1
|
Hastman DA, Hooe S, Chiriboga M, Díaz SA, Susumu K, Stewart MH, Green CM, Hildebrandt N, Medintz IL. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sens 2024; 9:157-170. [PMID: 38160434 DOI: 10.1021/acssensors.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
- American Society for Engineering Education, Washington ,District of Columbia20036, United States
| | - Shelby Hooe
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Matthew Chiriboga
- Northrop Grumman Corporation, Mission Systems, Baltimore, Maryland, 21240, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| |
Collapse
|
2
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
3
|
Kaur A, Mahmoud R, Megalathan A, Pettit S, Dhakal S. Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers. BIOSENSORS 2023; 13:119. [PMID: 36671954 PMCID: PMC9856376 DOI: 10.3390/bios13010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The multiplexed detection of disease biomarkers is part of an ongoing effort toward improving the quality of diagnostic testing, reducing the cost of analysis, and accelerating the treatment processes. Although significant efforts have been made to develop more sensitive and rapid multiplexed screening methods, such as microarrays and electrochemical sensors, their limitations include their intricate sensing designs and semi-quantitative detection capabilities. Alternatively, fluorescence resonance energy transfer (FRET)-based single-molecule counting offers great potential for both the sensitive and quantitative detection of various biomarkers. However, current FRET-based multiplexed sensing typically requires the use of multiple excitation sources and/or FRET pairs, which complicates labeling schemes and the post-analysis of data. We present a nanotweezer (NT)-based sensing strategy that employs a single FRET pair and is capable of detecting multiple targets. Using DNA mimics of miRNA biomarkers specific to triple-negative breast cancer (TNBC), we demonstrated that the developed sensors are sensitive down to the low picomolar range (≤10 pM) and can discriminate between targets with a single-base mismatch. These simple hybridization-based sensors hold great promise for the sensitive detection of a wider spectrum of nucleic acid biomarkers.
Collapse
|
4
|
Mathur D, Thakur M, Díaz SA, Susumu K, Stewart MH, Oh E, Walper SA, Medintz IL. Hybrid Nucleic Acid-Quantum Dot Assemblies as Multiplexed Reporter Platforms for Cell-Free Transcription Translation-Based Biosensors. ACS Synth Biol 2022; 11:4089-4102. [PMID: 36441919 PMCID: PMC9829448 DOI: 10.1021/acssynbio.2c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-free synthetic biology has emerged as a valuable tool for the development of rapid, portable biosensors that can be readily transported in the freeze-dried form to the point of need eliminating cold chain requirements. One of the challenges associated with cell-free sensors is the ability to simultaneously detect multiple analytes within a single reaction due to the availability of a limited set of fluorescent and colorimetric reporters. To potentially provide multiplexing capabilities to cell-free biosensors, we designed a modular semiconductor quantum dot (QD)-based reporter platform that is plugged in downstream of the transcription-translation functionality in the cell-free reaction and which converts enzymatic activity in the reaction into distinct optical signals. We demonstrate proof of concept by converting restriction enzyme activity, utilized as our prototypical sensing output, into optical changes across several distinct spectral output channels that all use a common excitation wavelength. These hybrid Förster resonance energy transfer (FRET)-based QD peptide PNA-DNA-Dye reporters (QD-PDDs) are completely self-assembled and consist of differentially emissive QD donors paired to a dye-acceptor displayed on a unique DNA encoding a given enzyme's cleavage site. Three QD-based PDDs, independently activated by the enzymes BamHI, EcoRI, and NcoI, were prototyped in mixed enzyme assays where all three demonstrated the ability to convert enzymatic activity into fluorescent output. Simultaneous monitoring of each of the three paired QD-donor dye-acceptor spectral channels in cell-free biosensing reactions supplemented with added linear genes encoding each enzyme confirmed robust multiplexing capabilities for at least two enzymes when co-expressed. The modular QD-PDDs are easily adapted to respond to other restriction enzymes or even proteases if desired.
Collapse
Affiliation(s)
| | | | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Kimihiro Susumu
- Jacobs Corporation, Hanover, Maryland 21076, United States; Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Michael H. Stewart
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| |
Collapse
|
5
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|
6
|
Algar WR, Krause KD. Developing FRET Networks for Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:17-36. [PMID: 35300526 DOI: 10.1146/annurev-anchem-061020-014925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is a widely used fluorescence-based sensing mechanism. To date, most implementations of FRET sensors have relied on a discrete donor-acceptor pair for detection of each analytical target. FRET networks are an emerging concept in which target recognition perturbs a set of interconnected FRET pathways between multiple emitters. Here, we review the energy transfer topologies and scaffold materials for FRET networks, propose a general nomenclature, and qualitatively summarize the dynamics of the competitive, sequential, homoFRET, and heteroFRET pathways that constitute FRET networks. Implementations of FRET networks for sensing are also described, including concentric FRET probes, other single-vector multiplexing, and logic gates and switches. Unresolved questions and future research directions for current systems are discussed, as are potential but currently unexplored applications of FRET networks in sensing.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
7
|
Hong H, Choi B, Kim JK. Beyond the Michaelis-Menten: Bayesian Inference for Enzyme Kinetic Analysis. Methods Mol Biol 2022; 2385:47-64. [PMID: 34888715 DOI: 10.1007/978-1-0716-1767-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the Michaelis-Menten (MM) rate law has been widely used to estimate enzyme kinetic parameters, it works only under the condition of extremely low enzyme concentration. Furthermore, even when this condition is satisfied, parameter estimation is often imprecise due to the parameter identifiability issue. To overcome these limitations of the canonical approach to enzyme kinetics, we developed a Bayesian approach based on a modified form of the MM rate law, which is derived with the total quasi-steady state approximation. Here, we illustrate how to perform the Bayesian inference for the progress curve assay with our user-friendly computational R package. We also describe an optimal experimental design for the progress curve assay, with which enzyme kinetic parameters can be accurately and precisely estimated from minimal measurements of the progress curves.
Collapse
Affiliation(s)
- Hyukpyo Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea
| | - Boseung Choi
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea
- Division of Big Data Science, Korea University Sejong Campus, Sejong, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Quantum dots (QDs) offer bright and robust photoluminescence among several other advantages in comparison to fluorescent dyes. In order to leverage the advantageous properties of QDs for applications in bioanalysis and imaging, simple and reliable methods for bioconjugation are required. One such method for conjugating peptides to QDs is the use of polyhistidine tags, which spontaneously bind to the surface of QDs. We describe protocols for assembling polyhistidine-tagged peptides to QDs and for characterizing the resultant QD-peptide conjugates. The latter include both electrophoretic and FRET-based protocols for confirming successful peptide assembly, estimating the maximum peptide loading capacity, and measuring the assembly kinetics. Sensors for protease activity and intracellular delivery are briefly noted as prospective applications of QD-peptide conjugates.
Collapse
|
9
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
10
|
Kim JK, Tyson JJ. Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy. PLoS Comput Biol 2020; 16:e1008258. [PMID: 33090989 PMCID: PMC7581366 DOI: 10.1371/journal.pcbi.1008258] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For over a century, the Michaelis-Menten (MM) rate law has been used to describe the rates of enzyme-catalyzed reactions and gene expression. Despite the ubiquity of the MM rate law, it accurately captures the dynamics of underlying biochemical reactions only so long as it is applied under the right condition, namely, that the substrate is in large excess over the enzyme-substrate complex. Unfortunately, in circumstances where its validity condition is not satisfied, especially so in protein interaction networks, the MM rate law has frequently been misused. In this review, we illustrate how inappropriate use of the MM rate law distorts the dynamics of the system, provides mistaken estimates of parameter values, and makes false predictions of dynamical features such as ultrasensitivity, bistability, and oscillations. We describe how these problems can be resolved with a slightly modified form of the MM rate law, based on the total quasi-steady state approximation (tQSSA). Furthermore, we show that the tQSSA can be used for accurate stochastic simulations at a lower computational cost than using the full set of mass-action rate laws. This review describes how to use quasi-steady state approximations in the right context, to prevent drawing erroneous conclusions from in silico simulations.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Division of Systems Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Hu Q, Bao Y, Gan S, Zhang Y, Han D, Niu L. Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity. Biosens Bioelectron 2020; 165:112358. [DOI: 10.1016/j.bios.2020.112358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
|
12
|
Hallaj T, Amjadi M, Qiu X, Susumu K, Medintz IL, Hildebrandt N. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. NANOSCALE 2020; 12:13719-13730. [PMID: 32573632 DOI: 10.1039/d0nr03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of rapid, simple, and versatile biosensors for monitoring the activity of histone modifying enzymes (HMEs) is needed for the improvement of diagnostic assays, screening of HME inhibitors, and a better understanding of HME kinetics in different environments. Nanoparticles can play an important role in this regard by improving or complementing currently available enzyme detection technologies. Here, we present the development and application of a homogeneous methyltransferase (SET7/9) assay based on time-gated Förster resonance energy transfer (TG-FRET) between terbium complexes (Tb) and luminescent semiconductor quantum dots (QDs). Specific binding of a Tb-antibody conjugate to a SET7/9-methylated Lys4 on a histone H3(1-21) peptide substrate attached to the QD surface resulted in efficient FRET and provided the mechanism for monitoring the SET7/9 activity. Two common peptide-QD attachment strategies (biotin-streptavidin and polyhistidine-mediated self-assembly), two different QD colors (625 and 705 nm), and enzyme sensing with post- or pre-assembled QD-peptide conjugates demonstrated the broad applicability of this assay design. Limits of detection in the low picomolar concentration range, high selectivity tested against non-specific antibodies, enzymes, and co-factors, determination of the inhibition constants of the SET7/9 inhibitors SAH and (R)-PFI-2, and analysis of the co-factor (SAM) concentration-dependent enzyme kinetics of SET7/9 which followed the Michaelis-Menten model highlighted the excellent performance of this TG-FRET HME activity assay.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. and Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, 266003 Qingdao, Shandong, China
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA and KeyW Corporation, Hanover, Maryland 21076, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
13
|
Breger JC, Susumu K, Lasarte-Aragonés G, Díaz SA, Brask J, Medintz IL. Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sens 2020; 5:1295-1304. [PMID: 32096987 DOI: 10.1021/acssensors.9b02291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipases are an important class of lipid hydrolyzing enzymes that play significant roles in many aspects of cell biology and digestion; they also have large roles in commercial food and biofuel preparation and are being targeted for pharmaceutical development. Given these, and many other biotechnological roles, sensitive and specific biosensors capable of monitoring lipase activity in a quantitative manner are critical. Here, we describe a Förster resonance energy transfer (FRET)-based biosensor that originates from a custom-synthesized ester substrate displaying a peptide at one end and a dye acceptor at the other. These substrates were ratiometrically self-assembled to luminescent semiconductor quantum dot (QD) donors by metal affinity coordination using the appended peptide's terminal hexahistidine motif to give rise to the full biosensing construct. This resulted in a high rate of FRET between the QD donor and the proximal substrate's dye acceptor. The lipase hydrolyzed the intervening target ester bond in the peptide substrate which, in turn, displaced the dye acceptor containing component and altered the rate of FRET in a concentration-dependent manner. Specifics of the substrate's stepwise synthesis are described along with the sensors assembly, characterization, and application in a quantitative proof-of-concept demonstration assay that is based on an integrated Michaelis-Menten kinetic approach. The utility of this unique nanoparticle-based architecture within a sensor configuration is then discussed.
Collapse
Affiliation(s)
- Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Code 5600, Washington, District of Columbia 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| |
Collapse
|
14
|
Cardoso Dos Santos M, Algar WR, Medintz IL, Hildebrandt N. Quantum dots for Förster Resonance Energy Transfer (FRET). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Semiconductor quantum dot FRET: Untangling energy transfer mechanisms in bioanalytical assays. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Quantum Dots and Gold Nanoparticles as Scaffolds for Enzymatic Enhancement: Recent Advances and the Influence of Nanoparticle Size. Catalysts 2020. [DOI: 10.3390/catal10010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticle scaffolds can impart multiple benefits onto immobilized enzymes including enhanced stability, activity, and recoverability. The magnitude of these benefits is modulated by features inherent to the scaffold–enzyme conjugate, amongst which the size of the nanoscaffold itself can be critically important. In this review, we highlight the benefits of enzyme immobilization on nanoparticles and the factors affecting these benefits using quantum dots and gold nanoparticles as representative materials due to their maturity. We then review recent literature on the use of these scaffolds for enzyme immobilization and as a means to dissect the underlying mechanisms. Detailed analysis of the literature suggests that there is a “sweet-spot” for scaffold size and the ratio of immobilized enzyme to scaffold, with smaller scaffolds and lower enzyme:scaffold ratios generally providing higher enzymatic activities. We anticipate that ongoing studies of enzyme immobilization onto nanoscale scaffolds will continue to sharpen our understanding of what gives rise to beneficial characteristics and allow for the next important step, namely, that of translation to large-scale processes that exploit these properties.
Collapse
|
17
|
Tsai HY, Kim H, Massey M, Krause KD, Algar WR. Concentric FRET: a review of the emerging concept, theory, and applications. Methods Appl Fluoresc 2019; 7:042001. [DOI: 10.1088/2050-6120/ab2b2f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Bhuckory S, Kays JC, Dennis AM. In Vivo Biosensing Using Resonance Energy Transfer. BIOSENSORS 2019; 9:E76. [PMID: 31163706 PMCID: PMC6628364 DOI: 10.3390/bios9020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetime, or intensity in response to a molecular or environmental change. These methods hold great promise for expanding our understanding of molecular processes not just in solution and in vitro studies, but also in vivo, generating information about complex activities in a natural, organismal setting. In this review, we focus on dyes, fluorescent proteins, and nanoparticles used as energy transfer-based optical transducers in vivo in mice; there are examples of optical sensing using FRET, BRET, and in this mammalian model system. After a description of the energy transfer mechanisms and their contribution to in vivo imaging, we give a short perspective of RET-based in vivo sensors and the importance of imaging in the infrared for reduced tissue autofluorescence and improved sensitivity.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joshua C Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Chen Z, Li P, Zhang Z, Zhai X, Liang J, Chen Q, Li K, Lin G, Liu T, Wu Y. Ultrasensitive Sensor Using Quantum Dots-Doped Polystyrene Nanospheres for Clinical Diagnostics of Low-Volume Serum Samples. Anal Chem 2019; 91:5777-5785. [DOI: 10.1021/acs.analchem.9b00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Abstract
Proteases play a pivotal role in regulating important physiological processes from food digestion to blood clotting. They are also important biomarkers for many diseases such as cancers. The importance of proteases has led to extensive efforts in the screening of proteases and their inhibitors as potential drug molecules. For example, human immunodeficiency virus (HIV) patients have been treated with HIV-1 protease inhibitors to prolong the life expectancy of patients. Such a close relationship between diseases and proteases provides a strong motivation for developing sensitive, selective, and robust protease assays and sensors, which can be exploited to discover new proteases and inhibitors. In this aspect, protease assays based on levels of proteolytic activities are more relevant than protease affinity assays such as immunoassays. In this review, recent developments of protease activity assays based on different detection principles are discussed and compared. For homogenous assays, fluorescence-based techniques are the most popular due to their high sensitivity and quantitative results. However, homogeneous assays have limited multiplex sensing capabilities. In contrast, heterogeneous assays can be employed to detect multiple proteases simultaneously, given the microarray technology that is already available. Among them, electrochemical methods, surface spectroscopy techniques, and enzyme-linked peptide protease assays are commonly used. Finally, recent developments in liquid crystal (LC)-based protease assays and their applications for detecting proteases and their inhibitors are discussed.
Collapse
Affiliation(s)
| | - Kun-Lin Yang
- National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
21
|
Ruan Z, Yuan P, Li T, Tian Y, Cheng Q, Yan L. Glutathione Triggered Near Infrared Fluorescence Imaging-Guided Chemotherapy by Cyanine Conjugated Polypeptide. ACS Biomater Sci Eng 2018; 4:4208-4218. [DOI: 10.1021/acsbiomaterials.8b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Youliang Tian
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Quan Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| |
Collapse
|
22
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
23
|
Vranish JN, Ancona MG, Oh E, Susumu K, Lasarte Aragonés G, Breger JC, Walper SA, Medintz IL. Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates. ACS NANO 2018; 12:7911-7926. [PMID: 30044604 DOI: 10.1021/acsnano.8b02334] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multistep enzymatic cascades are becoming more prevalent in industrial settings as engineers strive to synthesize complex products and pharmaceuticals in economical, environmentally friendly ways. Previous work has shown that immobilizing enzymes on nanoparticles can enhance their activity significantly due to localized interfacial effects, and this enhancement remains in place even when that enzyme's activity is coupled to another enzyme that is still freely diffusing. Here, we investigate the effects of displaying two enzymes with coupled catalytic activity directly on the same nanoparticle surface. For this, the well-characterized enzymes pyruvate kinase (PykA) and lactate dehydrogenase (LDH) were utilized as a model system; they jointly convert phosphoenolpyruvate to lactate in two sequential steps as part of downstream glycolysis. The enzymes were expressed with terminal polyhistidine tags to facilitate their conjugation to semiconductor quantum dots (QDs) which were used here as prototypical nanoparticles. Characterization of enzyme coassembly to two different sized QDs showed a propensity to cross-link into nanoclusters consisting of primarily dimers and some trimers. Individual and joint enzyme activity in this format was extensively investigated in direct comparison to control samples lacking the QD scaffolds. We found that QD association enhances LDH activity by >50-fold and its total turnover by at least 41-fold, and that this high activation appears to be largely due to stabilization of its quarternary structure. When both enzymes are simultaneously bound to the QD surfaces, their colocalization leads to >100-fold improvements in the overall rates of coupled activity. Experimental results in conjunction with detailed kinetic simulations provide evidence that this significant improvement in coupled activity is partially attributable to a combination of enhanced enzymatic activity and stabilization of LDH. More importantly, experiments aimed at disrupting channeled processes and further kinetic modeling suggest that the bulk of the performance enhancement arises from intermediary "channeling" between the QD-colocalized enzymes. A full understanding of the underlying processes that give rise to such enhancements from coupled enzymatic activity on nanoparticle scaffolds can provide design criteria for improved biocatalytic applications.
Collapse
Affiliation(s)
- James Nicholas Vranish
- National Research Council , Washington , DC 20001 , United States
- Department of Chemistry and Physics , Ave Maria University , Ave Maria , Florida 34142 , United States
| | | | - Eunkeu Oh
- KeyW Corporation , Hanover , Maryland 21076 , United States
| | | | | | | | | | | |
Collapse
|
24
|
Qiu X, Guo J, Xu J, Hildebrandt N. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. J Phys Chem Lett 2018; 9:4379-4384. [PMID: 30016106 DOI: 10.1021/acs.jpclett.8b01944] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoluminescence (PL) multiplexing usually relies on spectral or temporal separation. A combination into higher-order multiplexing for biosensing is extremely challenging because the PL intensity is required for target quantification at very low concentrations and the interplay of color, lifetime, and intensity must be carefully adapted. Here, we demonstrate time-gated Förster resonance energy transfer (TG-FRET) from a long-lifetime Tb complex to Cy3.5 and Cy5.5 dyes for spectrotemporal multiplexing of four different DNA targets in the same sample by single-color excitation and two-color detection. We used rolling circle amplification (RCA) for high specificity and sensitivity and for placing Tb donors and dye acceptors at controlled distances within the amplified DNA concatemers. This precise distance tuning led to target-specific PL decays of the FRET pairs and simple, separation-free, and higher-order multiplexed quantification of DNA. The RCA-FRET DNA assay could distinguish very homologous target sequences and provided limits of detection down to 40 zeptomoles (300 aM).
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Jiajia Guo
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Jingyue Xu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| |
Collapse
|
25
|
Peveler WJ, Algar WR. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chem Biol 2018; 13:1752-1766. [PMID: 29461796 DOI: 10.1021/acschembio.7b01022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Förster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
Collapse
Affiliation(s)
- William J. Peveler
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Vranish JN, Ancona MG, Walper SA, Medintz IL. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2901-2925. [PMID: 29115133 DOI: 10.1021/acs.langmuir.7b02588] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The growing emphasis on green chemistry, renewable resources, synthetic biology, regio-/stereospecific chemical transformations, and nanotechnology for providing new biological products and therapeutics is reinvigorating research into enzymatic catalysis. Although the promise is profound, many complex issues remain to be addressed before this effort will have a significant impact. Prime among these is to combat the degradation of enzymes frequently seen in ex vivo formats following immobilization to stabilize the enzymes for long-term application and to find ways of enhancing their activity. One promising avenue for progress on these issues is via nanoparticle (NP) display, which has been found in a number of cases to enhance enzyme activity while also improving long-term stability. In this feature article, we discuss the phenomenon of enhanced enzymatic activity at NP interfaces with an emphasis on our own work in this area. Important factors such as NP surface chemistry, bioconjugation approaches, and assay formats are first discussed because they can critically affect the observed enhancement. Examples are given of improved performance for enzymes such as phosphotriesterase, alkaline phosphatase, trypsin, horseradish peroxidase, and β-galactosidase and in configurations with either the enzyme or the substrate attached to the NP. The putative mechanisms that give rise to the performance boost are discussed along with how detailed kinetic modeling can contribute to their understanding. Given the importance of biosensing, we also highlight how this configuration is already making a significant contribution to NP-based enzymatic sensors. Finally, a perspective is provided on how this field may develop and how NP-based enzymatic enhancement can be extended to coupled systems and multienzyme cascades.
Collapse
|
27
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
28
|
Choi B, Rempala GA, Kim JK. Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Sci Rep 2017; 7:17018. [PMID: 29208922 PMCID: PMC5717222 DOI: 10.1038/s41598-017-17072-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Examining enzyme kinetics is critical for understanding cellular systems and for using enzymes in industry. The Michaelis-Menten equation has been widely used for over a century to estimate the enzyme kinetic parameters from reaction progress curves of substrates, which is known as the progress curve assay. However, this canonical approach works in limited conditions, such as when there is a large excess of substrate over enzyme. Even when this condition is satisfied, the identifiability of parameters is not always guaranteed, and often not verifiable in practice. To overcome such limitations of the canonical approach for the progress curve assay, here we propose a Bayesian approach based on an equation derived with the total quasi-steady-state approximation. In contrast to the canonical approach, estimates obtained with this proposed approach exhibit little bias for any combination of enzyme and substrate concentrations. Importantly, unlike the canonical approach, an optimal experiment to identify parameters with certainty can be easily designed without any prior information. Indeed, with this proposed design, the kinetic parameters of diverse enzymes with disparate catalytic efficiencies, such as chymotrypsin, fumarase, and urease, can be accurately and precisely estimated from a minimal amount of timecourse data. A publicly accessible computational package performing such accurate and efficient Bayesian inference for enzyme kinetics is provided.
Collapse
Affiliation(s)
- Boseung Choi
- Korea University Sejong campus, Division of Economics and Statistics, Department of National Statistics, Sejong, 30019, Korea
| | - Grzegorz A Rempala
- The Ohio State University, Division of Biostatistics and Mathematical Biosciences Institute, Columbus, OH, 43210, USA
| | - Jae Kyoung Kim
- Korea Advanced Institute of Science and Technology, Department of Mathematical Sciences, Daejeon, 34141, Korea.
| |
Collapse
|
29
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
30
|
Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay. Talanta 2017; 164:377-385. [DOI: 10.1016/j.talanta.2016.11.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023]
|
31
|
BAÇ B, GENÇ R. Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots. Turk J Chem 2017. [DOI: 10.3906/kim-1701-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Algar WR, Khachatrian A, Melinger JS, Huston AL, Stewart MH, Susumu K, Blanco-Canosa JB, Oh E, Dawson PE, Medintz IL. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. J Am Chem Soc 2016; 139:363-372. [DOI: 10.1021/jacs.6b11042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ani Khachatrian
- Sotera Defense Solutions, Columbia, Maryland 21046, United States
| | | | | | | | - Kimihiro Susumu
- Sotera Defense Solutions, Columbia, Maryland 21046, United States
| | - Juan B. Blanco-Canosa
- Departments
of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Eunkeu Oh
- Sotera Defense Solutions, Columbia, Maryland 21046, United States
| | - Philip E. Dawson
- Departments
of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | |
Collapse
|
33
|
Recent developments in lanthanide-to-quantum dot FRET using time-gated fluorescence detection and photon upconversion. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Kim I, Moon JS, Oh JW. Recent advances in M13 bacteriophage-based optical sensing applications. NANO CONVERGENCE 2016; 3:27. [PMID: 28191437 PMCID: PMC5271159 DOI: 10.1186/s40580-016-0087-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.
Collapse
Affiliation(s)
- Inhong Kim
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jong-Sik Moon
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
| | - Jin-Woo Oh
- Research Center for Energy Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan, 46241 Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241 Republic of Korea
| |
Collapse
|
35
|
Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1951-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
37
|
Mattera L, Bhuckory S, Wegner KD, Qiu X, Agnese F, Lincheneau C, Senden T, Djurado D, Charbonnière LJ, Hildebrandt N, Reiss P. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. NANOSCALE 2016; 8:11275-83. [PMID: 27188210 DOI: 10.1039/c6nr03261c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter <13 nm, PL quantum yield up to 66% at 705 nm, and colloidal stability of several months in various buffers. They were applied as FRET acceptors in homogeneous, time-gated immunoassays using Tb-antibodies as FRET donors, both coupled by an immunological sandwich complex between the two antibodies and a PSA (prostate specific antigen) biomarker. The advantages of the compact surface coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL(-1) obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL(-1)) and demonstrate their direct applicability in clinical diagnostics.
Collapse
Affiliation(s)
- Lucia Mattera
- Univ. Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Afsari HS, Cardoso Dos Santos M, Lindén S, Chen T, Qiu X, van Bergen en Henegouwen PMP, Jennings TL, Susumu K, Medintz IL, Hildebrandt N, Miller LW. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. SCIENCE ADVANCES 2016; 2:e1600265. [PMID: 27386579 PMCID: PMC4928903 DOI: 10.1126/sciadv.1600265] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 05/20/2023]
Abstract
Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.
Collapse
Affiliation(s)
- Hamid Samareh Afsari
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607–7061, USA
| | - Marcelina Cardoso Dos Santos
- NanoBioPhotonics (www.nanofret.com), Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, 91405 Orsay Cedex, France
| | - Stina Lindén
- NanoBioPhotonics (www.nanofret.com), Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, 91405 Orsay Cedex, France
| | - Ting Chen
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607–7061, USA
| | - Xue Qiu
- NanoBioPhotonics (www.nanofret.com), Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, 91405 Orsay Cedex, France
| | | | | | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Sotera Defense Solutions, Columbia, MD 21046, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Niko Hildebrandt
- NanoBioPhotonics (www.nanofret.com), Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, 91405 Orsay Cedex, France
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607–7061, USA
| |
Collapse
|
39
|
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Anal Bioanal Chem 2016; 408:4475-83. [DOI: 10.1007/s00216-016-9434-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
|
40
|
Díaz S, Breger J, Medintz I. Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots. Methods Enzymol 2016; 571:19-54. [DOI: 10.1016/bs.mie.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Sy M, Nonat A, Hildebrandt N, Charbonnière LJ. Lanthanide-based luminescence biolabelling. Chem Commun (Camb) 2016; 52:5080-95. [DOI: 10.1039/c6cc00922k] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiplexing, time-resolution, FRET…lanthanide-based biolabels reveal exceptional spectroscopic properties for bioanalytical applications.
Collapse
Affiliation(s)
- Mohamadou Sy
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Aline Nonat
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- Orsay
| | - Loïc J. Charbonnière
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| |
Collapse
|
42
|
Li JJ, Algar WR. A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay. Analyst 2016; 141:3636-47. [DOI: 10.1039/c6an00492j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dot-based concentric Förster resonance energy transfer (cFRET) is a promising modality for the development of multifunctional fluorescent probes for bioanalysis and bioimaging. A new long-wavelength configuration and multiplexed hybridization assay format expands the scope of cFRET.
Collapse
Affiliation(s)
- Jia Jun Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
43
|
Hoffman C, Giallorenzi TG, Slater LB. Optics research at the U.S. Naval Research Laboratory. APPLIED OPTICS 2015; 54:F268-F285. [PMID: 26560616 DOI: 10.1364/ao.54.00f268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Naval Research Laboratory (NRL) was established in Washington, DC in 1923 and is the corporate laboratory for the U.S. Navy and Marine Corps. Today NRL is a world-class research institution conducting a broad program of research and development (R&D), including many areas of optical science and technology. NRL is conducting cutting-edge R&D programs to explore new scientific areas to enable unprecedented Navy capabilities as well as improving current technologies to increase the effectiveness of Navy and other Department of Defense systems. This paper provides a broad overview of many of NRL's achievements in optics. Some of the remaining articles in this feature issue will discuss NRL's most recent research in individual areas, while other articles will present more detailed historical perspectives of NRL's research concerning particular scientific topics.
Collapse
|
44
|
Spillmann CM, Stewart MH, Susumu K, Medintz IL. Combining semiconductor quantum dots and bioscaffolds into nanoscale energy transfer devices. APPLIED OPTICS 2015; 54:F85-F95. [PMID: 26560627 DOI: 10.1364/ao.54.000f85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Significant advances have been made in the development of nanoscale devices capable of exciton transport via Förster resonance energy transfer. Several requirements must be met for effective operation, including a reliable energy-harvesting source along with highly organized, precisely placed energy relay elements. For the latter, biological scaffolds such as DNA provide a customizable, symmetric, and stable structure that can be site-specifically modified with organic fluorophores. Here, advancements in nanoscale energy transfer devices incorporating semiconductor nanocrystals and bioscaffolds are reviewed with discussion of biofunctionalization, linker chemistries, design considerations, and concluding with applications in light harvesting, multiplexed biosensing, and optical logic.
Collapse
|
45
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
46
|
In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots. Anal Chim Acta 2015; 895:112-7. [DOI: 10.1016/j.aca.2015.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/23/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
|
47
|
Kalarestaghi A, Bayat M, Hashemi SJ, Razavilar V. Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:25-31. [PMID: 28959296 DOI: 10.15171/ijb.1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. OBJECTIVES We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. MATERIALS AND METHODS Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. RESULTS By using the magnetic/silica core shell sensitivity of the system changed from 2×10-11 in our previous study to 2×10-12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL-1. CONCLUSIONS This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.
Collapse
Affiliation(s)
- Alireza Kalarestaghi
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansour Bayat
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jamal Hashemi
- Food Microbiology Research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Higiene, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Priem B, Tian C, Tang J, Zhao Y, Mulder WJM. Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin Drug Deliv 2015; 12:1881-94. [PMID: 26292712 DOI: 10.1517/17425247.2015.1074567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The application of intravenously administered nanoparticle (NP) therapies is increasingly being explored for a variety of diseases. The key to their success lies in a thorough understanding of nanoparticle pharmacological behavior, specificity and elimination kinetics. Fluorescent imaging techniques provide exciting opportunities to gain insight into such NP behavior in complex biological systems, at macroscopic as well as microscopic levels. AREAS COVERED In this review, we will summarize NP labeling methods in relation to their established and emerging fluorescent imaging modalities for in vitro, in vivo, and ex vivo studies of NP behavior. We will highlight novel applications and discuss recent developments in techniques such as fluorescence molecular tomography (FMT), Förster resonance energy transfer (FRET), and Raman imaging. Finally, we will provide a perspective on the challenges and future directions of NP-based fluorescent labeling and imaging in nanotherapeutics. EXPERT OPINION Commonly used in preclinical applications, fluorescent imaging of NPs can be achieved with minimal invasiveness and low toxicity in a multiplex fashion. Increasingly applied in the study of NP biodistribution, dissociation, and elimination behavior, fluorescent imaging allows fluid longitudinal tracking and visualization of NP interactions at the level of the whole animal, target organs/tissues, and individual cells.
Collapse
Affiliation(s)
- Bram Priem
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Cheng Tian
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Jun Tang
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Yiming Zhao
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Willem J M Mulder
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA .,b 2 Department of Vascular Medicine, Academic Medical Center , Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
49
|
Massey M, Wu M, Conroy EM, Algar WR. Mind your P's and Q's: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. Curr Opin Biotechnol 2015; 34:30-40. [DOI: 10.1016/j.copbio.2014.11.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 01/15/2023]
|
50
|
|