1
|
Van Elzen R, Konijnenberg A, Van der Veken P, Edgeworth MJ, Scrivens JH, Fülöp V, Sobott F, Lambeir AM. Study of the Conformational Dynamics of Prolyl Oligopeptidase by Mass Spectrometry: Lessons Learned. J Med Chem 2024; 67:10436-10446. [PMID: 38783480 PMCID: PMC11215766 DOI: 10.1021/acs.jmedchem.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.
Collapse
Affiliation(s)
- Roos Van Elzen
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Albert Konijnenberg
- Laboratory
of Biomolecular & Analytical Mass Spectrometry, Department of
Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Pieter Van der Veken
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Matthew J. Edgeworth
- Waters/Warwick
Centre for BioMedical Mass Spectrometry and Proteomics, School of
Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - James H. Scrivens
- Waters/Warwick
Centre for BioMedical Mass Spectrometry and Proteomics, School of
Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Vilmos Fülöp
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Institute
of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Frank Sobott
- Laboratory
of Biomolecular & Analytical Mass Spectrometry, Department of
Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Molecular and Cellular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Anne-Marie Lambeir
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
2
|
Zimnicka MM. Structural studies of supramolecular complexes and assemblies by ion mobility mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:526-559. [PMID: 37260128 DOI: 10.1002/mas.21851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in instrumentation and development of computational strategies for ion mobility mass spectrometry (IM-MS) studies have contributed to an extensive growth in the application of this analytical technique to comprehensive structural description of supramolecular systems. Apart from the benefits of IM-MS for interrogation of intrinsic properties of noncovalent aggregates in the experimental gas-phase environment, its merits for the description of native structural aspects, under the premises of having maintained the noncovalent interactions innate upon the ionization process, have attracted even more attention and gained increasing interest in the scientific community. Thus, various types of supramolecular complexes and assemblies relevant for biological, medical, material, and environmental sciences have been characterized so far by IM-MS supported by computational chemistry. This review covers the state-of-the-art in this field and discusses experimental methods and accompanying computational approaches for assessing the reliable three-dimensional structural elucidation of supramolecular complexes and assemblies by IM-MS.
Collapse
Affiliation(s)
- Magdalena M Zimnicka
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
4
|
Schramm HM, Tamadate T, Hogan CJ, Clowers BH. Evaluation of Hydrogen-Deuterium Exchange during Transient Vapor Binding of MeOD with Model Peptide Systems Angiotensin II and Bradykinin. J Phys Chem A 2023; 127:8849-8861. [PMID: 37827113 DOI: 10.1021/acs.jpca.3c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The advancement of hybrid mass spectrometric tools as an indirect probe of molecular structure and dynamics relies heavily upon a clear understanding between gas-phase ion reactivity and ion structural characteristics. This work provides new insights into gas-phase ion-neutral reactions of the model peptides (i.e., angiotensin II and bradykinin) on a per-residue basis by integrating hydrogen/deuterium exchange, ion mobility, tandem mass spectrometry, selective vapor binding, and molecular dynamics simulations. By comparing fragmentation patterns with simulated probabilities of vapor uptake, a clear link between gas-phase hydrogen/deuterium exchange and the probabilities of localized vapor association is established. The observed molecular dynamics trends related to the sites and duration of vapor binding track closely with experimental observation. Additionally, the influence of additional charges and structural characteristics on exchange kinetics and ion-neutral cluster formation is examined. These data provide a foundation for the analysis of solvation dynamics of larger, native-like conformations of proteins in the gas phase.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Tomoya Tamadate
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
5
|
Cajahuaringa S, Caetano DLZ, Zanotto LN, Araujo G, Skaf MS. MassCCS: A High-Performance Collision Cross-Section Software for Large Macromolecular Assemblies. J Chem Inf Model 2023; 63:3557-3566. [PMID: 37184925 PMCID: PMC10269586 DOI: 10.1021/acs.jcim.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) techniques have become highly valued as a tool for structural characterization of biomolecular systems since they yield accurate measurements of the rotationally averaged collision cross-section (CCS) against a buffer gas. Despite its enormous potential, IM-MS data interpretation is often challenging due to the conformational isomerism of metabolites, lipids, proteins, and other biomolecules in the gas phase. Therefore, reliable and fast CCS calculations are needed to help interpret IM-MS data. In this work, we present MassCCS, a parallelized open-source code for computing CCS of molecules ranging from small organic compounds to massive protein assemblies at the trajectory method level of description using atomic and molecular buffer gas particles. The performance of the code is comparable to other available software for small molecules and proteins but is significantly faster for larger macromolecular assemblies. We performed extensive tests regarding accuracy, performance, and scalability with system size and number of CPU cores. MassCCS has proven highly accurate and efficient, with execution times under a few minutes, even for large (84.87 MDa) virus capsid assemblies with very modest computational resources. MassCCS is freely available at https://github.com/cces-cepid/massccs.
Collapse
Affiliation(s)
- Samuel Cajahuaringa
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Daniel L. Z. Caetano
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Leandro N. Zanotto
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Guido Araujo
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
6
|
Spesyvyi A, Žabka J, Polášek M, Charvat A, Schmidt J, Postberg F, Abel B. Charged Ice Particle Beams with Selected Narrow Mass and Kinetic Energy Distributions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:878-892. [PMID: 37018538 DOI: 10.1021/jasms.2c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small ice particles play an important role in atmospheric and extraterrestrial chemistry. Circumplanetary ice particles that are encountered by space probes at hypervelocities play a critical role in the determination of surface and subsurface properties of their source bodies. Here we present an apparatus for the generation of low-intensity beams of single mass-selected charged ice particles under vacuum. They are produced via electrospray ionization of water at atmospheric pressure and undergo evaporative cooling when transferred to vacuum through an atmospheric vacuum interface. m/z selection is achieved through two subsequent quadrupole mass filters operated in the variable-frequency mode within a range of m/z values between 8 × 104 and 3 × 107. Velocity and charge of the selected particles are measured using a nondestructive single-pass image charge detector. From the known electrostatic acceleration potentials and settings of the quadrupoles the particle masses could be obtained and be accurately controlled. It has been shown that the droplets are frozen within the transit time of the apparatus such that ice particles are present after the quadrupole stages and finally detected. The demonstrated correspondence between particle mass and specific quadrupole potentials in this device allows preparation of beams of single particles with a repetition rate between 0.1 and 1 Hz with various diameter distributions from 50 to 1000 nm at 30-250 eV of kinetic energy per charge. This corresponds to velocities and particle masses quickly available between 600 m/s (80 nm) and 50 m/s (900 nm) and particle charge numbers (positive) between 103 and 104[e], depending upon size.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic
| | - Ján Žabka
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic
| | - Ales Charvat
- Institute of Chemical Technology and Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Linnestrasse 3, D-04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Jürgen Schmidt
- Institute of Geological Sciences, Freie Universität Berlin, Malteserstraße 74-100, D-12249 Berlin, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Malteserstraße 74-100, D-12249 Berlin, Germany
| | - Bernd Abel
- Institute of Chemical Technology and Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Linnestrasse 3, D-04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
7
|
Simón-Manso Y. Ion-Neutral Collision Cross Section as a Function of the Static Dipole Polarizability and the Ionization Energy of the Ion. J Phys Chem A 2023; 127:3274-3280. [PMID: 37019437 PMCID: PMC10550215 DOI: 10.1021/acs.jpca.2c07157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Ion mobility spectrometry is becoming more and more popular as a fast, efficient, and sensitive tool for the separation and identification of ionized molecules in the gas phase. An ion traveling through a drift tube at atmospheric pressure under the influence of an electric field collides with the buffer gas molecules. The mobility of the ion depends inversely on the ion-neutral collision cross section. In the simplest hard-sphere approximation, the collision cross section is the area of the conventional geometric cross section. However, deviations are expected because of the physical interactions between the colliding species. More than a century ago, Langevin described a model for the interaction between a point-charge ion and a polarizable atom (molecule). Since then, the model has been modified many times to include better approximations of the interaction potential, usually preserving the point-charge nature of the ion. Although more advanced approaches allow for considering polarizable ions with dissimilar sizes and shapes, still explicit analytical dependencies on the properties of the ion remain elusive. In this work, an extended version of the Langevin model is proposed and solved using algebraic perturbation theory. A simple analytical expression of the collision cross section depending explicitly on both the static dipole polarizability and the ionization energy of the ion is found. The equation is validated using ion mobility data. Surprisingly, even low-level calculations of the polarizability tensors produce results that are consistent with the experimental observations. This fact makes the equation very attractive for helping applications in different areas, such as the deconvolution of mobilograms of protomers, ion-molecule chemical kinetics, and others.
Collapse
Affiliation(s)
- Yamil Simón-Manso
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
9
|
Arslanian AJ, Mismash N, Dearden DV. Collision Cross-Section Measurements of Collision-Induced Dissociation Precursor and Product Ions in an FTICR-MS and an IM-MS: A Comparative Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1626-1635. [PMID: 35895596 DOI: 10.1021/jasms.2c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustained off-resonance irradiation-cross-sectional areas by Fourier transform ion cyclotron resonance mass spectrometry (SORI-CRAFTI) is an FTICR-MS strategy to collisionally activate precursor ions and then measure their ion-neutral collision cross sections, as well as those of selected products, at the same time. We benchmarked SORI-CRAFTI using protonated leucine-enkephalin, to excellent agreement (typically within 1-2%) with previous studies performed via collision-induced dissociation-ion mobility (CID-IMS). SORI-CRAFTI was then applied to alkali metal-cationized leucine-enkephalin and compared with CID-IMS via precursor/product cross-section ratios. Qualitative agreement between SORI-CRAFTI and CID-IMS was excellent (again, usually within 1-2%); however, neither SORI-CRAFTI nor CID-IMS could determine if metalated leucine-enkephalin was present in its canonical or zwitterionic form. When SORI-CRAFTI was used on [2.2.2]-cryptand+Cs+, SORI activation resulted in a 5% decrease in collision cross section, consistent with migration of the externally bound Cs+ into the cryptand's cavity and similar to the cross section observed when electrospraying from an isopropanol-rich solvent. Thus, SORI-CRAFTI is useful for studying gas-phase ion chemistry of small- to medium-sized molecules and host-guest systems.
Collapse
Affiliation(s)
- Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Noah Mismash
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
10
|
Ujma J, Jhingree J, Norgate E, Upton R, Wang X, Benoit F, Bellina B, Barran P. Protein Unfolding in Freeze Frames: Intermediate States are Revealed by Variable-Temperature Ion Mobility-Mass Spectrometry. Anal Chem 2022; 94:12248-12255. [PMID: 36001095 PMCID: PMC9453741 DOI: 10.1021/acs.analchem.2c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers. Data from ubiquitin show unfolding transitions that proceed through diverse and highly elongated intermediate states, which converge to more compact structures. These findings contrast with data obtained from lysozyme─a protein where (un)-folding plasticity is restricted by four disulfide linkages, although this is alleviated in its reduced form. For structured proteins, collision activation of the protein ions in-source enables subsequent "freezing" or thermal annealing of unfolding intermediates, whereas disordered proteins restructure substantially at 250 K even without activation, indicating that cold denaturation can occur without solvent. These data are presented in the context of a toy model framework that describes the relative occupancy of the available conformational space.
Collapse
Affiliation(s)
- Jakub Ujma
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jacquelyn Jhingree
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rosie Upton
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
11
|
Wang Y, Zhang X, Hu W, Dong C, Fu D, Habtegabir SG, Han Y. Ultra-fast screening of free fatty acids in human plasma using ion mobility mass spectrometry. J Sep Sci 2022; 45:1818-1826. [PMID: 35340115 DOI: 10.1002/jssc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Free fatty acids involved in many metabolic regulations in human body. In this work, an ultra-fast screening method was developed for the analysis of free fatty acids using trapped ion mobility spectrometry coupled with mass spectrometry. Thirty-three free fatty acids possessing different unsaturation degrees and different carbon chain lengths were baseline separated and characterized within milliseconds. Saturated, monounsaturated, and polyunsaturated free fatty acids showed different linearities between collision cross section values and m/z. Establishment of correlations between structures and collision cross section values provided additional qualitative information and made it possible to determine free fatty acids which were out of the standards pool but possessed the confirmed linearity. Gas-phase separation made the quantitative analysis reliable and repeatable at a much lower time cost than chromatographic methods. The sensitivity was comparable to and even better than the reported results. The method was validated and applied to profiling free fatty acids in human plasma. Saturated free fatty acids abundance in the fasting state was found to be lower than that in the postprandial state, while unsaturated species abundance was found higher. The method was fast and robust with minimum sample pretreatment, so it was promising in high-throughput screening of free fatty acids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xianxie Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
12
|
Pope BL, Joaquin D, Hickey JT, Mismash N, Heravi T, Shrestha J, Arslanian AJ, Mortensen DN, Dearden DV. Multi-CRAFTI: Relative Collision Cross Sections from Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Line Width Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:131-140. [PMID: 34928604 DOI: 10.1021/jasms.1c00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Determination of collision cross sections (CCS) using the cross-sectional areas by the Fourier transform ion cyclotron resonance (CRAFTI) technique is limited by the requirement that accurate pressures in the trapping cell of the mass spectrometer must be known. Experiments must also be performed in the energetic hard-sphere regime such that ions decohere after single collisions with neutrals; this limits application to ions that are not much more massive than the neutrals. To mitigate these problems, we have resonantly excited two (or more) ions of different m/z to the same center-of-mass kinetic energy in a single experiment, subjecting them to identical neutral pressures. We term this approach "multi-CRAFTI". This facilitates measurement of relative CCS without requiring knowledge of the pressure and enables determination of absolute CCS using internal standards. Experiments with tetraalkylammonium ions yield CCS in reasonable agreement with the one-ion-at-a-time CRAFTI approach and with ion mobility spectrometry (IMS) when differences in collision energetics are taken into account (multi-CRAFTI generally yields smaller CCS than does IMS due to the higher collision energies employed in multi-CRAFTI). Comparison of multi-CRAFTI and IMS results with CCS calculated from structures computed at the M06-2X/6-31+G* level of theory using projection approximation or trajectory method values, respectively, indicates that the computed structures have CCS increasingly smaller than the experimental CCS as m/z increases, implying the computational model overestimates interactions between the alkyl arms. For ions that undergo similar collisional decoherence processes, relative CCS reach constant values at lower collision energies than do absolute CCS values, suggesting a means of increasing the accessible upper m/z limit by employing multi-CRAFTI.
Collapse
Affiliation(s)
- Brigham L Pope
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Jacob T Hickey
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Noah Mismash
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Jamir Shrestha
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Daniel N Mortensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
13
|
Guntner AS, Bögl T, Mlynek F, Buchberger W. Large-Scale Evaluation of Collision Cross Sections to Investigate Blood-Brain Barrier Permeation of Drugs. Pharmaceutics 2021; 13:pharmaceutics13122141. [PMID: 34959422 PMCID: PMC8703848 DOI: 10.3390/pharmaceutics13122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Successful drug administration to the central nervous system requires accurate adjustment of the drugs’ molecular properties. Therefore, structure-derived descriptors of potential brain therapeutic agents are essential for an early evaluation of pharmacokinetics during drug development. The collision cross section (CCS) of molecules was recently introduced as a novel measurable parameter to describe blood-brain barrier (BBB) permeation. This descriptor combines molecular information about mass, structure, volume, branching and flexibility. As these chemical properties are known to influence cerebral pharmacokinetics, CCS determination of new drug candidates may provide important additional spatial information to support existing models of BBB penetration of drugs. Besides measuring CCS, calculation is also possible; but however, the reliability of computed CCS values for an evaluation of BBB permeation has not yet been fully investigated. In this work, prediction tools based on machine learning were used to compute CCS values of a large number of compounds listed in drug libraries as negative or positive with respect to brain penetration (BBB+ and BBB− compounds). Statistical evaluation of computed CCS and several other descriptors could prove the high value of CCS. Further, CCS-deduced maximum molecular size of BBB+ drugs matched the dimensions of BBB pores. A threshold for transcellular penetration and possible permeation through pore-like openings of cellular tight-junctions is suggested. In sum, CCS evaluation with modern in silico tools shows high potential for its use in the drug development process.
Collapse
Affiliation(s)
- Armin Sebastian Guntner
- Institute of Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Thomas Bögl
- Institute of Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Franz Mlynek
- Institute of Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| |
Collapse
|
14
|
Gabelica V. Native Mass Spectrometry and Nucleic Acid G-Quadruplex Biophysics: Advancing Hand in Hand. Acc Chem Res 2021; 54:3691-3699. [PMID: 34546031 DOI: 10.1021/acs.accounts.1c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While studying nucleic acids to reveal the weak interactions responsible for their three-dimensional structure and for their interactions with drugs, we also contributed to the field of biomolecular mass spectrometry, both in terms of fundamental understanding and with new methodological developments. A first goal was to develop mass spectrometry approaches to detect noncovalent interactions between antitumor drugs and their DNA target. Twenty years ago, our attention turned toward specific DNA structures such as the G-quadruplex (a structure formed by guanine-rich strands). Mass spectrometry allows one to discern which molecules interact with one another by measuring the masses of the complexes, and quantify the affinities by measuring their abundance. The most important findings came from unexpected masses. For example, we showed the formation of higher- or lower-order structures by G-quadruplexes used in traditional biophysical assays. We also derived complete thermodynamic and kinetic description of G-quadruplex folding pathways by measuring cation binding, one at a time. Getting quantitative information requires accounting for nonspecific adduct formation and for the response factors of the different molecular forms. With these caveats in mind, the approach is now mature enough for routine biophysical characterization of nucleic acids. A second goal is to obtain more detailed structural information on each of the complexes separated by the mass spectrometer. One such approach is ion mobility spectrometry, and even today the challenge lies in the structural interpretation of the measurements. We showed that, although structures such as G-quadruplexes are well-preserved in the MS conditions, double helices actually get more compact in the gas phase. These major rearrangements forced us to challenge comfortable assumptions. Further work is still needed to generalize how to deduce structures in solution from ion mobility spectrometry data and, in particular, how to account for the electrospray charging mechanisms and for ion internal energy effects. These studies also called for complementary approaches to ion mobility spectrometry. Recently, we applied isotope exchange labeling mass spectrometry to characterize nucleic acid structures for the first time, and we reported the first ever circular dichroism ion spectroscopy measurement on mass-selected trapped ions. Circular dichroism plays a key role in assigning the stacking topology, and our new method now opens the door to characterizing a wide variety of chiral molecules by mass spectrometry. In summary, advanced mass spectrometry approaches to characterize gas-phase structures work well for G-quadruplexes because they are stiffened by inner cations. The next objective will be to generalize these methodologies to a wider range of nucleic acid structures.
Collapse
Affiliation(s)
- Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM,
ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
15
|
Parchami R, Tabrizchi M. Effective collisional cross-section of small ions in the gas phase: Application to ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9090. [PMID: 33760281 DOI: 10.1002/rcm.9090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE The observed drift times of monoatomic ions, including alkali metal ions and halide anions, are not fully consistent with their size. When the effect of mass is included through the Mason-Schamp equation, the deviation gets worse so that the trend of the experimental collisional cross-sections becomes completely opposite to what is expected. This is attributed to the stronger local electric field around smaller ions. The strong electric field in the vicinity of a small ion leads to strong ion-neutral interactions and creates a drag force against ion motion. The smaller the ions, the stronger the interaction, because of the higher charge density. METHODS In view of this, a modified equation is introduced to describe the relationship between the observed drift times or ion mobilities and the cross-sections of small ions. Here, for small ions with high charge density, the experimental collision cross-section is expressed as the effective collision cross-section, Ωeff = σi (1 + α/ri 3 ), that takes into account both intrinsic ion size, σi , and the ion-molecule interactions through a correction term of α/ri 3 , which is proportional to the charge density. RESULTS A linear fit of the drift times of alkali metal ions and halide anions to the proposed equation showed relative deviations of <8.2%. The model successfully predicted the drift time of other small diatomic ions with reasonable error. CONCLUSIONS The proposed model can be used as a simple and efficient relationship in predicting the effective cross-section of small ions.
Collapse
Affiliation(s)
- Razieh Parchami
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahmoud Tabrizchi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
16
|
Hanozin E, Mignolet B, Martens J, Berden G, Sluysmans D, Duwez AS, Stoddart JF, Eppe G, Oomens J, De Pauw E, Morsa D. Radical-Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10049-10055. [PMID: 33561311 PMCID: PMC8251753 DOI: 10.1002/anie.202014728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The digital revolution sets a milestone in the progressive miniaturization of working devices and in the underlying advent of molecular machines. Foldamers involving mechanically entangled components with modular secondary structures are among the most promising designs for molecular switch‐based applications. Characterizing the nature and dynamics of their intramolecular network following the application of a stimulus is the key to their performance. Here, we use non‐dissociative electron transfer as a reductive stimulus in the gas phase and probe the consecutive co‐conformational transitions of a donor‐acceptor oligorotaxane foldamer using electrospray mass spectrometry interfaced with ion mobility and infrared ion spectroscopy. A comparison of collision cross section distributions for analogous closed‐shell and radical molecular ions sheds light on their respective formation energetics, while variations in their respective infrared absorption bands evidence changes in intramolecular organization as the foldamer becomes more compact. These differences are compatible with the advent of radical‐pairing interactions.
Collapse
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Damien Sluysmans
- NanoChemistry and Molecular Systems, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Anne-Sophie Duwez
- NanoChemistry and Molecular Systems, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 908, 1098XH, Amsterdam, The Netherlands
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium.,Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hanozin E, Mignolet B, Martens J, Berden G, Sluysmans D, Duwez A, Stoddart JF, Eppe G, Oomens J, De Pauw E, Morsa D. Radical‐Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry UR MolSys University of Liège 4000 Liège Belgium
| | - Jonathan Martens
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| | - Damien Sluysmans
- NanoChemistry and Molecular Systems UR MolSys University of Liège 4000 Liège Belgium
| | - Anne‐Sophie Duwez
- NanoChemistry and Molecular Systems UR MolSys University of Liège 4000 Liège Belgium
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston IL 60208 USA
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Gauthier Eppe
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Jos Oomens
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
- van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 908 1098XH Amsterdam The Netherlands
| | - Edwin De Pauw
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| |
Collapse
|
18
|
Panczyk EM, Snyder DT, Ridgeway ME, Somogyi Á, Park MA, Wysocki VH. Surface-Induced Dissociation of Protein Complexes Selected by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:5513-5520. [PMID: 33751887 DOI: 10.1021/acs.analchem.0c05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.
Collapse
Affiliation(s)
- Erin M Panczyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Árpád Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Larriba-Andaluz C, Prell JS. Fundamentals of ion mobility in the free molecular regime. Interlacing the past, present and future of ion mobility calculations. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1826708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
20
|
Morsa D, Hanozin E, Eppe G, Quinton L, Gabelica V, Pauw ED. Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:4573-4582. [DOI: 10.1021/acs.analchem.9b05850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoire Acides Nucléiques: Régulations Naturelles et Artificielles (ARNA, U1212, UMR5320), IECB, Pessac 33600, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
21
|
Hanozin E, Grifnée E, Gattuso H, Matagne A, Morsa D, Pauw ED. Covalent Cross-Linking as an Enabler for Structural Mass Spectrometry. Anal Chem 2019; 91:12808-12818. [PMID: 31490660 DOI: 10.1021/acs.analchem.9b02491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of studies referring to the structural elucidation of intact biomolecular systems using mass spectrometry techniques has gradually increased in the post-2000s literature topics. As part of native mass spectrometry, this domain capitalizes on the kinetic trapping of physiological folds in view of probing solution-like conformational properties of isolated molecules or complexes after their electrospray transfer to the gas phase. Despite its efficiency for a wide array of analytes, this approach is expected to be pushed to its limits when considering highly dynamic systems or when dealing with nonideal operating conditions. To circumvent these limitations, we challenge the adequacy of an original strategy based on cross-linkers to improve the gas-phase stability of isolated proteins and ensure the preservation of folded conformations when measuring with strong transmission voltages, by spraying from denaturing solvents, or trapping for extended periods of time. Tested on cytochrome c, myoglobin, and β-lactoglobulin cross-linked using BS3, we validated the process as structurally nonintrusive in solution using far-ultraviolet circular dichroism and unraveled the preservation of folded conformations showing better resilience to denaturation on cross-linked species using ion mobility. The resulting collision cross sections were found in agreement with the native fold, and a preservation of the proteins' secondary and tertiary structures was evidenced using molecular dynamics simulations. Our results provide new insights concerning the fate of electro-sprayed cross-linked conformers in the gas phase, while constituting promising evidence for the validation of this technique as part of future structural mass spectrometry workflows.
Collapse
|
22
|
Hanozin E, Morsa D, De Pauw E. Two-Parameter Power Formalism for Structural Screening of Ion Mobility Trends: Applied Study on Artificial Molecular Switches. J Phys Chem A 2019; 123:8043-8052. [PMID: 31449411 DOI: 10.1021/acs.jpca.9b06121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent literature provides increasing samples of structural studies relying on ion mobility coupled to mass spectrometry in view of characterizing gas-phase conformation and energetics properties of biomolecular ions. A typical framework consists in experimentally monitoring the collisional cross sections for various experimental conditions and using them as references to select appropriate candidate structures issued from theoretical modeling. Although it has proved successful for structural assignment, this process is resource costly and lengthy, namely due to intricacies in the selection of appropriate input geometries. In the present work, we propose simplified methodologies dedicated to the systematic screening of ion mobility data acquired on systems built from repetitive subunits and detail their application to challenging artificial molecular switch systems. Capitalizing on coarse-grained design, we first demonstrate how the assimilation of subunits into adequately assembled building-blocks can be used for fast assignments of a system topology. Further focusing on topology-specific differential ion mobility trends, we show that the building-block assemblies can be fused into single fully convex solid figure models, i.e., sphere and cylinder, whose projected areas follow a two-parameter power formalism A × nB. We show that the fitting parameters A and B were assigned as structural descriptors respectively associated with the dimensions of each constitutive subunit, i.e., size parameter, and with their assembled tridimensional arrangement, i.e., shape parameter. The present work provides a ready-to-use method for the screening of IM-MS data sets that is expected to facilitate the eventual design of input structures whenever advanced modeling calculations are required.
Collapse
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| |
Collapse
|
23
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
24
|
Kalenius E, Groessl M, Rissanen K. Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0062-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Konermann L, Metwally H, McAllister RG, Popa V. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods 2018; 144:104-112. [DOI: 10.1016/j.ymeth.2018.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
|
26
|
Canzani D, Laszlo KJ, Bush MF. Ion Mobility of Proteins in Nitrogen Gas: Effects of Charge State, Charge Distribution, and Structure. J Phys Chem A 2018; 122:5625-5634. [DOI: 10.1021/acs.jpca.8b04474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
27
|
Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS. High performance collision cross section calculation-HPCCS. J Comput Chem 2018; 39:1675-1681. [PMID: 29498071 DOI: 10.1002/jcc.25199] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
Since the commercial introduction of Ion Mobility coupled with Mass Spectrometry (IM-MS) devices in 2003, a large number of research laboratories have embraced the technique. IM-MS is a fairly rapid experiment used as a molecular separation tool and to obtain structural information. The interpretation of IM-MS data is still challenging and relies heavily on theoretical calculations of the molecule's collision cross section (CCS) against a buffer gas. Here, a new software (HPCCS) is presented, which performs CCS calculations using high perfomance computing techniques. Based on the trajectory method, HPCCS can accurately calculate CCS for a great variety of molecules, ranging from small organic molecules to large protein complexes, using helium or nitrogen as buffer gas with considerable gains in computer time compared to publicly available codes under the same level of theory. HPCCS is available as free software under the Academic Use License at https://github.com/cepid-cces/hpccs. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leandro Zanotto
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Gabriel Heerdt
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Paulo C T Souza
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil.,Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands
| | - Guido Araujo
- Institute of Computing and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
28
|
Metwally H, Konermann L. Crown Ether Effects on the Location of Charge Carriers in Electrospray Droplets: Implications for the Mechanism of Protein Charging and Supercharging. Anal Chem 2018; 90:4126-4134. [DOI: 10.1021/acs.analchem.8b00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
29
|
Lee JW, Lee HHL, Davidson KL, Bush MF, Kim HI. Structural characterization of small molecular ions by ion mobility mass spectrometry in nitrogen drift gas: improving the accuracy of trajectory method calculations. Analyst 2018; 143:1786-1796. [DOI: 10.1039/c8an00270c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An accurate theoretical collision cross section calculation method in nitrogen was developed for reliable structural ion mobility mass spectrometry.
Collapse
Affiliation(s)
- Jong Wha Lee
- Center for Analytical Chemistry
- Division of Chemical and Medical Metrology
- Korea Research Institute of Standards and Science (KRISS)
- Daejeon 34113
- Republic of Korea
| | - Hyun Hee L. Lee
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | | | | | - Hugh I. Kim
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
30
|
Hanozin E, Mignolet B, Morsa D, Sluysmans D, Duwez AS, Stoddart JF, Remacle F, De Pauw E. Where Ion Mobility and Molecular Dynamics Meet To Unravel the (Un)Folding Mechanisms of an Oligorotaxane Molecular Switch. ACS NANO 2017; 11:10253-10263. [PMID: 28881131 DOI: 10.1021/acsnano.7b04833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
At the interface between foldamers and mechanically interlocked molecules, oligorotaxanes exhibit a spring-like folded secondary structure with remarkable mechanical and physicochemical properties. Among these properties, the ability of oligorotaxanes to act as molecular switches through controlled modulations of their spatial extension over (un)folding dynamics is of particular interest. The present study aims to assess and further characterize this remarkable feature in the gas phase using mass spectrometry tools. In this context, we focused on the [4]5NPR+12 oligorotaxane molecule complexed with PF6- counterion and probed its co-conformational states as a function of the in-source-generated charge states. Data were interpreted in light of electronic secondary structure computations at the PM6 and DFT levels. Our results highlight two major co-conformational groups associated either with folded compact structures, notably stabilized by intramolecular π-π interactions and predominant for low charge states or with fully stretched structures resulting from significant Coulombic repulsions at high charge states. Between, the oligorotaxane adopts intermediate folded co-conformations, suggesting a stepwise unfolding pathway under increasing repulsive Coulombic constraints. The reversibility of this superstructural transition was next interrogated under electron-driven (nondissociative electron transfer) and heat-driven (collision-induced unfolding) activation stimuli. The outcomes support the feasibility to either unfold or (partially) refold the oligorotaxane foldamer on purpose in the gas phase. Our results show that the balance between the stabilizing π-π interactions and the versatile Coulomb interactions dictates the elongation state of the foldamer in the gas phase and emphasizes the adequacy of mass spectrometry tools for the superstructural characterization of desolvated prototypical artificial molecular machines.
Collapse
Affiliation(s)
| | | | | | | | | | - J Fraser Stoddart
- Mechanostereochemistry Group, Northwestern University , Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
31
|
Laszlo KJ, Bush MF. Effects of Charge State, Charge Distribution, and Structure on the Ion Mobility of Protein Ions in Helium Gas: Results from Trajectory Method Calculations. J Phys Chem A 2017; 121:7768-7777. [PMID: 28910102 DOI: 10.1021/acs.jpca.7b08154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Collision cross section (Ω) values of gas-phase ions of proteins and protein complexes are used to probe the structures of the corresponding species in solution. Ions of many proteins exhibit increasing Ω-values with increasing charge state but most Ω-values calculated for protein ions have used simple collision models that do not explicitly account for charge. Here we use a combination of ion mobility mass spectrometry experiments with helium gas and trajectory method calculations to characterize the extents to which increases in experimental Ω-values with increasing charge state may be attributed to increased momentum transfer concomitant with enhanced long-range interactions between the protein ion and helium atoms. Ubiquitin and C-to-N terminally linked diubiquitin ions generated from different solution conditions exhibit more than a 2-fold increase in Ω with increasing charge state. For native and energy-relaxed models of the proteins and most methods for distributing charge, Ω-values calculated using the trajectory method increase by less than 1% over the range of charge states observed from typical solution conditions used for native mass spectrometry. However, the calculated Ω-values increase by 10% to 15% over the full range of charge states observed from all solution conditions. Therefore, contributions from enhanced ion-induced dipole interactions with increasing charge state are significant but without additional structural changes can account for only a fraction of the increase in Ω observed experimentally. On the basis of these results, we suggest guidelines for calculating Ω-values in the context of applications in biophysics and structural biology.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
32
|
Konermann L. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1827-1835. [PMID: 28710594 DOI: 10.1007/s13361-017-1739-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/12/2023]
Abstract
Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
33
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
34
|
Laszlo KJ, Buckner JH, Munger EB, Bush MF. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1382-1391. [PMID: 28224394 PMCID: PMC5555649 DOI: 10.1007/s13361-017-1620-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than ~4. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - John H Buckner
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Eleanor B Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
35
|
Laszlo KJ, Munger EB, Bush MF. Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase. J Phys Chem B 2017; 121:2759-2766. [PMID: 28301724 PMCID: PMC5486214 DOI: 10.1021/acs.jpcb.7b00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Eleanor B. Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
36
|
Young MN, Bleiholder C. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:619-627. [PMID: 28251573 DOI: 10.1007/s13361-017-1605-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Meggie N Young
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
37
|
Abstract
In this review, we focus on an important aspect of ion mobility (IM) research, namely the reporting of quantitative ion mobility measurements in the form of the gas-phase collision cross section (CCS), which has provided a common basis for comparison across different instrument platforms and offers a unique form of structural information, namely size and shape preferences of analytes in the absence of bulk solvent. This review surveys the over 24,000 CCS values reported from IM methods spanning the era between 1975 to 2015, which provides both a historical and analytical context for the contributions made thus far, as well as insight into the future directions that quantitative ion mobility measurements will have in the analytical sciences. The analysis was conducted in 2016, so CCS values reported in that year are purposely omitted. In another few years, a review of this scope will be intractable, as the number of CCS values which will be reported in the next three to five years is expected to exceed the total amount currently published in the literature.
Collapse
Affiliation(s)
- Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
38
|
Seo J, Hoffmann W, Warnke S, Huang X, Gewinner S, Schöllkopf W, Bowers MT, von Helden G, Pagel K. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat Chem 2016; 9:39-44. [PMID: 27995915 DOI: 10.1038/nchem.2615] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.
Collapse
Affiliation(s)
- Jongcheol Seo
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Waldemar Hoffmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Stephan Warnke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Xing Huang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
39
|
Ujma J, Giles K, Morris M, Barran PE. New High Resolution Ion Mobility Mass Spectrometer Capable of Measurements of Collision Cross Sections from 150 to 520 K. Anal Chem 2016; 88:9469-9478. [DOI: 10.1021/acs.analchem.6b01812] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jakub Ujma
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
for Biotechnology, University of Manchester, Manchester M1 7DN, U.K
| | | | | | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
for Biotechnology, University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
40
|
Allen SJ, Eaton RM, Bush MF. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations. Anal Chem 2016; 88:9118-26. [DOI: 10.1021/acs.analchem.6b02089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel J. Allen
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M. Eaton
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
41
|
Laszlo KJ, Munger EB, Bush MF. Folding of Protein Ions in the Gas Phase after Cation-to-Anion Proton-Transfer Reactions. J Am Chem Soc 2016; 138:9581-8. [PMID: 27399988 PMCID: PMC4999245 DOI: 10.1021/jacs.6b04282] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structure and folding of a protein in solution depends on noncovalent interactions within the protein and those with surrounding ions and molecules. Decoupling these interactions in solution is challenging, which has hindered the development of accurate physics-based models for structure prediction. Investigations of proteins in the gas phase can be used to selectively decouple factors affecting the structures of proteins. Here, we use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of denatured ubiquitin ions in the gas phase, and ion mobility to probe their structures. In CAPTR, a precursor charge state is selected (P) and reacted with monoanions to generate charge-reduced product ions (C). Following each CAPTR event, denatured ubiquitin ions (13+ to 6+) yield products that rapidly isomerize to structures that have smaller collision cross sections (Ω). The Ω values of CAPTR product ions depend strongly on C and very weakly on P. Pre- and post-CAPTR activation was then used to probe the potential-energy surfaces of the precursor and product ions, respectively. Post-CAPTR activation showed that ions of different P fold differently and populate different regions of the potential-energy surface of that ion. Finally, pre-CAPTR activation showed that the structures of protein ions can be indirectly investigated using ion mobility of their CAPTR product ions, even for subtle structural differences that are not apparent from ion mobility characterization of the activated precursor ions. More generally, these results show that CAPTR strongly complements existing techniques for characterizing the structures and dynamics of biological molecules in the gas phase.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Eleanor B. Munger
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| |
Collapse
|
42
|
Shi L, Holliday AE, Bohrer BC, Kim D, Servage KA, Russell DH, Clemmer DE. "Wet" Versus "Dry" Folding of Polyproline. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1037-47. [PMID: 27059978 PMCID: PMC5152579 DOI: 10.1007/s13361-016-1372-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 05/06/2023]
Abstract
When the all-cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all-trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all-cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions-indicating that some transitions observed in water (i.e., "wet" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Liuqing Shi
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Alison E Holliday
- Department of Chemistry, Moravian College, Bethlehem, PA, 18018, USA
| | - Brian C Bohrer
- Department of Chemistry, University of Southern Indiana, Evansville, IN, 47712, USA
| | - Doyong Kim
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly A Servage
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
43
|
Khakinejad M, Kondalaji SG, Donohoe GC, Valentine SJ. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:462-73. [PMID: 26620531 PMCID: PMC4872623 DOI: 10.1007/s13361-015-1305-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 05/17/2023]
Abstract
Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H](3-) and [M - 5H](5-) insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å(2) and 808 ± 2 Å(2). [M - 4H](4-) ions were comprised of more compact (Ω = 676 ± 3 Å(2)) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å(2)) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H](4-) and [M - 5H](5-) ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.
Collapse
Affiliation(s)
- Mahdiar Khakinejad
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
44
|
Siems WF, Viehland LA, Hill HH. Correcting the fundamental ion mobility equation for field effects. Analyst 2016; 141:6396-6407. [DOI: 10.1039/c6an01353h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross sections measured by ion mobility spectrometry are corrected for collision frequency and cooling/heating-controlled momentum transfer.
Collapse
Affiliation(s)
| | | | - Herbert H. Hill
- Department of Chemistry
- Washington State University
- Pullman
- USA
| |
Collapse
|
45
|
Allen SJ, Giles K, Gilbert T, Bush MF. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst 2016; 141:884-91. [DOI: 10.1039/c5an02107c] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new drift cell was used to measure collision cross sections and characterize the origins of ion mobility peak broadening for biological molecules and assemblies.
Collapse
|
46
|
Sun Y, Vahidi S, Sowole MA, Konermann L. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:31-40. [PMID: 26369778 DOI: 10.1007/s13361-015-1244-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments. ᅟ
Collapse
Affiliation(s)
- Yu Sun
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
47
|
Baldauf C, Rossi M. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:493002. [PMID: 26598600 DOI: 10.1088/0953-8984/27/49/493002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.
Collapse
Affiliation(s)
- Carsten Baldauf
- Fritz Haber Institute, Faradayweg 4-6, 14195 Berlin, Germany
| | | |
Collapse
|
48
|
Lantsuzskaya EV, Krisilov AV, Levina AM. Structure of aldehyde cluster ions in the gas phase, according to data from ion mobility spectrometry and ab initio calculations. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415090204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Wyttenbach T, Bleiholder C, Anderson SE, Bowers MT. A new algorithm to characterise the degree of concaveness of a molecular surface relevant in ion mobility spectrometry. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1042935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
D'Atri V, Porrini M, Rosu F, Gabelica V. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:711-26. [PMID: 26259654 PMCID: PMC4440389 DOI: 10.1002/jms.3590] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 05/13/2023]
Abstract
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.
Collapse
Affiliation(s)
- Valentina D'Atri
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | - Massimiliano Porrini
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | | | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| |
Collapse
|