2
|
Zhang W, Claesen M, Moerman T, Groseclose MR, Waelkens E, De Moor B, Verbeeck N. Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning. Anal Bioanal Chem 2021; 413:2803-2819. [PMID: 33646352 PMCID: PMC8007517 DOI: 10.1007/s00216-021-03179-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 11/12/2022]
Abstract
Computational analysis is crucial to capitalize on the wealth of spatio-molecular information generated by mass spectrometry imaging (MSI) experiments. Currently, the spatial information available in MSI data is often under-utilized, due to the challenges of in-depth spatial pattern extraction. The advent of deep learning has greatly facilitated such complex spatial analysis. In this work, we use a pre-trained neural network to extract high-level features from ion images in MSI data, and test whether this improves downstream data analysis. The resulting neural network interpretation of ion images, coined neural ion images, is used to cluster ion images based on spatial expressions. We evaluate the impact of neural ion images on two ion image clustering pipelines, namely DBSCAN clustering, combined with UMAP-based dimensionality reduction, and k-means clustering. In both pipelines, we compare regular and neural ion images from two different MSI datasets. All tested pipelines could extract underlying spatial patterns, but the neural network-based pipelines provided better assignment of ion images, with more fine-grained clusters, and greater consistency in the spatial structures assigned to individual clusters. Additionally, we introduce the relative isotope ratio metric to quantitatively evaluate clustering quality. The resulting scores show that isotopical m/z values are more often clustered together in the neural network-based pipeline, indicating improved clustering outcomes. The usefulness of neural ion images extends beyond clustering towards a generic framework to incorporate spatial information into any MSI-focused machine learning pipeline, both supervised and unsupervised.
Collapse
Affiliation(s)
- Wanqiu Zhang
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, 3001, Leuven, Belgium.
- Aspect Analytics NV, C-mine 12, 3600, Genk, Belgium.
| | - Marc Claesen
- Aspect Analytics NV, C-mine 12, 3600, Genk, Belgium
| | | | | | - Etienne Waelkens
- KU Leuven, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000, Leuven, Belgium
| | - Bart De Moor
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
| | | |
Collapse
|
5
|
Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T, Kuras M, Oskolas H, Kim Y, Horvath Z, Eriksson J, Berge E, Burestedt E, Jönsson G, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Murillo JR, Sugihara Y, Welinder C, Wieslander E, Lee B, Lindberg H, Pawłowski K, Kwon HJ, Doma V, Timar J, Karpati S, Szasz AM, Németh IB, Nishimura T, Corthals G, Rezeli M, Knudsen B, Malm J, Marko-Varga G. Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 2019; 35:293-332. [PMID: 30900145 PMCID: PMC6757020 DOI: 10.1007/s10565-019-09468-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Collapse
Affiliation(s)
- Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tasso Miliotis
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henriette Oskolas
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Ethan Berge
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Elisabeth Burestedt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, SUS, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yutaka Sugihara
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Krzysztof Pawłowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ho Jeong Kwon
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Viktoria Doma
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarolta Karpati
- Department of Dermatology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
- MTA-TTK Momentum Oncology Biomarker Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
| | - Toshihide Nishimura
- Clinical Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| | - Garry Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS, Amsterdam, The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Beatrice Knudsen
- Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Verbeeck N, Yang J, De Moor B, Caprioli R, Waelkens E, Van de Plas R. Automated anatomical interpretation of ion distributions in tissue: linking imaging mass spectrometry to curated atlases. Anal Chem 2014; 86:8974-82. [PMID: 25153352 PMCID: PMC4165455 DOI: 10.1021/ac502838t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022]
Abstract
Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments.
Collapse
Affiliation(s)
- Nico Verbeeck
- Department
of Electrical Engineering (ESAT), STADIUS Center for
Dynamical Systems, Signal Processing, and Data Analytics, KU Leuven, Kasteelpark
Arenberg 10, Box 2446, 3001 Leuven, Belgium
- iMinds
Medical IT, Kasteelpark
Arenberg 10, Box 2446, 3001 Leuven, Belgium
| | - Junhai Yang
- Mass
Spectrometry Research Center and Departments of Biochemistry, Chemistry,
Pharmacology, and Medicine, Vanderbilt University, 465 21st Avenue South, MRB III Suite
9160, Nashville, Tennessee 37232, United States
| | - Bart De Moor
- Department
of Electrical Engineering (ESAT), STADIUS Center for
Dynamical Systems, Signal Processing, and Data Analytics, KU Leuven, Kasteelpark
Arenberg 10, Box 2446, 3001 Leuven, Belgium
- iMinds
Medical IT, Kasteelpark
Arenberg 10, Box 2446, 3001 Leuven, Belgium
| | - Richard
M. Caprioli
- Mass
Spectrometry Research Center and Departments of Biochemistry, Chemistry,
Pharmacology, and Medicine, Vanderbilt University, 465 21st Avenue South, MRB III Suite
9160, Nashville, Tennessee 37232, United States
| | - Etienne Waelkens
- Sybioma, KU Leuven, Campus Gasthuisberg O&N 2, Herestraat 49, Box
802, 3000 Leuven, Belgium
- Department
of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat
49, Box 901, 3000 Leuven, Belgium
| | - Raf Van de Plas
- Mass
Spectrometry Research Center and Departments of Biochemistry, Chemistry,
Pharmacology, and Medicine, Vanderbilt University, 465 21st Avenue South, MRB III Suite
9160, Nashville, Tennessee 37232, United States
| |
Collapse
|