1
|
La Gioia D, Salviati E, Basilicata MG, Felici C, Botrugno OA, Tonon G, Sommella E, Campiglia P. Leveraging the potential of 1.0-mm i.d. columns in UHPLC-HRMS-based untargeted metabolomics. Anal Bioanal Chem 2024:10.1007/s00216-024-05588-z. [PMID: 39443364 DOI: 10.1007/s00216-024-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Untargeted metabolomics UHPLC-HRMS workflows typically employ narrowbore 2.1-mm inner diameter (i.d.) columns. However, the wide concentration range of the metabolome and the need to often analyze small sample amounts poses challenges to these approaches. Reducing the column diameter could be a potential solution. Herein, we evaluated the performance of a microbore 1.0-mm i.d. setup compared to the 2.1-mm i.d. benchmark for untargeted metabolomics. The 1.0-mm i.d. setup was implemented on a micro-UHPLC system, while the 2.1-mm i.d. on a standard UHPLC, both coupled to quadrupole-orbitrap HRMS. On polar standard metabolites, a sensitivity gain with an average 3.8-fold increase over the 2.1-mm i.d., along with lower LOD (LODavg 1.48 ng/mL vs. 6.18 ng/mL) and LOQ (LOQavg 4.94 ng/mL vs. 20.60 ng/mL), was observed. The microbore method detected and quantified all metabolites at LLOQ with respect to 2.1, also demonstrating good repeatability with lower CV% for retention times (0.29% vs. 0.63%) and peak areas (4.65% vs. 7.27%). The analysis of various samples, in both RP and HILIC modes, including different plasma volumes, dried blood spots (DBS), and colorectal cancer (CRC) patient-derived organoids (PDOs), in full scan-data dependent mode (FS-DDA) reported a significant increase in MS1 and MS2 features, as well as MS/MS spectral matches by 38.95%, 39.26%, and 18.23%, respectively. These findings demonstrate that 1.0-mm i.d. columns in UHPLC-HRMS could be a potential strategy to enhance coverage for low-amount samples while maintaining the same analytical throughput and robustness of 2.1-mm i.d. formats, with reduced solvent consumption.
Collapse
Affiliation(s)
- Danila La Gioia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudia Felici
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| |
Collapse
|
2
|
Cardenas Contreras EM, Tanis E, Lanças FM, Vargas Medina DA. Exploring a reversible adaptation of conventional HPLC for capillary-scale operation. J Chromatogr A 2024; 1730:465021. [PMID: 38897112 DOI: 10.1016/j.chroma.2024.465021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV-vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV-vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.
Collapse
Affiliation(s)
| | - Elton Tanis
- Nano Separations Technologies, São Carlos, Brazil
| | | | | |
Collapse
|
3
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38952056 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
4
|
Zeng J, Sun K, Chen S, Zhang X, Wang X, Zhang B. A Microfluidic-Fabricated Rod Sprayer for Nanoelectrospray Mass Spectrometry. Anal Chem 2024; 96:3989-3993. [PMID: 38315070 DOI: 10.1021/acs.analchem.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The nanoelectrosprayer is a key device in the hyphenation of nanoLC-ESI-MS, and its development plays a crucial role in pushing forward the mining depth of biological discovery and industrialization of omics science. In this work, a new type of nanoelectrospray emitter, a rod sprayer, was developed based on microfluidic manufacture. Due to its porous silica structure, the rod sprayer in effect worked as a multinozzle sprayer, which is composed of a bunch of micrometer sized spray channels. Without the need for sophisticated microfabrication equipment, a superclean environment, or a complicated assembling process, such sprayer rods can be facilely fabricated in a mass production style: 3,600 rods with excellent monodispersity have been fabricated in 1 h, and rod sprayers thus made have demonstrated excellent intraday, interday, and interbatch reproducibilities: RSD = 1.9, 4.9, and 6.1%, respectively. The rod sprayer can generate stable electrospray in a wide voltage range from 2.6 to 3.2 kV and flow rates from 50 to 1000 nL/min, covering typical flow rates of subnanoLC, nanoLC, to microLC, and work steadily even under complex matrix environments (e.g., Hank's balanced salt solution containing sodium, magnesium, and calcium ions) without clogging. Meanwhile, the rod sprayers exhibited 200-1800% ionization efficiency enhancement in comparison with commonly used tapered tip emitters, for small molecule drugs, peptides, and proteins, respectively, and provided a broadened linear dynamic range of 4 orders of magnitude. The excellent characteristics of the rod sprayer, together with its small size and mass production capacity, should provide a high quality, high durability, high consistency, and disposable use-supported nanoelectrospray solution for MS-based bioanalyses.
Collapse
Affiliation(s)
- Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Borsatto JVB, Lanças FM. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules 2023; 28:5134. [PMID: 37446796 DOI: 10.3390/molecules28135134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides an overview of recent advancements in applying graphene-based materials as sorbents for liquid chromatography (LC) analysis. Graphene-based materials are promising for analytical chemistry, including applications as sorbents in liquid chromatography. These sorbents can be functionalized to produce unique extraction or stationary phases. Additionally, graphene-based sorbents can be supported in various materials and have consequently been applied to produce various devices for sample preparation. Graphene-based sorbents are employed in diverse applications, including food and environmental LC analysis. This review summarizes the application of graphene-based materials in food and environmental water analysis in the last five years (2019 to 2023). Offline and online sample preparation methods, such as dispersive solid phase microextraction, stir bar sorptive extraction, pipette tip solid phase extraction, in-tube solid-phase microextraction, and others, are reviewed. The review also summarizes the application of the columns produced with graphene-based materials in separating food and water components and contaminants. Graphene-based materials have been reported as stationary phases for LC columns. Graphene-based stationary phases have been reported in packed, monolithic, and open tubular columns and have been used in LC and capillary electrochromatography modes.
Collapse
Affiliation(s)
- João V B Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| | - Fernando M Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| |
Collapse
|
6
|
Ahmed MA, Yu RB, Quirino JP. Recent developments in open tubular liquid chromatography and electrochromatography from 2019–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Funari CS, Rinaldo D, Bolzani VS, Verpoorte R. Reaction of the Phytochemistry Community to Green Chemistry: Insights Obtained Since 1990. JOURNAL OF NATURAL PRODUCTS 2023; 86:440-459. [PMID: 36638830 DOI: 10.1021/acs.jnatprod.2c00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review article aims to study how phytochemists have reacted to green chemistry insights since 1990, the year when the U.S. Environmental Protection Agency launched the "Pollution Prevention Act". For each year in the period 1990 to 2019, three highly cited phytochemistry papers that provided enough information about the experimental procedures utilized were sampled. The "greenness" of these procedures was assessed, particularly for the use of solvents. The highly hazardous diethyl ether, benzene, and carbon tetrachloride did not appear in the papers sampled after 2010. Advances in terms of sustainability were observed mainly in the extraction stage. Similar progress was not observed in purification procedures, where chloroform, dichloromethane, and hexane regularly have been employed. Since replacing such solvents in purification procedures should be a major goal, potential alternative approaches are discussed. Moreover, some current initiatives toward a more sustainable phytochemical research considering aspects other than only solvents are highlighted. Although some advances have been achieved, it is believed that natural products chemists can play a major role in developing a novel ecological paradigm in chemistry. To contribute to this objective, six principles for performing natural products chemistry consistent with the guidelines of green chemistry are proposed.
Collapse
Affiliation(s)
- Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), 18610-034Botucatu, Brazil
| | - Daniel Rinaldo
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), 17033-360Bauru, Brazil
| | - Vanderlan S Bolzani
- NuBBE, Institute of Chemistry, São Paulo State University (UNESP), 14800-900Araraquara, Brazil
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, PO Box 9505, 2300RALeiden, The Netherlands
| |
Collapse
|
8
|
Venditti C, Biagioni V, Adrover A, Cerbelli S. Impact of transversal vortices on the performance of open-tubular liquid chromatography. J Chromatogr A 2022; 1685:463623. [DOI: 10.1016/j.chroma.2022.463623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
9
|
da Silva Burato JS, Basolli Borsatto JV, Lanças FM. Practical aspects of preparation, optimization, and evaluation of poly(styrene-divinylbenzene)porous-layer open tubular (PLOT) columns for capillary liquid chromatography. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Liu Y, Wen H, Chen S, Wang X, Zhu X, Luo L, Wang X, Zhang B. Mass Fabrication of Capillary Columns Based on Centrifugal Packing. Anal Chem 2022; 94:8126-8131. [PMID: 35650662 DOI: 10.1021/acs.analchem.2c00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Packed capillary columns have become the standard front-end separation device for mass spectrometry-based proteomics. The development of simple, fast, and robust capillary column technology, especially that with mass-fabrication capacity, can greatly improve analytical throughput and reproducibility in omics research. In this technical note, we report a centrifugal packing technology, which has the capability to mass fabricate high quality capillary columns with a 2886 columns/day fabrication throughput. The centrifugally packed columns presented significantly improved efficiency (reduced plate height hmin = 1.6, 37%-40% improvement compared with slurry packed columns), advanced kinetic performance limit, and excellent column-to-column reproducibility (2.0% RSD for retention time, 50 columns). Such columns enabled ∼5300 HeLa proteins identified in single-shot proteomic analysis, displaying both intercolumn and inter-run retention time stability (retention time RSD = 0.94% between nine replicates on three columns for probing peptide sequence). The mass-fabrication technology reported in this technical note may support disposable use of high quality chromatographic columns in large-scale bioanalysis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanrong Wen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojuan Wang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xudong Zhu
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | | | | | - Bo Zhang
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Aydoğan C, Erdoğan İY, El-Rassi Z. Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography. Molecules 2022; 27:molecules27072306. [PMID: 35408705 PMCID: PMC9000833 DOI: 10.3390/molecules27072306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl 12000, Turkey
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Department of Food Engineering, Bingöl University, Bingöl 12000, Turkey
- Correspondence: ; Tel.: +90-426-216-19-58; Fax: +90-426-216-00-33
| | - İbrahim Y. Erdoğan
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Faculty of Health Sciences, Bingöl University, Bingöl 12000, Turkey
| | - Ziad El-Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
12
|
Gritti F, Nawada S. On the road towards highly efficient and large volume three-dimensional-printed liquid chromatography columns ? J Sep Sci 2022; 45:3232-3240. [PMID: 35143712 DOI: 10.1002/jssc.202100962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
The current performance of commercially packed LC columns is limited by the random structure of the packed bed and by the wall-to-center heterogeneity of its structure. The minimum reduced plate heights observed are not smaller than 1.4 whereas they could theoretically be as low as 0.1 for dense and perfectly ordered packings of spheres. To bridge this gap, a wide inner diameter column with an ordered macroporous structure is printed in three dimensions by stereolithography of poly(ethylene glycol diacrylate) resin. Feature sizes below 100 μm are achieved by combining conventional polymer stereolithography with photolithography using photomasks. A layer-by-layer polymerization is performed by alternating two distinct photomasks having horizontally and vertically oriented patterns. Despite the inevitable printing imperfections, minimum reduced plate heights around unity are measured for non-retained analytes. The next challenges for the successful printing of highly efficient and large volume LC columns are threefold: reducing the feature size down to below 10 μm, keeping minimum the unevenness of the flow channel dimensions, and tackling additive manufacturing of silica aerogels at such small feature sizes for higher mechanical stability and broader range of retention/selectivity than those delivered by polymer materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Core Research/Fundamentals, 34 Maple Street, Milford, MA, 01757, USA
| | - Suhas Nawada
- Universiteit van Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, Amsterdam, 1098, The Netherlands
| |
Collapse
|
13
|
Zhong Z, Zhu M, Chu Z, Ren X, Tu B, Zhang W, Zhang L. Preparation and evaluation of ultra-long open-tubular capillary columns modified with Zeolitic Imidazolate Framework-8 incorporated polymeric porous layer for liquid chromatography. J Chromatogr A 2022; 1668:462880. [DOI: 10.1016/j.chroma.2022.462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
14
|
Zhou Y, Guo G, Wang X. Development of
Ultranarrow‐Bore
Open Tubular High Efficiency Liquid Chromatography. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yingyan Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
15
|
Günyel Z, Aslan H, Demir N, Aydoğan C. Nano-liquid chromatography with a new nano-structured monolithic nanocolumn for proteomics analysis. J Sep Sci 2021; 44:3996-4004. [PMID: 34499809 DOI: 10.1002/jssc.202100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Herein, we report the preparation and application of a new nano-structured monolithic nanocolumn based on modified graphene oxide using narrow fused silica capillary column (e.g., 50 μm internal diameter). The nanocolumn was prepared by an in situ polymerization using butyl methacrylate, ethylene dimethacrylate, and methacryloyl graphene oxide nanoparticles. Dimethyl formamide and water were used as the porogenic solvent. After polymerization, the obtained nanocolumn was coated with dimethyloctadecylchlorosilane in order to enhance the hydrophobicity. Both isocratic and gradient nano-liquid chromatographic separations for small molecules (e.g., alkylbenzenes) and macromolecules (e.g., intact proteins) were performed. Theoretical plates number up to 3600 plates/m in isocratic mode for propylbenzene were achieved. It was demonstrated that the feasibility of graphene oxide modified monolithic nanocolumn for high-efficiency and high-throughput nanoscale proteomics analysis. The high resolving power of monolithic nanocolumn yielded sensitive protein separation with narrower peak width while a high-resolution analysis of peptides from trypsin-digested cytochrome C could be obtained. Graphene oxide based monolithic nanocolumns are promising and can allow to powerful tools for trace proteom sample analysis.
Collapse
Affiliation(s)
- Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| |
Collapse
|
16
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
17
|
Dispas A, Emonts P, Fillet M. Microchip electrophoresis: A suitable analytical technique for pharmaceuticals quality control? A critical review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Diffraction-based label-free photothermal detector for separation analyses in a nanocapillary. J Chromatogr A 2021; 1648:462214. [PMID: 34004365 DOI: 10.1016/j.chroma.2021.462214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Miniaturization of column diameter in liquid chromatography is one of the major trends in separation sciences toward single-cell proteomics and metabolomics. Micro/nanoscale open tubular (OT) capillaries are promising tools for efficient separation analyses of the ultra-small volume of samples. However, highly sensitive and label-free on-column detection is still challenging for such ultra-small capillaries. In this study, we developed a photothermal detector using optical diffraction phenomena by a single nanocapillary. Our detection method realized concentration determination of unlabeled sample solutions in a nanocapillary with 460 nm inner diameter. The calculated limit of detection was 0.12 µM, which corresponds to 16 molecules in a detection volume of 0.23 fL. Furthermore, normal-phase chromatography was performed on a 12 cm long nanocapillary, and femtoliter sample injection, efficient separation, and label-free detection of dye molecules were demonstrated. Our photothermal detector will be widely used as a universal tool for chemical/biological analyses using capillaries with micro/nanoscale diameters.
Collapse
|
19
|
Abstract
Miniaturization is an important trend in modern analytical instrument development, including miniaturized gas chromatography and liquid chromatography, as well as micro bore columns and capillary-to-microfluidics-based platforms. Apart from the miniaturization of the separation column, which is the core part of a chromatographic system, other parts of the system, including the sampler, pumping system, gradient generation, and detection systems, have been miniaturized. Miniaturized liquid chromatography significantly reduces solvent and sample consumption while providing comparable or even better separation efficiency. When liquid chromatography is coupled with mass spectroscopy, a low flow rate can increase the ionization efficiency, leading to enhanced sensitivity of the mass spectrometer. In contrast, normal-scale liquid chromatography suffers from its relatively high volumetric flow rate, which challenges the scanning frequency of the mass spectrometer. On the other hand because of the small sample size, other detection strategies such as spectrometric methods cannot provide sufficient sensitivity and limits of detection. In this sense, mass spectrometry has become the detection method of choice for micro-scale liquid-phase chromatography. Miniaturized liquid chromatography can diminish sample dilution efficiently when extremely small amounts of samples are used. The main driving force for this miniaturization trend, especially in liquid-phase separations, is the desperate need for microscale analyses of biological and clinical samples, given these samples are precious and the sample size is usually very small. At present, microscale liquid-phase chromatography is the only method of choice for such small, precious, and highly informative samples. The miniaturization of liquid chromatography systems, especially chromatographic columns, would be advantageous to the modularization and integration of liquid chromatography instrumental systems. Chip liquid chromatography is an integration of chromatography columns, liquid control systems, and detection methods on a single microfluidic chip. Chip liquid chromatography is an excellent format for the miniaturization of liquid chromatography systems, and it has already attracted significant attention from academia and industry. However, this attempt is challenging, and great effort is required on fundamental techniques, such as the substrate material of the microfluidic chip, structure of the micro-chromatography column, fluid control method, and detection methods, in order to make the chips suitable for liquid chromatography. Currently, the major problem in chip liquid chromatography is that the properties of the chip substrate materials cannot meet the requirements for further miniaturization and integration of chip liquid chromatography. The strength of the existing chip substrate materials is generally below 60 MPa, and the material properties limit further advances in the miniaturization and integration of chromatographic chips. Therefore, new chip substrate materials and the standard of chip channel design such as channel size and channel structure should be the key for further development of chip liquid chromatography. Mainstream instrumentation companies as well as new start-up innovation companies are now undertaking efforts toward the development of microchip liquid chromatographic products. Agilent, the first instrumentation company that introduced commercial microchip liquid chromatographic columns to the market, has led this field. Apart from microchip-based columns, Agilent introduced trap columns for different kinds of biological molecules as well as gradient generation systems for microchip-based liquid phase chromatography. Recently, another start-up company introduced microchip columns based on the in situ microfabrication of the column bed rather than packing the column with a particulate material. Such developments in microfabrication may further propel the advancement of micro-scale liquid-phase chromatography to an unprecedented level, which is beyond the conventional components and materials employed in normal-scale liquid chromatography. This review introduces the recent research progress in microchip liquid chromatography technologies, and briefly discusses the current state of commercialization of microchips for liquid chromatography by major instrumentation companies.
Collapse
Affiliation(s)
- Hanrong WEN
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue ZHU
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo ZHANG
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Haghighi F, Talebpour Z, Sanati-Nezhad A. Clogging sensitivity of flow distributors designed for radially elongated hexagonal pillar array columns: a computational modelling. Sci Rep 2021; 11:4927. [PMID: 33654139 PMCID: PMC7925673 DOI: 10.1038/s41598-021-84178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Flow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.
Collapse
Affiliation(s)
- Farideh Haghighi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Centre for Bioengineering Research and Education (CBRE), Biomedical Engineering Program, University of Calgary, Mechanical Engineering Building, MEB214, 2500 University Dr., N.W., Calgary, AB, T2N 1N4, Canada
| | - Zahra Talebpour
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Centre for Bioengineering Research and Education (CBRE), Biomedical Engineering Program, University of Calgary, Mechanical Engineering Building, MEB214, 2500 University Dr., N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
21
|
Huang W. Open tubular ion chromatography: A state-of-the-Art review. Anal Chim Acta 2021; 1143:210-224. [PMID: 33384120 DOI: 10.1016/j.aca.2020.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022]
Abstract
This review summarizes the progress in open tubular ion chromatography (OTIC) over the period from 1981 to 2020. Although OTIC columns provide superior column efficiency, require very little sample volumes, and consume a minimum level of eluents compared to regular packed columns, not many reports can be found from the literature mainly due to the difficulties in the preparation of OTIC columns and the harsh system requirements, such as pL-nL injections and extremely small detection volumes. However, technical advances, e.g., capacitively coupled contactless conductivity detectors (C4Ds), hydroxide eluent compatible polymer-based OTIC columns, electrodialytic capillary suppressors, and nanovolume gas-free hydroxide eluent generators (EGs), have removed the obstacles to OTIC. As such, in this review, the author focused on the development of the key components in an OTIC system from the perspective of instrument development. A brief revisit of open tubular (OT) column theory is first presented, followed by a discussion of the system configuration and component development. Attention is given to the advances in the development of the suppressed open tubular ion chromatography (SOTIC) system.
Collapse
Affiliation(s)
- Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, Hubei, China.
| |
Collapse
|
22
|
Three approaches to improving performance of liquid chromatography using contour maps with pressure, time, and number of theoretical plates. J Chromatogr A 2020; 1637:461778. [PMID: 33359796 DOI: 10.1016/j.chroma.2020.461778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
Attempts to improve HPLC performance often focus on increasing the speed or separation performance. In this article, both the flow rate and column length are optimized as separation conditions, while observing the number of theoretical plates and hold-up time with isocratic elutions. In addition, the upper pressure limit must be simultaneously considered as the boundary condition. Approaches based on the optimal velocity (Opt.) are often adopted; but the kinetic performance limit (KPL) in Desmet's method can also be utilized for three-dimensional graphing with axes of pressure, time, and number of theoretical plates. Here, two approaches involving pressure increase are introduced, beginning with the condition of optimal linear velocity: one aimed at greater speed and the other at higher resolution. Coefficients of pressure-application are derived to measure the effectiveness of the intermediate conditions between the Opt. and KPL methods. In the third approach, the hold-up time is extended while maintaining a fixed pressure. Coefficients of time-extension are also derived, to determine the effectiveness to improve the separation performance.
Collapse
|
23
|
Godinho JM, Naese JA, Toler AE, Boyes BE, Henry RA, DeStefano JJ, Grinias JP. Importance of Particle Pore Size in Determining Retention and Selectivity in Reversed Phase Liquid Chromatography. J Chromatogr A 2020; 1634:461678. [PMID: 33221655 DOI: 10.1016/j.chroma.2020.461678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/09/2023]
Abstract
Column selection often centers on the identification of a stationary phase that increases resolution for a certain class of compounds. While gains in resolution are most affected by selectivity of the stationary phase or modifications of the mobile phase, enhancements can still be made with an intentional selection of the packing material's microstructure. Unrestricted mass transfer into the particle's porous structure minimizes band broadening associated with hindered access to stationary phase. Increased efficiency, especially when operating above the optimal flow rates, can be gained if the pore size is significantly larger than the solvated analyte. Less studied are the effects of reduced access to pores due to physical hindrance and its impact on retention. This article explores the relationship between pore size and reversed phase retention, and specifically looks at a series of particle architectures with reversed phase and size exclusion modes to study retention associated with access to stationary phase surface area.
Collapse
Affiliation(s)
- Justin M Godinho
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA.
| | - Joseph A Naese
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - Alexander E Toler
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - Barry E Boyes
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA
| | - Richard A Henry
- Independent Consultant, 983 Greenbriar Dr., State College, PA, 16801, USA
| | - Joseph J DeStefano
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA
| | - James P Grinias
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA.
| |
Collapse
|
24
|
Abstract
Food manufacturers are aiming to manage the levels of cross-contamination of allergens within food processing plants and ultimately move away from precautionary labelling. Hence, the need for rapid methods to detect allergens cross-contamination. A sensitive and selective label-free nanoMIPs based sensor was developed and tested for the detection of β-lactoglobulin (BLG). NanoMIPs were synthesized using solid-phase synthesis and appeared as spherical nanoparticles with sizes ranging from 264–294 nm, using dynamic light scattering (DLS). The nanoMIPs were functionalized with amine groups and attached to the surface of the SPR gold chip via amine-coupling protocol. The SPR nanoMIPs-based sensor demonstrated a detection limit of 3 ng mL−1 (211 pM) over a linear range of 1–5000 ng mL−1, with binding affinity of 7.0 × 10−8 M and specificity towards BLG. With further testing and final optimization, the developed nanosensor can be integrated on-line or at-line cleaning-in-place (CIP) wash systems, allowing to effectively monitor milk protein allergens as a rapid, point-of-source methodology.
Collapse
|
25
|
Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
do Nascimento FH, Moraes AH, Trazzi CR, Velasques CM, Masini JC. Fast construction of polymer monolithic columns inside fluorinated ethylene propylene (FEP) tubes for separation of proteins by reversed-phase liquid chromatography. Talanta 2020; 217:121063. [DOI: 10.1016/j.talanta.2020.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
|
27
|
Mielczarek P, Silberring J, Smoluch M. MINIATURIZATION IN MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2020; 39:453-470. [PMID: 31793697 DOI: 10.1002/mas.21614] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Expectations for continuous miniaturization in mass spectrometry are not declining for years. Portable instruments are highly welcome by the industry, science, space agencies, forensic laboratories, and many other units. All are striving for the small, cheap, and as good as possible instruments. This review describes the recent developments of miniature mass spectrometers and also provides selected applications where these devices are used. Upcoming perspectives of further development are also discussed. @ 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
28
|
Li X, Chang H. Chip-based ion chromatography (chip-IC) with a sensitive five-electrode conductivity detector for the simultaneous detection of multiple ions in drinking water. MICROSYSTEMS & NANOENGINEERING 2020; 6:66. [PMID: 34567677 PMCID: PMC8433475 DOI: 10.1038/s41378-020-0175-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/26/2020] [Indexed: 06/13/2023]
Abstract
The emerging need for accurate, efficient, inexpensive, and multiparameter monitoring of water quality has led to interest in the miniaturization of benchtop chromatography systems. This paper reports a chip-based ion chromatography (chip-IC) system in which the microvalves, sample channel, packed column, and conductivity detector are all integrated on a polymethylmethacrylate (PMMA) chip. A laser-based bonding technique was developed to guarantee simultaneous robust sealing between the homogeneous and heterogeneous interfaces. A five-electrode-based conductivity detector was presented to improve the sensitivity for nonsuppressed anion detection. Common anions (F-, Cl-, NO3 -, and SO4 2-) were separated in less than 8 min, and a detection limit (LOD) of 0.6 mg L-1 was achieved for SO4 2-. Tap water was also analyzed using the proposed chip-IC system, and the relative deviations of the quantified concentration were less than 10% when compared with that a commercial IC system.
Collapse
Affiliation(s)
- Xiaoping Li
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, P. R. China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 710072 Xi’an, P. R. China
| |
Collapse
|
29
|
Aydoğan C, Rigano F, Krčmová LK, Chung DS, Macka M, Mondello L. Miniaturized LC in Molecular Omics. Anal Chem 2020; 92:11485-11497. [DOI: 10.1021/acs.analchem.0c01436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cemil Aydoğan
- Biochemistry Division, Department of Chemistry, Bingöl University, Bingöl 12000,Turkey
- Department of Food Engineering, Bingöl University, Bingöl 12000,Turkey
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Sokolská 581, Hradec Králové 500 05, Czech Republic
| | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00Brno, Czech Republic
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome I-00128, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| |
Collapse
|
30
|
Tsuyama Y, Morikawa K, Mawatari K. Nanochannel chromatography and photothermal optical diffraction: Femtoliter sample separation and label-free zeptomole detection. J Chromatogr A 2020; 1624:461265. [DOI: 10.1016/j.chroma.2020.461265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
|
31
|
Li K, Hu W, Zhou Y, Dou X, Wang X, Zhang B, Guo G. Single-particle-frit-based packed columns for microchip chromatographic analysis of neurotransmitters. Talanta 2020; 215:120896. [PMID: 32312441 DOI: 10.1016/j.talanta.2020.120896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022]
Abstract
The fabrication of effective microchip liquid chromatography (LC) systems tends to be limited by the availability of suitable chromatographic columns. Herein, we developed a glass microchip LC system in which porous single-particle silica was adopted as frits and a freeze-thaw valve was utilized to achieve sample injection without interfering with sampling. The fabrication of single-particle-frit-based packed columns did not require an additional packing channel, thus avoiding dead volumes within the channel interface that can influence chromatographic separation. Further, the length of the packed column could be adjusted using the location of single-particle frits within the column channel. The fabricated frits exhibited high mechanical strength, good permeability, and tolerance for high pressures during chromatographic separation. In particular, the developed microchip LC system was able to withstand high separation pressures of more than 5000 psi. The microchip LC system was applied to the separation of neurotransmitters. Three different monoamine neurotransmitters were completely separated within 5 min with theoretical plate numbers on the order of 100,000 plates m-1. The microchip LC system has a potential for application in a variety of fields including environmental analysis, food safety, drug analysis, and biomedicine.
Collapse
Affiliation(s)
- Ke Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Wangyan Hu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yingyan Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiangnan Dou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Bo Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemistry Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
32
|
Mejía-Carmona K, Maciel EVS, Lanças FM. Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis 2020; 41:1680-1693. [PMID: 32359175 DOI: 10.1002/elps.202000019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
The humankind is pretty dependent on food to control several biological processes into the organism. As the world population increases, the demand for foodstuffs follows the same trend claiming for a high food production situation. For this reason, a substantial amount of chemicals is used in agriculture and livestock husbandries every year, enhancing the likelihood of contaminated foodstuffs being commercialized. This outlook becomes a public health concern; thus, the governmental regulatory agencies impose laws to control the residues and contaminants in food matrices. Currently, one of the most important analytical techniques to perform it is LC. Despite its already recognized effectiveness, it is often time consuming and requires significant volumes of reagents, which are transformed into toxic waste. In this context, miniaturized LC modes emerge as a greener and more effective analytical technique. They have remarkable advantages, including higher sensitivity, lower sample amount, solvent and stationary phase requirements, and more natural coupling to MS. In this review, most of the critical characteristics of them are discussed, focusing on the benchtop instruments and their related analytical columns. Additionally, a discussion regarding the last 10 years of publications reporting miniaturized LC application for the analysis of natural and industrial food samples is categorized. The main chemical classes as applied in the crops are highlighted, including pesticides, veterinary drugs, and mycotoxins.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
33
|
Carneiro AM, Moreira EA, Bragagnolo FS, Borges MS, Pilon AC, Rinaldo D, Funari CS. Soya agricultural waste as a rich source of isoflavones. Food Res Int 2020; 130:108949. [PMID: 32156391 DOI: 10.1016/j.foodres.2019.108949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022]
Abstract
Soybeans are among the world's major crops responsible for food and biodiesel production, as well as a major source of isoflavones - a class of high value-added bioactive compounds. As estimated 460 million tonnes of soya residues (branches, leaves, roots, and pods) will be produced in the 2018/2019 harvest, and 20-40% of this waste must be removed from the field to ensure soil quality and minimize environmental impacts. This work investigated the potential occurrence and content of isoflavones in soya agricultural waste collected directly from the ground after mechanically harvesting. We also assessed the extraction performances of ethanol and acetone for these materials as an alternative to acetonitrile, a problematic solvent from an environmental point of view. Considerable amounts of isoflavones were found in soya agricultural waste collected directly from the ground when compared to soybeans (2.71 ± 0.27, 0.57 ± 0.1, 0.30 ± 0.05 and 2.09 ± 0.24 kg of isoflavones/tonne of leaves, branches, pods, and soybeans, respectively). The greener ethanol and acetone performed well for a broad range of compounds. This is an example in which appreciable amounts of high value-added compounds are wasted. Since isoflavones are considered phytoestrogens, their recovery from part of this waste might avoid potential contamination of soil and groundwater.
Collapse
Affiliation(s)
| | - Eduarda Antunes Moreira
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Maiara Stefanini Borges
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Rinaldo
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Cristiano Soleo Funari
- UNESP - São Paulo State University, Faculty of Agricultural Sciences, Botucatu, São Paulo, Brazil.
| |
Collapse
|
34
|
Piendl SK, Geissler D, Weigelt L, Belder D. Multiple Heart-Cutting Two-Dimensional Chip-HPLC Combined with Deep-UV Fluorescence and Mass Spectrometric Detection. Anal Chem 2020; 92:3795-3803. [DOI: 10.1021/acs.analchem.9b05206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
35
|
On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents. J Chromatogr A 2020; 1612:460653. [DOI: 10.1016/j.chroma.2019.460653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
|
36
|
De Vos J, Dams M, Broeckhoven K, Desmet G, Horstkotte B, Eeltink S. Prototyping of a Microfluidic Modulator Chip and Its Application in Heart-Cut Strong-Cation-Exchange-Reversed-Phase Liquid Chromatography Coupled to Nanoelectrospray Mass Spectrometry for Targeted Proteomics. Anal Chem 2020; 92:2388-2392. [DOI: 10.1021/acs.analchem.9b05141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jelle De Vos
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Magali Dams
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Burkhard Horstkotte
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
37
|
Mejía-Carmona K, Soares da Silva Burato J, Borsatto JVB, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Zhang W, Liu L, Zhang Q, Zhang D, Hu Q, Wang Y, Wang X, Pu Q, Guo G. Visual and real-time imaging focusing for highly sensitive laser-induced fluorescence detection at yoctomole levels in nanocapillaries. Chem Commun (Camb) 2020; 56:2423-2426. [DOI: 10.1039/c9cc09594b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We developed a highly sensitive laser-induced fluorescence detection system, involving visual and real-time imaging focusing instead of the use of fluorescent reagents, for the detection of analytes in nanocapillaries.
Collapse
Affiliation(s)
- Wenmei Zhang
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Lei Liu
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Qi Zhang
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Dongtang Zhang
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Qin Hu
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Yanan Wang
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Xiayan Wang
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| | - Qiaosheng Pu
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Guangsheng Guo
- Center Excellence for Environmental Safety and Biological Effects
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
| |
Collapse
|
39
|
Lam SC, Coates LJ, Hemida M, Gupta V, Haddad PR, Macka M, Paull B. Miniature and fully portable gradient capillary liquid chromatograph. Anal Chim Acta 2019; 1101:199-210. [PMID: 32029112 DOI: 10.1016/j.aca.2019.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A robust, portable and miniature battery powered gradient capillary liquid chromatograph (total weight ∼2.7 kg, without battery ∼2.0 kg), with integrated microfluidic injection, column heating and high sensitivity low-UV absorbance detection is presented. The portable capillary chromatograph, was applied with a packed reversed-phase capillary column (100 mm × 300 μm I.D., 5 μm ODS), housed within an integrated capillary column heater controlled by a proportional-integral-derivative (PID) chip module. The system delivered retention time and peak area relative standard deviation in isocratic mode of <0.7% (n = 10) and <3.3% (n = 10), respectively, and <0.1% (n = 10) and <2.3% (n = 10) respectively, for gradient elution mode. Detection was based upon a 255 nm light-emitting diode (LED) using one of two commercial capillary flow-cell options, namely a high sensitivity 12 nL Agilent capillary z-cell (HSDC) and a 45 nL Thermo Fisher Scientific UZ-View™ flow cell (UZFC). The HSDC, housed within a 3D printed detector arrangement, gave an effective pathlength of 1.01 mm (84% of nominal pathlength) and stray light of only 0.2%. Limits of detection for four test small molecule pharmaceuticals ranged from 65 to 101 μg L-1 based upon a 316 nL injection volume, with separation efficiencies of between 18,000 and 29,700 N m-1, with sub-4 min run times. The portable capillary LC system was successfully coupled to a small footprint portable mass spectrometer (Microsaic 4500 MiD) to demonstrate compatibility and 'point-of-need' miniaturised LC-MS capability.
Collapse
Affiliation(s)
- Shing Chung Lam
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Lewellwyn Joseph Coates
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Trajan Scientific and Medical, Ringwood, Victoria, 3134, Australia
| | - Mohamed Hemida
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Paul R Haddad
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Mirek Macka
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Brett Paull
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
40
|
|
41
|
Kourmpetis I, Kastania AS, Ellinas K, Tsougeni K, Baca M, De Malsche W, Gogolides E. Gradient-temperature hot-embossing for dense micropillar array fabrication on thick cyclo-olefin polymeric plates: An example of a microfluidic chromatography column fabrication. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.100042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Cerdà JJ, Bona-Casas C, Cerrato A, Novak EV, Pyanzina ES, Sánchez PA, Kantorovich S, Sintes T. Magnetic responsive brushes under flow in strongly confined slits: external field control of brush structure and flowing particle mixture separation. SOFT MATTER 2019; 15:8982-8991. [PMID: 31528962 DOI: 10.1039/c9sm01285k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work magnetic brushes under flow conditions and confined inside narrow slits have been studied using Langevin dynamics simulations. It has been observed that the structural properties of these confined magnetic brushes can be tuned via the application of an external magnetic field, and this control can be exerted with a relatively low content of magnetic colloidal particles in the filaments that form the brushes (20% in the present study). The potential of these brushes to perform a separation process of a size-bidispersed mixture of free non-magnetic colloidal particles flowing through the slit has also been explored. Numerical results show that it is possible to induce a two-fold effect on the bidispersed particle flow: a lateral separation of the two types of flowing colloidal particles and an enhancement of the differences in their velocities. These two features are key elements sought in separation processes and could be very relevant in the design of new chromatographic columns and microfluid separation devices.
Collapse
Affiliation(s)
- Joan J Cerdà
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, E-07122 Palma de Mallorca, Spain.
| | - Carles Bona-Casas
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, E-07122 Palma de Mallorca, Spain.
| | - Antonio Cerrato
- Dpt. de Física UIB i Institut d'Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, E-07122 Palma de Mallorca, Spain.
| | | | - Elena S Pyanzina
- Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia
| | - Pedro A Sánchez
- Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia
| | - Sofia Kantorovich
- Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia and Faculty of Physics, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
| | - Tomàs Sintes
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
43
|
Ma C, Ma S, Chen Y, Wang Y, Ou J, Zhang J, Ye M. Fast fabrication and modification of polyoctahedral silsesquioxane-containing monolithic columns via two-step photo-initiated reactions and their application in proteome analysis of tryptic digests. Talanta 2019; 209:120526. [PMID: 31892036 DOI: 10.1016/j.talanta.2019.120526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
A fast and robust approach was developed to fabricate and modify hybrid monolithic columns via two-step photo-initiated reactions. At first, acrylopropyl polyoctahedral silsesquioxane (acryl-POSS) and 3-(triallyl silyl) propyl acrylate (TAPA) were chosen as precursors to synthesize poly (POSS-co-TAPA) monolithic column (monolith I) via photo-initiated free-radical polymerization within 10 min, which left lots of allyl groups on the surface of monolith. Secondly, two thiol-containing compounds, penicillamine and 1-octadecanethiol (ODT), were introduced to modify the prepared poly (POSS-co-TAPA) column via photo-initiated thiol-ene click reaction within 20 min. Finally, three resulting monolithic columns were applied to separate phenolic, anilines and antibiotics mixtures. These mixtures were baseline-separated on the monolith modified with penicillamine (monolith II), exhibiting better selectivity than both pristine monolith I and that modified with ODT (monolith III). Additionally, these columns were further used for separation of tryptic digest of HeLa cells by cLC-MS/MS. The 5071 unique peptides mapped to 2442 proteins were identified from HeLa cells digest on monolith II, which were superior over those on monolith III, but slightly lower than those on monolith I. These results demonstrated that these POSS-containing columns exhibited great separation ability for complex samples.
Collapse
Affiliation(s)
- Chen Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
44
|
Miggiels P, Wouters B, van Westen GJ, Dubbelman AC, Hankemeier T. Novel technologies for metabolomics: More for less. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, Grinias KM, Foster SW, Davis JJ, Grinias JP. High-Throughput and Ultrafast Liquid Chromatography. Anal Chem 2019; 92:67-84. [DOI: 10.1021/acs.analchem.9b04713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Glenn A. Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Benjamin Selover
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Leah Horvat
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | | | - Justin M. Godinho
- Advanced Materials Technology, Inc., Wilmington, Delaware 19810, United States
| | - Kaitlin M. Grinias
- Analytical Platforms & Platform Modernization, GlaxoSmithKline, Upper Providence, Collegeville, Pennsylvania 19426, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
46
|
Sun G, Kim YS, Kim JS, Ali F, An HJ, Cheong WJ. 100 Micrometer bore open tubular capillary column modified with linear co-polymer chains for application in low pressure liquid chromatography. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1667821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Genlin Sun
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Yune Sung Kim
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Jeong Soo Kim
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Faiz Ali
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Won Jo Cheong
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| |
Collapse
|
47
|
Use of thiol functionalities for the preparation of porous monolithic structures and modulation of their surface chemistry: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL. Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta 2019; 208:120304. [PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan.
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| |
Collapse
|
49
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
50
|
Xiang P, Yang Y, Zhao Z, Chen A, Liu S. Experimentally Validating Open Tubular Liquid Chromatography for a Peak Capacity of 2000 in 3 h. Anal Chem 2019; 91:10518-10523. [PMID: 31305068 DOI: 10.1021/acs.analchem.9b01465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The advancements in life science research mandate effective tools capable of analyzing large numbers of samples with low quantities and high complexities. As an essential analytical tool for this research, liquid chromatography (LC) encounters an ever-increasing demand for enhanced resolving power, accelerated analysis speed, and reduced limit of detection. Although theoretical studies have indicated that open tubular (OT) columns can produce superior resolving power under comparable elution pressures and analysis times, ultrahigh-resolution and ultrahigh-speed open tubular liquid chromatography (OTLC) separations have never been reported. Here we present experimental results to demonstrate the predicted potential of this technique. We use a 2 μm i.d. × 75 cm long OT column coated with trimethoxy(octadecyl)silane for separating pepsin/trypsin digested E. coli lysates and routinely produce exceptionally high peak capacities (e.g., 1900-2000 in 3-5 h). We reduce the column length to 2.7 cm and exhibit the capability of OTLC for ultrafast separations. Under an elution pressure of 227.5 bar, we complete the separation of six amino acids in ∼800 ms and resolve these compounds within ∼400 ms. In addition, we show that OTLC has low attomole limits of detection (LOD) and each separation requires samples of only a few picoliters. Importantly, no ultrahigh elution pressures are required. With the ultrahigh resolution, ultrahigh speed, low LOD, and low sample volume requirement, OTLC can potentially be a powerful tool for biotech research, especially single cell analysis.
Collapse
Affiliation(s)
- Piliang Xiang
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Yu Yang
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Apeng Chen
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Shaorong Liu
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States.,Department of Chemistry, the College of Sciences , Northeastern University , Shenyang 110819 , P.R. China
| |
Collapse
|