• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636010)   Today's Articles (389)   Subscriber (50084)
For: Chatterjee D, Mansfield DS, Anderson NG, Subedi S, Woolley AT. "Flow valve" microfluidic devices for simple, detectorless, and label-free analyte quantitation. Anal Chem 2012;84:7057-63. [PMID: 22881075 DOI: 10.1021/ac301278s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Number Cited by Other Article(s)
1
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
2
Nuchtavorn N, Rypar T, Nedjl L, Vaculovicova M, Macka M. Distance-based detection in analytical flow devices: from gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
3
Paper-Based Microfluidics for Point-of-Care Medical Diagnostics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]  Open
4
Ma Y, Mao Y, Huang D, He Z, Yan J, Tian T, Shi Y, Song Y, Li X, Zhu Z, Zhou L, Yang CJ. Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip. LAB ON A CHIP 2016;16:3097-104. [PMID: 27302553 DOI: 10.1039/c6lc00474a] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
5
Tian T, Li J, Song Y, Zhou L, Zhu Z, Yang CJ. Distance-based microfluidic quantitative detection methods for point-of-care testing. LAB ON A CHIP 2016;16:1139-1151. [PMID: 26928571 DOI: 10.1039/c5lc01562f] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
6
Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang CJ. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Anal Chem 2016;88:2345-52. [DOI: 10.1021/acs.analchem.5b04294] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
7
Xie Y, Wei X, Yang Q, Guan Z, Liu D, Liu X, Zhou L, Zhu Z, Lin Z, Yang C. A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. Chem Commun (Camb) 2016;52:13377-13380. [DOI: 10.1039/c6cc07928h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
8
Chatterjee D, Mansfield DS, Woolley AT. MICROFLUIDIC DEVICES FOR LABEL-FREE AND NON-INSTRUMENTED QUANTITATION OF UNAMPLIFIED NUCLEIC ACIDS BY FLOW DISTANCE MEASUREMENT. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014;6:8173-8179. [PMID: 25530814 PMCID: PMC4269297 DOI: 10.1039/c4ay01845a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
9
Lewis GG, Robbins JS, Phillips ST. A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout. Chem Commun (Camb) 2013;50:5352-4. [PMID: 24275801 DOI: 10.1039/c3cc47698g] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
10
Lewis GG, Robbins JS, Phillips ST. Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal Chem 2013;85:10432-9. [PMID: 24074247 DOI: 10.1021/ac402415v] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
11
Renault C, Li X, Fosdick SE, Crooks RM. Hollow-channel paper analytical devices. Anal Chem 2013;85:7976-9. [PMID: 23931456 DOI: 10.1021/ac401786h] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
12
Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS. Simple, distance-based measurement for paper analytical devices. LAB ON A CHIP 2013;13:2397-2404. [PMID: 23657627 DOI: 10.1039/c3lc50072a] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA