1
|
Pavlin N, Černigoj U, Bavčar M, Plesničar T, Mavri J, Zidar M, Bone M, Kralj Savič U, Sever T, Štrancar A. Analytical separation of plasmid DNA isoforms using anion exchanging chromatographic monoliths with 6 µm channels. Electrophoresis 2023; 44:1967-1977. [PMID: 37160710 DOI: 10.1002/elps.202300031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
High-performance liquid chromatography (HPLC)-based analytical assays are used to effectively monitor purity and quantity of plasmid DNA (pDNA) throughout the purification process. However, the phenomenon of physical entrapment of open circular (OC) isoforms pDNA inside narrow channels of chromatographic support decreases its accuracy and precision and the effect increases with pDNA size. The purpose of the study was to develop a chromatographic method for accurate analytical separation between isoforms of <16 kbp pDNA using weak anion exchanging monolithic column with large (6 µm) convective channels. Purified samples of 4.7 and 15.4 kbp large pDNA with known isoform composition were prepared and their isoforms separated in ascending salt gradient. Both OC and supercoiled (SC) isoforms were baseline separated at a flow rate below 0.5 mL min-1 in a guanidinium chloride (GdnCl) gradient with a ≥95% OC pDNA elution recovery. However, these chromatographic conditions increased 2 times the peak width for linear (LIN) pDNA isoform compared to the results using monoliths with 1.4 µm channel size. If other chaotropic agents, such as urea or thiocyanate (SCN), were added to Gdn ions, the elution volume for LIN isoform decreased. Optimization of combined GdnCl/GdnSCN gradient for pDNA elution resulted in a simple and robust chromatographic method, where OC-LIN and LIN-SC pDNA (up to 15 kbp size) were separated with resolution above 1.0 and above 2.0, respectively. The accessibility and general acceptance of anion exchange chromatography for pDNA analytics give the newly developed method a great potential for in-process control monitoring of pDNA production processes.
Collapse
Affiliation(s)
- Nejc Pavlin
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | - Mojca Bavčar
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | | | - Jan Mavri
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | - Martin Zidar
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | - Matevž Bone
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | | | - Tadej Sever
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovscina, Slovenia
| |
Collapse
|
2
|
Kralj Š, Kodermac ŠM, Bergoč I, Kostelec T, Podgornik A, Štrancar A, Černigoj U. Effect of plasmid DNA isoforms on preparative anion exchange chromatography. Electrophoresis 2023; 44:1953-1966. [PMID: 37271857 DOI: 10.1002/elps.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Increased need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA) in gene therapy and vaccination brings the need for its large-scale production with high purity. Chromatographic purification of large pDNA is often challenging due to low process yields and column clogging, especially using anion-exchanging columns. The goal of our investigation was to evaluate the mass balance and pDNA isoform composition at column outlet for plasmids of different sizes in combination with weak anion exchange (AEX) monolith columns of varying channel size (2, 3 and 6 µm channel size). We have proven that open circular pDNA (OC pDNA) isoform is an important driver of reduced chromatographic performance in AEX chromatography. The main reason for the behaviour is the entrapment of OC pDNA in chromatographic supports with smaller channel sizes. Entrapment of individual isoforms was characterised for porous beads and convective monolithic columns. Convective entrapment of OC pDNA isoform was confirmed on both types of stationary phases. Porous beads in addition showed a reduced recovery of supercoiled pDNA (on an 11.6 kbp plasmid) caused by diffusional entrapment within the porous structure. Use of convective AEX monoliths or membranes with channel diameter >3.5 µm has been shown to increase yields and prevent irreversible pressure build-up and column clogging during purification of plasmids at least up to 16 kbp in size.
Collapse
Affiliation(s)
- Špela Kralj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | - Ines Bergoč
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | - Aleš Podgornik
- Department of Chemical Engineering and Technical Safety, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- COBIK, Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
3
|
Černigoj U, Vidič J, Ferjančič A, Sinur U, Božič K, Mencin N, Martinčič Celjar A, Gagnon P, Štrancar A. Guanidine improves DEAE anion exchange-based analytical separation of plasmid DNA. Electrophoresis 2021; 42:2619-2625. [PMID: 34569093 DOI: 10.1002/elps.202100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Elution of strong and weak anion exchangers with sodium chloride gradients is commonly employed for analysis of sample mixtures containing different isomers of plasmid DNA. Gradient elution of a weak anion exchanger (diethylaminoethyl) in the presence of guanidine hydrochloride (Gdn) roughly doubles resolution between open-circular (oc) and supercoiled (sc) isomers. It also improves resolution among sc, linear, and multimeric/aggregated forms. Sharper elution peaks with less tailing increase sensitivity about 30%. However, elution with an exclusively Gdn gradient to 900 mM causes more than 10% loss of plasmid. Elution with a sodium chloride gradient while maintaining Gdn at a level concentration of 300 mM achieves close to 100% recovery of sc plasmid while maintaining the separation improvements achieved by exclusively Gdn elution. Corresponding improvements in separation performance are not observed on a strong (quaternary amine) anion exchanger. Other chaotropic salts do not produce a favorable result on either exchanger, nor does the inclusion of surfactants or EDTA. Selectivity of the diethylaminoethyl-Gdn method is orthogonal to electrophoresis, but with better quantification than agarose electrophoresis, better quantitative accuracy than CE, and resolution approaching CE.
Collapse
Affiliation(s)
- Urh Černigoj
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Jana Vidič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Ana Ferjančič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Urša Sinur
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Klemen Božič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Nina Mencin
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | | | - Pete Gagnon
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Aleš Štrancar
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| |
Collapse
|
4
|
Impurity profiling of siRNA by two-dimensional liquid chromatography-mass spectrometry with quinine carbamate anion-exchanger and ion-pair reversed-phase chromatography. J Chromatogr A 2021; 1643:462065. [PMID: 33780886 DOI: 10.1016/j.chroma.2021.462065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022]
Abstract
A short RNA with the sequence of the antisense strand of Patisiran has been selected as test material for the investigation of its common impurities using three different two-dimensional liquid chromatography (2D-LC) platforms. On the one hand, a quinine (QN) carbamate-based weak anion-exchange (AX) stationary phase (QN-AX) and a classical C18 reversed phase (RP) stationary phase in ion-pair (IP) mode with tripropylammonium acetate, respectively, have been used in the first dimension (1D) to provide the selectivity for impurities formed during the synthesis of the RNA. In the next step, certain peaks of interest from 1D have been transferred by multiple-heart-cutting (MHC) into a 2D in which an ESI-MS-compatible non-ionpairing RP method has been used for desalting via a diverter valve to remove non-volatile phosphate buffer components and ion-pair agents, respectively. Thus, a sensitive electrospray-ionization quadrupole time of flight mass spectrometry (ESI-TOF-MS) analysis of resolved impurity peaks of the siRNA has become possible under MS-friendly conditions. With both 2D-LC setups, peak purity of the ON has been evaluated by selective comprehensive (high resolution) sampling of the main peak. In a third MHC 2D-LC approach, the QN-AX LC mode was online coupled with the IP-RPLC in the 2D using UV detection. It allows the separation of additional impurities which coeluted in the first dimension. The potential of these methods for comprehensive impurity profiling of ON therapeutics is illustrated and discussed.
Collapse
|
5
|
Silva-Santos AR, Alves CP, Monteiro G, Azevedo AM, Prazeres DMF. Multimodal chromatography of supercoiled minicircles: A closer look into DNA-ligand interactions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
García-Rendón A, García-Rendón A, Guzmán R, Tejeda-Mansir A. Substrate-source flexibility of an exponential-fed perfusion process to produce plasmid DNA for use as leishmaniasis vaccine. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1560232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Aurora García-Rendón
- Sciences and Engineering Graduate Program, University of Sonora, Hermosillo, Sonora, Mexico
| | - Angelica García-Rendón
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo, Sonora, Mexico
| | - Roberto Guzmán
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Armando Tejeda-Mansir
- Department of Scientific and Technological Research, University of Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
7
|
Tejeda-Mansir A, García-Rendón A, Guerrero-Germán P. Plasmid-DNA lipid and polymeric nanovaccines: a new strategic in vaccines development. Biotechnol Genet Eng Rev 2018; 35:46-68. [DOI: 10.1080/02648725.2018.1560552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Armando Tejeda-Mansir
- Department of Scientific and Technological Research, University of Sonora, Sonora, México
| | | | | |
Collapse
|
8
|
Ilisz I, Bajtai A, Lindner W, Péter A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 2018; 159:127-152. [PMID: 29980014 DOI: 10.1016/j.jpba.2018.06.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
As the understanding of the various biological actions of compounds with different stereochemistry has grown, the necessity to develop methods for the analytical qualification and quantification of chiral products has become particularly important. The last quarter of the century has seen a vast growth of diverse chiral technologies, including stereocontrolled synthesis and enantioselective separation and analysis concepts. By the introduction of covalently bonded silica-based chiral stationary phases (CSPs), the so-called direct liquid chromatographic (LC) methods of enantiomer separation became the state-of-the-art methodology. Although a large number of CSPs is available nowadays, the design and development of new chiral selectors and CSPs are still needed since it is obvious that in practice one needs a good portfolio of different CSPs and focused "chiral columns" to tackle the challenging tasks. This review discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying anionic and zwitterionic ion-exchangers derived from Cinchona alkaloids with emphasis on literature data published in the last 10 years. Our aim is to provide an overview of practical solutions, while focusing on the integration of molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Institute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4, H-6720 Szeged, Hungary.
| | - Attila Bajtai
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 83, 1090 Vienna, Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Mitchenall LA, Hipkin RE, Piperakis MM, Burton NP, Maxwell A. A rapid high-resolution method for resolving DNA topoisomers. BMC Res Notes 2018; 11:37. [PMID: 29338757 PMCID: PMC5771066 DOI: 10.1186/s13104-018-3147-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. RESULTS We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.
Collapse
Affiliation(s)
- Lesley A. Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Rachel E. Hipkin
- Qiagen Ltd., Skelton House, Lloyd St. North, Manchester, M15 6SH UK
- Present Address: Fluidigm Ltd, 12 New Fetter Lane, London, EC4A 1JP UK
| | - Michael M. Piperakis
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present Address: University Centre, Blackburn College, University Close, Blackburn, Lancashire BB2 1LH UK
| | - Nicolas P. Burton
- Inspiralis Ltd, Innovation Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
10
|
Günal G, Kip Ç, Eda Öğüt S, İlhan H, Kibar G, Tuncel A. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:178-184. [DOI: 10.1080/21691401.2017.1304404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gülçin Günal
- Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Çiğdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | - S. Eda Öğüt
- Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Hasan İlhan
- Division of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | - Güneş Kibar
- Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Bioengineering Division, Hacettepe University, Ankara, Turkey
- Division of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Zimmermann A, Horak J, Sánchez-Muñoz OL, Lämmerhofer M. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions. J Chromatogr A 2015. [DOI: 10.1016/j.chroma.2015.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin. J Chromatogr A 2015; 1400:47-53. [DOI: 10.1016/j.chroma.2015.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
13
|
Aguilar P, Twarda A, Sousa F, Dias-Cabral A. Thermodynamic study of the interaction between linear plasmid deoxyribonucleic acid and an anion exchange support under linear and overloaded conditions. J Chromatogr A 2014; 1372C:166-173. [DOI: 10.1016/j.chroma.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 12/24/2022]
|
14
|
Separation and purification of linear covalently closed deoxyribonucleic acid by Q-anion exchange membrane chromatography. J Chromatogr A 2014; 1339:214-8. [DOI: 10.1016/j.chroma.2014.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
|
15
|
Matos T, Queiroz JA, Bülow L. Plasmid DNA purification using a multimodal chromatography resin. J Mol Recognit 2014; 27:184-9. [DOI: 10.1002/jmr.2349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tiago Matos
- Department of Pure and Applied Biochemistry; Lund University; SE 22100 Lund Sweden
- CICS - Health Sciences Research Centre; University of Beira Interior; 6201-001 Covilhã Portugal
| | - João A. Queiroz
- CICS - Health Sciences Research Centre; University of Beira Interior; 6201-001 Covilhã Portugal
| | - Leif Bülow
- Department of Pure and Applied Biochemistry; Lund University; SE 22100 Lund Sweden
| |
Collapse
|
16
|
Caramelo-Nunes C, Almeida P, Marcos J, Tomaz C. Aromatic ligands for plasmid deoxyribonucleic acid chromatographic analysis and purification: An overview. J Chromatogr A 2014; 1327:1-13. [DOI: 10.1016/j.chroma.2013.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
|
17
|
Gabor B, Černigoj U, Barut M, Štrancar A. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports. J Chromatogr A 2013; 1311:106-14. [DOI: 10.1016/j.chroma.2013.08.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/02/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
|