selectivity of MS-based assays with the simplicity and in situ analysis capability of ambient ionization methods. In this work, we report that auranofin, a gold-based drug, and its precursor triethylphosphine gold(I) chloride undergo a complex array of ligand exchange/scrambling reactions with thiol-containing amino acids in the solid state. The products were readily characterized by DESI-MS analysis from the solid-phase reaction, clearly exhibiting ligand exchange and scrambling, with independent confirmation by solid state 13C-NMR. The thioglucose and triethylphosphine moieties exchanged with cysteine and its derivatives, whereas the glutathione replaced 2,3,4,6-tetra-o-acetyl-β-1-D-glucopyranose only. It was concluded that ligand exchange and scrambling reactions can be carried out in the solid state, and some of the unique products reported in this study can be conveniently prepared through mechanochemical synthesis in good yields (> 98%), as demonstrated by synthesis of (L-cysteinato-S)-triethylphosphine gold(I) from triethylphosphine gold(I) chloride and L-cysteine.
Collapse
Affiliation(s)
- Syed G T Kazimi
- Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mohammad S Iqbal
- Department of Chemistry, Forman Christian College, Lahore, 54600, Pakistan.
| | | | - C Frank Shaw
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Fozia Iram
- Department of Chemistry, LCW University, Lahore, 54600, Pakistan
| | - Ashley R Stelmack
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Ian S Campbell
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL, 33965-6565, USA
| |
Collapse
|
14
|
Faik A, Held M. Review: Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:49-56. [PMID: 31300141 DOI: 10.1016/j.plantsci.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Progress in the functional biochemical analysis of plant glycosyltransferases (GTs) has been slow because plant GTs are generally membrane proteins, operate as part of larger, multimeric complexes, and utilize a vast complexity of substrate acceptors. Therefore, the field would benefit from development of adequate high throughput expression as well as product detection and characterization techniques. Here we review current approaches to tackle such obstacles and suggest a new path forward: nucleic acid programmable protein arrays (NAPPA) with liquid sample desorption ionization (LS-DESI-MS) mass spectrometry. NAPPA utilizes in vitro transcription and translation to produce epitope-tagged fusion proteins from cloned GT cDNAs. LS-DESI is a soft ionization technique that allows rapid and sensitive MS-based product characterization in situ. Coupling both approaches provides the opportunity to examine individual GT functions as well as protein-protein interactions. Furthermore, advances in automated oligosaccharide synthesis and lipid nanodisc technology should allow testing of plant GT activity in presence of numerous substrate acceptors and lipid environments in a high throughput fashion. Thus, NAPPA-DESI-MS has great potential to make headway in biochemical characterization of the large number of plant GTs.
Collapse
Affiliation(s)
- Ahmed Faik
- Environmental and Plant Biology Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA.
| | - Michael Held
- Chemistry and Biochemistry Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA
| |
Collapse
|
15
|
Mass spectrometry-based intraoperative tumor diagnostics. Future Sci OA 2019; 5:FSO373. [PMID: 30906569 PMCID: PMC6426168 DOI: 10.4155/fsoa-2018-0087] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
In surgical oncology, decisions regarding the amount of tissue to be removed can have important consequences: the decision between preserving sufficient healthy tissue and eliminating all tumor cells is one to be made intraoperatively. This review discusses the latest technical innovations for a more accurate tumor margin localization based on mass spectrometry. Highlighting the latest mass spectrometric inventions, real-time diagnosis seems to be within reach; focusing on the intelligent knife, desorption electrospray ionization, picosecond infrared laser and MasSpec pen, the current technical status is evaluated critically concerning its scientific and medical practice.
Collapse
|
16
|
Zhang H, Yu K, Li N, He J, Qiao L, Li M, Wang Y, Zhang D, Jiang J, Zare RN. Real-time mass-spectrometric screening of droplet-scale electrochemical reactions. Analyst 2018; 143:4247-4250. [PMID: 30027961 DOI: 10.1039/c8an00957k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A droplet-scale, real-time electrochemical reaction screening platform based on droplet spray ionization mass spectrometry (DSI-MS) has been developed. The N,N-dimethylaniline (DMA) radical cation with a half-life of microseconds was readily detected by MS during the electrooxidation of DMA, and the subsequent reactions were followed in real time for minutes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saha-Shah A, Karty JA, Baker LA. Local collection, reaction and analysis with theta pipette emitters. Analyst 2018; 142:1512-1518. [PMID: 28361146 DOI: 10.1039/c7an00109f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mobile nanofluidic device based on theta pipettes was developed for "collect-react-analyze" measurements of small volumes of a sample collected locally from biological samples. Specifically, we demonstrate execution of local reactions inside single cells and on Pseudomonas aeruginosa biofilms for targeted analysis of metabolites. Nanoliter volumes of the sample, post-reaction, were delivered to a mass spectrometer via electrospray ionization (ESI) for chemical analysis. A new strategy was developed where the additional barrel of a theta pipette was utilized both to enable chemical manipulations after sample collection and to electrospray the nanoliter sample volumes collected directly from the pipette tip. This strategy proved a robust method for ESI from nanometer sized tips without clogging or degradation of the emitter and obviated the need to coat glass pipettes with a conductive metal coating. Chemical reactions investigated include acid catalyzed degradation of oligosaccharides inside the pipette tip to increase the detection sensitivity of minor metabolites found in Allium cepa cells. Additionally, phenylboronic acid complexation of carbohydrates from single cells and liposaccharides from biofilms was also performed inside the pipette tip for selective detection of carbohydrates and liposaccharides with cis-diols.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
18
|
Xu S, Zhang Y, Xu L, Bai Y, Liu H. Online coupling techniques in ambient mass spectrometry. Analyst 2018; 141:5913-5921. [PMID: 27704091 DOI: 10.1039/c6an01705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since ambient mass spectrometry (AMS) has been proven to have low matrix effects and high salt tolerance, great efforts have been made for online coupling of several analytical techniques with AMS. These analytical techniques include gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), surface plasmon resonance (SPR), and electrochemistry flow cells. Various ambient ionization sources, represented by desorption electrospray ionization (DESI) and direct analysis in real time (DART), have been utilized as interfaces for the online coupling techniques. Herein, we summarized the advances in these online coupling methods. Close attention has been paid to different interface setups for coupling, as well as limits of detection, tolerance to different matrices, and applications of these new coupling techniques.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| |
Collapse
|
19
|
Yu K, Zhang H, He J, Zare RN, Wang Y, Li L, Li N, Zhang D, Jiang J. In Situ Mass Spectrometric Screening and Studying of the Fleeting Chain Propagation of Aniline. Anal Chem 2018; 90:7154-7157. [PMID: 29873225 DOI: 10.1021/acs.analchem.8b02498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple and effective approach to studying the mechanism of electrooxidation of aniline (ANI) is reported in this paper. It was accomplished by an innovative electrochemistry (EC)-mass spectrometry (MS) coupling, which can sample directly from a droplet-scale reacting electrolyte for mass spectrometric analysis. With this setup, the polymer chain growth of ANI could be monitored in situ and in real-time. The short-lived radical cations (ANI•+, m/ z 93.06) as well as the soluble dimer ( m/ z 183.09) and oligomers ( m/ z 274.13, 365.18, ...) were successfully captured. Using the EC-MS and tandem mass spectrometry, the dimers produced by head-to-tail (4-aminodiphenylamine), head-to-head (hydrazobenzene), and tail-to-tail (benzidine) coupling of radical cations were found in the same polymerization process. Moreover, the EC-MS method was also applicable for determining the propagation speed of ANI when applying different electrolyte salts and oxidizing potentials.
Collapse
Affiliation(s)
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , Heilongjiang 150040 , P.R. China
| | | | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | | | - Ling Li
- Biological & Chemical Engineering Department , Weihai Vocational College , Weihai , Shandong 264210 , P.R. China
| | | | | | | |
Collapse
|
20
|
Cheng S, Wu Q, Dewald HD, Chen H. Online Monitoring of Methanol Electro-Oxidation Reactions by Ambient Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1005-1012. [PMID: 27562502 DOI: 10.1007/s13361-016-1450-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/25/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Online detection of methanol electro-oxidation reaction products [e.g., formaldehyde (HCHO)] by mass spectrometry (MS) is challenging, owing to the high salt content and extreme pH of the electrolyte solution as well as the difficulty in ionizing the reaction products. Herein we present an online ambient mass spectrometric approach for analyzing HCHO generated from methanol electro-oxidation, taking the advantage of high salt tolerance of desorption electrospray ionization mass spectrometry (DESI-MS). It was found that HCHO can be detected as PhNHNH+=CH2 (m/z 121) by DESI after online derivatization with PhNHNH2. With this approach, the analysis of HCHO from methanol electro-oxidation by MS was carried out not only in acidic condition but also in alkaline media for the first time. Efficiencies of different electrodes for methanol oxidation at different pHs were also evaluated. Our results show that Au electrode produces more HCHO than Pt-based electrodes at alkaline pH, while the latter have higher yields at acidic solution. The presented methodology would be of great value for elucidating fuel cell reaction mechanisms and for screening ideal fuel cell electrode materials. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Si Cheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Qiuhua Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- College of Sciences, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
21
|
Cheng H, Yan X, Zare RN. Two New Devices for Identifying Electrochemical Reaction Intermediates with Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:3191-3198. [DOI: 10.1021/acs.analchem.6b05124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heyong Cheng
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- College
of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xin Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
22
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
23
|
Saha-Shah A, Green CM, Abraham DH, Baker LA. Segmented flow sampling with push-pull theta pipettes. Analyst 2017; 141:1958-65. [PMID: 26907673 DOI: 10.1039/c6an00028b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report development of a mobile and easy-to-fabricate theta pipette microfluidic device for segmented flow sampling. The theta pipettes were also used as electrospray emitters for analysis of sub-nanoliter segments, which resulted in delivery of analyte to the vacuum inlet of the mass spectrometer without multiple transfer steps. Theta pipette probes enable sample collection with high spatial resolution due to micron or smaller sized probe inlets and can be used to manipulate aqueous segments in the range of 200 pL to tens of nanoliters. Optimized conditions can enable sampling with high spatial and temporal resolution, suitable for chemical monitoring in biological samples and studies of sample heterogeneity. Intercellular heterogeneity among Allium cepa cells was studied by collecting cytoplasm from multiple cells using a single probe. Extracted cytoplasm was analyzed in a fast and high throughput manner by direct electrospray mass spectrometry of segmented sample from the probe tip.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Curtis M Green
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - David H Abraham
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
24
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
25
|
Wang Z, Zhang Y, Liu B, Wu K, Thevuthasan S, Baer DR, Zhu Z, Yu XY, Wang F. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach. Anal Chem 2016; 89:960-965. [DOI: 10.1021/acs.analchem.6b04189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhaoying Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Kui Wu
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | - Fuyi Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Looi WD, Chamand L, Brown B, Brajter-Toth A. Role of Electrochemistry in Desorption Ionization Mass Spectrometry (LS DESI MS) of Aqueous Samples Containing Electrolyte Salts. Anal Chem 2016; 89:603-610. [DOI: 10.1021/acs.analchem.6b02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen Donq Looi
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Laura Chamand
- Faculty
of Chemistry, University of Strasbourg, 1 Rue Blasie Pascal, 67008 Strasbourg, France
| | - Blake Brown
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Anna Brajter-Toth
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
27
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
28
|
Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). Anal Bioanal Chem 2016; 408:2227-38. [DOI: 10.1007/s00216-015-9246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
29
|
Cai Y, Liu P, Held MA, Dewald HD, Chen H. Coupling Electrochemistry with Probe Electrospray Ionization Mass Spectrometry. Chemphyschem 2016; 17:1104-8. [DOI: 10.1002/cphc.201600033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Pengyuan Liu
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Michael A. Held
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Howard D. Dewald
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| |
Collapse
|
30
|
Zhang JT, Wang HY, Zhang X, Zhang F, Guo YL. Study of short-lived and early reaction intermediates in organocatalytic asymmetric amination reactions by ion-mobility mass spectrometry. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01051b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of the reactive intermediates in organocatalytic asymmetric amination reactions by reactive SAESI coupled to ion-mobility mass spectrometry.
Collapse
Affiliation(s)
- Jun-Ting Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Hao-Yang Wang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Xiang Zhang
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310035
- China
| | - Fang Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
31
|
Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1676-1685. [PMID: 26242804 DOI: 10.1007/s13361-015-1210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yong Liu
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA.
| | - Roy Helmy
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
32
|
|
33
|
|
34
|
Brown TA, Chen H, Zare RN. Identification of Fleeting Electrochemical Reaction Intermediates Using Desorption Electrospray Ionization Mass Spectrometry. J Am Chem Soc 2015; 137:7274-7. [DOI: 10.1021/jacs.5b03862] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Timothy A. Brown
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701-2979, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
35
|
Pruitt CJM, Goebbert DJ. Experimental and Theoretical Study of the Decomposition of Copper Nitrate Cluster Anions. J Phys Chem A 2015; 119:4755-62. [DOI: 10.1021/acs.jpca.5b02467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carrie Jo M. Pruitt
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daniel J. Goebbert
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
36
|
Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. MASS SPECTROMETRY REVIEWS 2015; 34:64-92. [PMID: 24338642 PMCID: PMC4286209 DOI: 10.1002/mas.21409] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sabine Plattner
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|
37
|
Lavilla I, Romero V, Costas I, Bendicho C. Greener derivatization in analytical chemistry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zheng Q, Zhang H, Tong L, Wu S, Chen H. Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal Chem 2014; 86:8983-91. [PMID: 25141260 PMCID: PMC4165463 DOI: 10.1021/ac501526n] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Zhang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lingying Tong
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Shiyong Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
39
|
Heath BS, Marshall MJ, Laskin J. The characterization of living bacterial colonies using nanospray desorption electrospray ionization mass spectrometry. Methods Mol Biol 2014; 1151:199-208. [PMID: 24838888 DOI: 10.1007/978-1-4939-0554-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) coupled with high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) enable detailed molecular characterization of living bacterial colonies directly from nutrient agar. The ability to detect molecular signatures of living microbial communities is important for investigating metabolic exchange between species without affecting the viability of the colonies. We describe the protocol for bacterial growth, sample preparation, ambient profiling, and data analysis of microbial communities using nano-DESI MS.
Collapse
Affiliation(s)
- Brandi S Heath
- Physical Sciences Division, Pacific Northwest National Laboratory, 999, MSIN K8-88, Richland, WA, 99352, USA
| | | | | |
Collapse
|
40
|
Liu P, Zhang J, Ferguson CN, Chen H, Loo JA. Measuring protein-ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:11966-72. [PMID: 24237005 PMCID: PMC3901310 DOI: 10.1021/ac402906d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have previously shown that liquid sample desorption electrospray ionization-mass spectrometry (DESI-MS) is able to measure large proteins and noncovalently bound protein complexes (to 150 kDa) (Ferguson et al., Anal. Chem. 2011, 83, 6468-6473). In this study, we further investigate the application of liquid sample DESI-MS to probe protein-ligand interactions. Liquid sample DESI allows the direct formation of intact protein-ligand complex ions by spraying ligands toward separate protein sample solutions. This type of "reactive" DESI methodology can provide rapid information on binding stiochiometry, selectivity, and kinetics, as demonstrated by the binding of ribonuclease A (RNaseA, 13.7 kDa) with cytidine nucleotide ligands and the binding of lysozyme (14.3 kDa) with acetyl chitose ligands. A higher throughput method for ligand screening by liquid sample DESI was demonstrated, in which different ligands were sequentially injected as a segmented flow for DESI ionization. Furthermore, supercharging to enhance analyte charge can be integrated with liquid sample DESI-MS, without interfering with the formation of protein-ligand complexes.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Carly N. Ferguson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 2013; 86:233-49. [PMID: 24308499 DOI: 10.1021/ac4038569] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008-5413, United States
| | | | | | | | | |
Collapse
|
42
|
Ren Y, Liu J, Li L, McLuckey MN, Ouyang Z. Direct Mass Spectrometry Analysis of Untreated Samples of Ultralow Amounts Using Extraction Nano-Electrospray. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:10.1039/C3AY41149D. [PMID: 24312137 PMCID: PMC3845969 DOI: 10.1039/c3ay41149d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct mass spectrometry analysis of untreated samples of volumes as low as 0.2 µL were achieved using fast extraction and nanoESI (electrospray ionization) in a combined fashion. The analytes in dried samples on paper substrates were extracted by organic solvent in a nanoESI tube and ionized with a high voltage applied for generating a spray. The ionization source produced stable signals for different atmospheric pressure interfaces of triple quadrupole instruments. Analysis time more than 20 minutes were available with 10 µL solvent consumed for the entire analysis process. The performance in qualitative and quantitative analysis was characterized with a wide variety of samples. Limits of detection as low as 0.1 ng/mL (corresponding to an absolute amount of 0.05 pg) were obtained for analysis of atrazine in river water, thiabendazole in orange homogenate, and methamphetamine in blood.
Collapse
Affiliation(s)
- Yue Ren
- Weldon School of Biomedical Engineering, Purdue, West Lafayette, IN 47906
| | | | | | | | | |
Collapse
|
43
|
Brownell KR, McCrory CCL, Chidsey CED, Perry RH, Zare RN, Waymouth RM. Electrooxidation of alcohols catalyzed by amino alcohol ligated ruthenium complexes. J Am Chem Soc 2013; 135:14299-305. [PMID: 24044700 DOI: 10.1021/ja4055564] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ruthenium transfer hydrogenation catalysts physisorbed onto edge-plane graphite electrodes are active electrocatalysts for the oxidation of alcohols. Electrooxidation of CH3OH (1.23 M) in a buffered aqueous solution at pH 11.5 with [(η(6)-p-cymene)(η(2)-N,O-(1R,2S)-cis-1-amino-2-indanol)]Ru(II)Cl (2) on edge-plane graphite exhibits an onset current at 560 mV vs NHE. Koutecky-Levich analysis at 750 mV reveals a four-electron oxidation of methanol with a rate of 1.35 M(-1) s(-1). Mechanistic investigations by (1)H NMR, cyclic voltammetry, and desorption electrospray ionization mass spectrometry indicate that the electroxidation of methanol to generate formate is mediated by surface-supported Ru-oxo complexes.
Collapse
Affiliation(s)
- Kristen R Brownell
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | | | | | | | | | | |
Collapse
|
44
|
Power A, White B, Morrin A. Microfluidic thin-layer flow cell for conducting polymer growth and electroanalysis. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Su HF, Xue L, Li YH, Lin SC, Wen YM, Huang RB, Xie SY, Zheng LS. Probing Hydrogen Bond Energies by Mass Spectrometry. J Am Chem Soc 2013; 135:6122-9. [DOI: 10.1021/ja312133k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hai-Feng Su
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan Xue
- Department of Chemistry, Ningde Normal University, Ningde 352100, China
| | - Yun-Hua Li
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shui-Chao Lin
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Mei Wen
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong-Bin Huang
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical
Chemistry of Solid Surfaces and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
|
47
|
Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 2013; 64:481-505. [PMID: 23331308 DOI: 10.1146/annurev-physchem-040412-110026] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.
Collapse
|
48
|
Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst 2013; 138:5519-39. [DOI: 10.1039/c3an00709j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
Zhu W, Yuan Y, Zhou P, Zeng L, Wang H, Tang L, Guo B, Chen B. The expanding role of electrospray ionization mass spectrometry for probing reactive intermediates in solution. Molecules 2012; 17:11507-37. [PMID: 23018925 PMCID: PMC6268401 DOI: 10.3390/molecules171011507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022] Open
Abstract
Within the past decade, electrospray ionization mass spectrometry (ESI-MS) has rapidly occupied a prominent position for liquid-phase mechanistic studies due to its intrinsic advantages allowing for efficient "fishing" (rapid, sensitive, specific and simultaneous detection/identification) of multiple intermediates and products directly from a "real-world" solution. In this review we attempt to offer a comprehensive overview of the ESI-MS-based methodologies and strategies developed up to date to study reactive species in reaction solutions. A full description of general issues involved with probing reacting species from complex (bio)chemical reaction systems is briefly covered, including the potential sources of reactive intermediate (metabolite) generation, analytical aspects and challenges, basic rudiments of ESI-MS and the state-of-the-art technology. The main purpose of the present review is to highlight the utility of ESI-MS and its expanding role in probing reactive intermediates from various reactions in solution, with special focus on current progress in ESI-MS-based approaches for improving throughput, testing reality and real-time detection by using newly developed MS instruments and emerging ionization sources (such as ambient ESI techniques). In addition, the limitations of modern ESI-MS in detecting intermediates in organic reactions is also discussed.
Collapse
Affiliation(s)
- Weitao Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Yu Yuan
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China;
| | - Peng Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Le Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Hua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| |
Collapse
|