1
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
2
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
3
|
Phenotypic Plasticity in Circulating Tumor Cells Is Associated with Poor Response to Therapy in Metastatic Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15051616. [PMID: 36900406 PMCID: PMC10000974 DOI: 10.3390/cancers15051616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating tumor cells (CTCs) are indicators of metastatic spread and progression. In a longitudinal, single-center trial of patients with metastatic breast cancer starting a new line of treatment, a microcavity array was used to enrich CTCs from 184 patients at up to 9 timepoints at 3-month intervals. CTCs were analyzed in parallel samples from the same blood draw by imaging and by gene expression profiling to capture CTC phenotypic plasticity. Enumeration of CTCs by image analysis relying primarily on epithelial markers from samples obtained before therapy or at 3-month follow-up identified the patients at the highest risk of progression. CTC counts decreased with therapy, and progressors had higher CTC counts than non-progressors. CTC count was prognostic primarily at the start of therapy in univariate and multivariate analyses but had less prognostic utility at 6 months to 1 year later. In contrast, gene expression, including both epithelial and mesenchymal markers, identified high-risk patients after 6-9 months of treatment, and progressors had a shift towards mesenchymal CTC gene expression on therapy. Cross-sectional analysis showed higher CTC-related gene expression in progressors 6-15 months after baseline. Furthermore, patients with higher CTC counts and CTC gene expression experienced more progression events. Longitudinal time-dependent multivariate analysis indicated that CTC count, triple-negative status, and CTC expression of FGFR1 significantly correlated with inferior progression-free survival while CTC count and triple-negative status correlated with inferior overall survival. This highlights the utility of protein-agnostic CTC enrichment and multimodality analysis to capture the heterogeneity of CTCs.
Collapse
|
4
|
Shirai K, Guan G, Meihui T, Xiaoling P, Oka Y, Takahashi Y, Bhagat AAS, Yanagida M, Iwanaga S, Matsubara N, Mukohara T, Yoshida T. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood. LAB ON A CHIP 2022; 22:4418-4429. [PMID: 36305222 DOI: 10.1039/d2lc00713d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug selection and treatment monitoring via minimally invasive liquid biopsy using circulating tumor cells (CTCs) are expected to be realized in the near future. For clinical applications of CTCs, simple, high-throughput, single-step CTC isolation from whole blood without red blood cell (RBC) lysis and centrifugation remains a crucial challenge. In this study, we developed a novel cancer cell separation chip, "hybrid double-spiral chip", that involves the serial combination of two different Dean flow fractionation (DFF) separation modes of half and full Dean cycles, which is the hybrid DFF separation mode for ultra-high-throughput blood processing at high precision and size-resolution separation. The chip allows fast processing of 5 mL whole blood within 30 min without RBC lysis and centrifugation. RBC and white blood cell (WBC) depletion rates of over 99.9% and 99%, respectively, were achieved. The average recovery rate of spiked A549 cancer cells was 87% with as low as 200 cells in 5 mL blood. The device can achieve serial reduction in the number of cells from approximately 1010 cells of whole blood to 108 cells, and subsequently to an order of 106 cells. The developed method can be combined with measurements of all recovered cells using imaging flow cytometry. As proof of concept, CTCs were successfully enriched and enumerated from the blood of metastatic breast cancer patients (N = 10, 1-69 CTCs per 5 mL) and metastatic prostate cancer patients (N = 10, 1-39 CTCs per 5 mL). We believe that the developed method will be beneficial for automated clinical analysis of rare CTCs from whole blood.
Collapse
Affiliation(s)
- Kentaro Shirai
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Guofeng Guan
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Tan Meihui
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Peng Xiaoling
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yuma Oka
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yusuke Takahashi
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | | - Shigeki Iwanaga
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Tomokazu Yoshida
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
5
|
Advances in the Biology, Detection Techniques, and Clinical Applications of Circulating Tumor Cells. JOURNAL OF ONCOLOGY 2022; 2022:7149686. [PMID: 36090904 PMCID: PMC9462976 DOI: 10.1155/2022/7149686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Circulating tumor cells (CTCs) play a crucial role in tumor recurrence and metastasis, and their early detection has shown remarkable benefits in clinical theranostics. However, CTCs are extremely rare, thus detecting them in the blood is very challenging. New CTC detection techniques are continuously being developed, enabling deeper analysis of CTC biology and potential clinical application. This article reviews current CTC detection techniques and their clinical application. CTCs have provided, and will continue to provide, important insights into the process of metastasis, which could lead to development of new therapies for different cancers.
Collapse
|
6
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
7
|
Zhang S, Wang Y, Yang C, Zhu J, Ye X, Wang W. On-chip circulating tumor cells isolation based on membrane filtration and immuno-magnetic bead clump capture. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0009560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Yue Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Chaoqiang Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Li H, Li J, Zhang Z, Guo Z, Zhang C, Wang Z, Guo Q, Li C, Li C, Yao J, Zheng A, Xu J, Gao Q, Zhang W, Zhou L. Integrated microdevice with a windmill-like hole array for the clog-free, efficient, and self-mixing enrichment of circulating tumor cells. MICROSYSTEMS & NANOENGINEERING 2022; 8:23. [PMID: 35251688 PMCID: PMC8844004 DOI: 10.1038/s41378-021-00346-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/12/2021] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) have tremendous potential to indicate disease progression and monitor therapeutic response using minimally invasive approaches. Considering the limitations of affinity strategies based on their cost, effectiveness, and simplicity, size-based enrichment methods that involve low-cost, label-free, and relatively simple protocols have been further promoted. Nevertheless, the key challenges of these methods are clogging issues and cell aggregation, which reduce the recovery rates and purity. Inspired by the natural phenomenon that the airflow around a windmill is disturbed, in this study, a windmill-like hole array on the SU-8 membrane was designed to perturb the fluid such that cells in a fluid would be able to self-mix and that the pressure acting on cells or the membrane would be dispersed to allow a greater velocity. In addition, based on the advantages of fluid coatings, a lipid coating was used to modify the membrane surface to prevent cell aggregation and clogging of the holes. Under the optimal conditions, recovery rates of 93% and 90% were found for A549 and HeLa cells in a clinical simulation test of our platform with a CTC concentration of 20-100 cells per milliliter of blood. The white blood cell (WBC) depletion rate was 98.7% (n = 15), and the CTC detection limit was less than 10 cells per milliliter of blood (n = 6). Moreover, compared with conventional membrane filtration, the advantages of the proposed device for the rapid (2 mL/min) and efficient enrichment of CTCs without clogging were shown both experimentally and theoretically. Due to its advantages in the efficient, rapid, uniform, and clog-free enrichment of CTCs, our platform offers great potential for metastatic detection and therapy analyses.
Collapse
Affiliation(s)
- Hao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Ji Hua Laboratory, 528000 Foshan, China
| | - Changsong Zhang
- Department of Laboratory Medicine, The Affiliated Suzhou Science and Technology Town Hospital, Nanjing Medical University, 215153 Suzhou, China
| | - Zixu Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518000 Shenzhen, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Anran Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jingyi Xu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
- Jinan Guoke Medical Technology Development Co., Ltd, 250001 Jinan, China
| |
Collapse
|
9
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
10
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
11
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Maeda Y, Yoshino T, Kogiso A, Negishi R, Takabayashi T, Tago H, Lim TK, Harada M, Matsunaga T, Tanaka T. Lensless imaging-based discrimination between tumour cells and blood cells towards circulating tumour cell cultivation. Analyst 2021; 146:7327-7335. [PMID: 34766603 DOI: 10.1039/d1an01414e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumour cells (CTCs) are recognized as important markers for cancer research. Nonetheless, the extreme rarity of CTCs in blood samples limits their availability for multiple characterization. The cultivation of CTCs is still technically challenging due to the lack of information of CTC proliferation, and it is difficult for conventional microscopy to monitor CTC cultivation owing to low throughput. In addition, for precise monitoring, CTCs need to be distinguished from the blood cells which co-exist with CTCs. Lensless imaging is an emerging technique to visualize micro-objects over a wide field of view, and has been applied for various cytometry analyses including blood tests. However, discrimination between tumour cells and blood cells was not well studied. In this study, we evaluated the potential of the lensless imaging system as a tool for monitoring CTC cultivation. Cell division of model tumour cells was examined using the lensless imaging system composed of a simple setup. Subsequently, we confirmed that tumour cells, JM cells (model lymphocytes), and erythrocytes exhibited cell line-specific patterns on the lensless images. After several discriminative parameters were extracted, discrimination between the tumour cells and other blood cells was demonstrated based on linear discriminant analysis. We also combined the highly efficient CTC recovery device, termed microcavity array, with the lensless-imaging to demonstrate recovery, monitoring and discrimination of the tumour cells spiked into whole blood samples. This study indicates that lensless imaging can be a powerful tool to investigate CTC proliferation and cultivation.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Atsushi Kogiso
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Ryo Negishi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tomohiro Takabayashi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Hikaru Tago
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tae-Kyu Lim
- Malcom Co., Ltd, 4-15-10, Honmachi, Shibuya-ku, Tokyo, 151-0071, Japan
| | - Manabu Harada
- Malcom Co., Ltd, 4-15-10, Honmachi, Shibuya-ku, Tokyo, 151-0071, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
13
|
Volovetskiy AB, Malinina PA, Kapitannikova AY, Smetanina SV, Kruglova IA, Maslennikova AV. Isolation of Circulating Tumor Cells from Peripheral Blood Samples of Cancer Patients Using Microfluidic Technology. Sovrem Tekhnologii Med 2021; 12:62-68. [PMID: 34796020 PMCID: PMC8596232 DOI: 10.17691/stm2020.12.6.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of the investigation was to study the potential of an innovative microfluidic technology for the isolation of circulating tumor cells (CTCs) from the peripheral blood samples of cancer patients.
Collapse
Affiliation(s)
- A B Volovetskiy
- Researcher, Laboratory of Nanotheranostics, Institute for Molecular Medicine, Biomedical Science and Technology Park; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - P A Malinina
- Clinical Resident, Department of Oncology, Radiation Therapy and Radiation Diagnostics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A Y Kapitannikova
- Researcher, Laboratory of Nanoteranology, Institute for Molecular Medicine, Biomedical Science and Technology Park; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - S V Smetanina
- Head of the Сytological Laboratory; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603163, Russia
| | - I A Kruglova
- Physician of Clinical Laboratory Diagnostics; City Hospital No.35, 47 Respublikanskaya St., Nizhny Novgorod, 603089, Russia
| | - A V Maslennikova
- Head of the Department of Oncology, Radiation Therapy and Radiation Diagnostics; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Professor, Department of Biophysics National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
14
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
15
|
Longitudinal Evaluation of PD-L1 Expression on Circulating Tumor Cells in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Cancers (Basel) 2021; 13:cancers13102290. [PMID: 34064720 PMCID: PMC8150706 DOI: 10.3390/cancers13102290] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Programmed death-ligand 1 (PD-L1) expression in tumor tissue is a predictor for the efficacy of immune checkpoint inhibitors. We have previously reported that PD-L1 positive rate on circulating tumor cells (CTCs) in non-small cell lung cancer patients at baseline was correlated with response to nivolumab. Here, we sequentially evaluated PD-L1 expression on CTCs in 45 enrolled patients at baseline and week 4, 8, 12 and 24 or progressive disease (PD). The median of PD-L1-positive CTC number between baseline and week 8 were significantly different (p < 0.05), and progression-free survival was significantly longer in patients with ≥7.7% PD-L1 positivity rates (n = 8) than in those with <7.7% rates (n = 8; p < 0.01) at week 8. Our findings suggest that PD-L1 expression on CTCs during nivolumab treatment may be predictive of long-term efficacy. Abstract Although programmed death-ligand 1 (PD-L1) expression on tumor tissue is a validated predictive biomarker for a PD-1 pathway blockade in non-small cell lung cancer (NSCLC), longitudinal changes in its expression during treatment remains elusive. Circulating tumor cells (CTCs) are assumed to reflect the transition of characteristics of the primary tumor undergoing anticancer treatment. Here, we sequentially evaluated the PD-L1 expression on CTCs in NSCLC patients treated with nivolumab. Forty-five patients were enrolled, and CTCs were enriched from 3 mL of peripheral blood using a microcavity array system at baseline and weeks 4, 8, 12, and 24 or until progressive disease. The effective responses to therapy were compared between patients without progressive disease (PD) at week 8 (i.e., non-PD patients) and in those with PD between weeks 4 and 8 (PD patients) in terms of increased vs. decreased or equal CTC status at week 8 (for non-PD patients) or at the point of PD (for PD patients) compared to the baseline. Significantly more non-PD patients were classified as decreased or equal in number and proportion to PD-L1-positive CTCs among the detected CTCs (PD-L1 positivity rates) (p < 0.05). Moreover, progression-free survival was significantly longer in patients with ≥7.7% PD-L1 positivity rates (n = 8) than in those with <7.7% rates (n = 8; p < 0.01) at week 8. These results suggest the predictive significance of the early evaluation of PD-L1 expression on CTCs for maintaining the benefits from nivolumab treatment.
Collapse
|
16
|
Gao S, Chen S, Liu Y, Mao H, Lu Q. Highly Integrated Cell-Imprinted Biomimetic Interface for All-in-One Diagnosis of Heterogeneous Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19603-19612. [PMID: 33881300 DOI: 10.1021/acsami.1c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-cell capture and in situ analysis of circulating tumor cells (CTCs) in blood are of great significance for early cancer diagnosis, prognosis, and individualized treatment. However, designing an all-in-one platform that enables not only efficiently specific isolation of CTCs but also in situ analysis of heterogeneity and drug screening is challenging. Here, a cell-imprinted alginate hydrogel (CIAH) interface with all-in-one functions was developed for the capture, in situ analysis, and drug-response study at a single-cell level. Based on the equivalent morphology and "specific odor" left by template cells and supplemented by natural antibody, the CIAH interface exhibited outstanding performance in isolating CTCs from samples suffering from cancers. Beyond capture, the CIAH interface was also able to serve as a high-throughput platform for subpopulation analysis and drug response of heterogeneous CTCs. We demonstrated that the highly integrated multifunctional CIAH interface is a promising new tool for single-cell profiling of phenotypic heterogeneity and guiding of personalized anticancer therapy.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Wu TH, Wu CH, Huang CJ, Chang YC. Anticlogging Hemofiltration Device for Mass Collection of Circulating Tumor Cells by Ligand-Free Size Selection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3399-3409. [PMID: 33689353 DOI: 10.1021/acs.langmuir.0c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.
Collapse
Affiliation(s)
- Tzu-Hsien Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Cheng-Han Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Chemical & Materials Engineering Department, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
- NCU-DSM Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Li Y, Zhang T, Huang J, Dong H, Xie J, Jia L. Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells. Onco Targets Ther 2021; 13:13465-13477. [PMID: 33447051 PMCID: PMC7801922 DOI: 10.2147/ott.s287720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhanced biostable double-strand (ds) circular aptamer (dApR) with dendrimers for capturing and restraining CTCs in vitro and in vivo. Methods CEM-targeting aptamer (Ap) was looped by ligation after phosphorylation to form circular ds aptamer dApR, which was then conjugated to dendrimers by biotin-streptavidin affinity reaction and named as G-dApR. The physicochemical properties of G-dApR were characterized by using PAGE gel electrophoresis, UV, DLS, AFM, fluorophotometer and laser confocal microscope. Biostability of G-dApR was also analyzed by gel electrophoresis. Confocal microscopy and flow cytometry were then performed to determine the binding specificity of G-dApR to CEM cells and the captured CTCs in mice and in human blood. Apoptosis of the captured cells was finally evaluated by using MTT assay, DAPI staining, AO/EB staining, cell cycle analysis and Annexin V-FITC/PI staining. Results Physicochemical characterization demonstrated the entity of dApR and G-dApR, and the nano-size of G-dApR (about 180 nm in aqueous phase). G-dApR exhibited the excellent biostability that confers their resistance to nuclease-mediated biodegradation in serum for at least 6 days. In our established CTCs model, we found that G-dApR could specifically and sensitively capture CTCs not non-target cells even in the presence of millions of interfering cells (108), in mice and in human blood. Finally, the activity of captured CTCs was significantly down-regulated by G-dApR, resulting in apoptosis. Conclusion We created the enhanced biostable dApR-coated dendrimers (G-dApR) that could specifically capture and restrain CTCs in vitro and in vivo for preventing CTC-mediated cancer metastasis.
Collapse
Affiliation(s)
- Yu Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Ting Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Jing Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
19
|
Takagi H, Dong L, Kuczler MD, Lombardo K, Hirai M, Amend SR, Pienta KJ. Analysis of the Circulating Tumor Cell Capture Ability of a Slit Filter-Based Method in Comparison to a Selection-Free Method in Multiple Cancer Types. Int J Mol Sci 2020; 21:ijms21239031. [PMID: 33261132 PMCID: PMC7730626 DOI: 10.3390/ijms21239031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising biomarker for cancer liquid biopsy. To evaluate the CTC capture bias and detection capability of the slit filter-based CTC isolation platform (CTC-FIND), we prospectively compared it head to head to a selection-free platform (AccuCyte®-CyteFinder® system). We used the two methods to determine the CTC counts, CTC positive rates, CTC size distributions, and CTC phenotypes in 36 patients with metastatic cancer. Between the two methods, the median CTC counts were not significantly different and the total counts were correlated (r = 0.63, p < 0.0001). The CTC positive rate by CTC-FIND was significantly higher than that by AccuCyte®-CyteFinder® system (91.7% vs. 66.7%, p < 0.05). The median diameter of CTCs collected by CTC-FIND was significantly larger (13.0 μm, range 5.2–52.0 vs. 10.4 μm, range 5.2–44.2, p < 0.0001). The distributions of CTC phenotypes (CK+EpCAM+, CK+EpCAM− or CK−EpCAM+) detected by both methods were similar. These results suggested that CTC-FIND can detect more CTC-positive cases but with a bias toward large size of CTCs.
Collapse
Affiliation(s)
- Hidenori Takagi
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Correspondence: ; Tel.: +81-75-662-8979; Fax: +81-75-431-1202
| | - Liang Dong
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Department of Urology and Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai 200025, China
| | - Morgan D. Kuczler
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kara Lombardo
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
| | - Sarah R. Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| |
Collapse
|
20
|
On-Chip Multiple Particle Velocity and Size Measurement Using Single-Shot Two-Wavelength Differential Image Analysis. MICROMACHINES 2020; 11:mi11111011. [PMID: 33212970 PMCID: PMC7698501 DOI: 10.3390/mi11111011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Precise and quick measurement of samples' flow velocities is essential for cell sorting timing control and reconstruction of acquired image-analyzed data. We developed a simple technique for the single-shot measurement of flow velocities of particles simultaneously in a microfluidic pathway. The speed was calculated from the difference in the particles' elongation in an acquired image that appeared when two wavelengths of light with different irradiation times were applied. We ran microparticles through an imaging flow cytometer and irradiated two wavelengths of light with different irradiation times simultaneously to those particles. The mixture of the two wavelength transmitted lights was divided into two wavelengths, and the images of the same microparticles for each wavelength were acquired in a single shot. We estimated the velocity from the difference of its elongation divided by the difference of irradiation time by comparing these two images. The distribution of polystyrene beads' velocity was parabolic and highest at the center of the flow channel, consistent with the expected velocity distribution of the laminar flow. Applying the calculated velocity, we also restored the accurate shapes and cross-sectional areas of particles in the images, indicating this simple method for improving of imaging flow cytometry and cell sorter for diagnostic screening of circulating tumor cells.
Collapse
|
21
|
Negishi R, Saito H, Iwata R, Tanaka T, Yoshino T. Performance evaluation of a high-throughput separation system for circulating tumor cells based on microcavity array. Eng Life Sci 2020; 20:485-493. [PMID: 33204235 PMCID: PMC7645638 DOI: 10.1002/elsc.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
Circulating tumor cells (CTCs) are widely known as useful biomarkers in the liquid biopsies of cancer patients. Although single-cell genetic analysis of CTCs is a promising diagnostic tool that can provide detailed clinical information for precision medicine, the capacity of single-CTC isolation for genetic analysis requires improvement. To overcome this problem, we previously developed a multiple single-cell encapsulation system for CTCs using hydrogel-encapsulation, which allowed for the high-throughput isolation of single CTCs. However, isolation of a single cell from adjacent cells remained difficult and often resulted in contamination by neighboring cells due to the limited resolution of the generated hydrogel. We developed a novel multiple single-cell encapsulation system equipped with a high magnification lens for high throughput and a more accurate single-cell encapsulation. The multiple single-cell encapsulation system has sufficient sensitivity to detect immune-stained CTCs, and could also generate a micro-scaled hydrogel that can isolate a single cell from adjacent cells within 10 µm, with high efficiency. The proposed system enables high throughput and accurate single-cell manipulation and genome amplification without contamination from neighboring cells.
Collapse
Affiliation(s)
- Ryo Negishi
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Hyuga Saito
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Reito Iwata
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Tomoko Yoshino
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| |
Collapse
|
22
|
Chen K, Amontree J, Varillas J, Zhang J, George TJ, Fan ZH. Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells. Sci Rep 2020; 10:14210. [PMID: 32848184 PMCID: PMC7450051 DOI: 10.1038/s41598-020-71041-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 02/03/2023] Open
Abstract
The methods for isolating rare cells such as circulating tumor cells (CTCs) can be generally classified into two categories: those based on physical properties (e.g., size) and methods based on biological properties (e.g., immunoaffinity). CellSearch, the only FDA-approved method for the CTC-based cancer prognosis, relies on immunoaffinity interactions between CTCs and antibodies immobilized on magnetic particles. Immunoaffinity-based CTC isolation has also been employed in microfluidic devices, which show higher capture efficiency than CellSearch. We report here our investigation of combining size-based microfiltration into a microfluidic device with immunoaffinity for enhanced capture efficiency of CTCs. The device consists of four serpentine main channels, and each channel contains an array of lateral filters that create a two-dimensional flow. The main flow is through the serpentine channel, allowing the majority of the sample to pass by while the secondary flow goes through the lateral filters. The device design is optimized to make all fluid particles interact with filters. The filter sizes range from 24 to 12 µm, being slightly larger than or having similar dimension of CTCs. These filters are immobilized with antibodies specific to CTCs and thus they function as gates, allowing normal blood cells to pass by while forcing the interactions between CTCs and antibodies on the filter surfaces. The hydrodynamic force experienced by a CTC was also studied for optimal experimental conditions to ensure immunoaffinity-enabled cell capture. The device was evaluated by capturing two types of tumor cells spiked in healthy blood or a buffer, and we found that their capture efficiency was between 87.2 and 93.5%. The platform was further validated by isolating CTCs from blood samples of patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Kangfu Chen
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Jacob Amontree
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Jose Varillas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Jinling Zhang
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA
| | - Thomas J George
- Department of Medicine, University of Florida, P.O. Box 100278, Gainesville, FL, 32610, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, P.O. BOX 116250, Gainesville, FL, 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
23
|
Yee-de León JF, Soto-García B, Aráiz-Hernández D, Delgado-Balderas JR, Esparza M, Aguilar-Avelar C, Wong-Campos JD, Chacón F, López-Hernández JY, González-Treviño AM, Yee-de León JR, Zamora-Mendoza JL, Alvarez MM, Trujillo-de Santiago G, Gómez-Guerra LS, Sánchez-Domínguez CN, Velarde-Calvillo LP, Abarca-Blanco A. Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples. Sci Rep 2020; 10:7543. [PMID: 32372001 PMCID: PMC7200708 DOI: 10.1038/s41598-020-63672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.
Collapse
Affiliation(s)
| | | | | | - Jesús Rolando Delgado-Balderas
- Delee Corp., Mountain View, CA, 94041, USA.,Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | | - J D Wong-Campos
- Delee Corp., Mountain View, CA, 94041, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | | | | | | | | | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Lauro S Gómez-Guerra
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | |
Collapse
|
24
|
Yin J, Deng J, Wang L, Du C, Zhang W, Jiang X. Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification. Anal Chem 2020; 92:6968-6976. [PMID: 32347710 DOI: 10.1021/acs.analchem.9b05844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe a fluorescent microspheres-based separation and analysis that enables the isolation of circulating tumor cells (CTCs) from whole blood of patients with metastatic cancer and the identification of isolated CTCs in situ without immunostaining. This approach uses antibody-functionalized fluorescent polystyrene (PS) microspheres that can selectively bind to CTCs. The binding of CTCs and fluorescent PS microspheres leads to the formation of complexes of CTCs and fluorescent PS microspheres, thereby the CTCs are size-amplified and labeled simultaneously. A pyramidal microcavity array (PMCA) is fabricated using microfabrication technology to create a precise microfilter structure with a high aspect ratio. The PMCA filter device can effectively isolate microspheres-labeled CTCs, while allow hematologic cells to deform and pass through. Using this approach, CTCs are isolated and identified in 15 of 18 patients with metastatic colorectal cancer. This approach will open new possibilities for CTCs isolation and identification and can serve a versatile platform to facilitate CTCs analysis in diverse biomedical applications.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Le Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.,Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, Guangzhou 510006, P. R. China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
25
|
Mu HY, Ou YC, Chuang HN, Lu TJ, Jhan PP, Hsiao TH, Huang JH. Triple Selection Strategy for In Situ Labeling of Circulating Tumor Cells with High Purity and Viability toward Preclinical Personalized Drug Sensitivity Analysis. ACTA ACUST UNITED AC 2020; 4:e2000013. [PMID: 32529799 DOI: 10.1002/adbi.202000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Ex vivo culture of viable circulating tumor cells (CTCs) from individual patients has recently become an emerging liquid biopsy technology to investigate drug sensitivity and genomic analysis in cancer. However, it remains challenging to retrieve the CTCs with high viability and purity from cancer patients' blood using a rapid process. Here, a triple selection strategy that combines immunonegative enrichment, density gradient, and microfluidic-based size-exclusion methods is developed for in situ drug sensitivity testing. The CTC isolation chip consists of 4 independent microchannels that can evenly distribute the captured CTCs, allowing for independent in situ analysis event. The cancer cells are retrieved within 5 min with high viability (>95%), captured efficiency (78%), and high purity (99%) from 7.5 mL of blood cell mixed samples. Furthermore, the CTCs can be isolated from prostate cancer patients' blood samples and verified in situ using cancer-specific markers within 1.5 h, demonstrating the possibility to be applied to clinical practice. In situ drug sensitivity analysis demonstrates that the captured CTCs without and with cisplatin treatment for 1 day have survival rates of 87.5% and 0%, respectively. It is envisioned that this strategy may become a potential tool to identify suitable therapies prior to the treatment.
Collapse
Affiliation(s)
- Hsuan-Yo Mu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, 43304, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
26
|
Ikeda M, Koh Y, Teraoka S, Sato K, Kanai K, Hayata A, Tokudome N, Akamatsu H, Ozawa Y, Akamatsu K, Endo K, Higuchi M, Nakanishi M, Ueda H, Yamamoto N. Detection of AXL expression in circulating tumor cells of lung cancer patients using an automated microcavity array system. Cancer Med 2020; 9:2122-2133. [PMID: 31999390 PMCID: PMC7064033 DOI: 10.1002/cam4.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Noninvasive diagnostics using circulating tumor cells (CTCs) are expected to be useful for decision making in precision cancer therapy. AXL, a receptor tyrosine kinase is associated with tumor progression, epithelial‐to‐mesenchymal transition (EMT), and drug resistance, and is a potential therapeutic target. However, the epithelial markers generally used for CTC detection may be not enough to detect AXL‐expressing CTCs due to EMT. Here, we evaluated the detection of AXL‐expressing CTCs using the mesenchymal marker vimentin with a microcavity array system. To evaluate the recovery of cancer cells, spike‐in experiments were performed using cell lines with varying cytokeratin (CK) or vimentin (VM) expression levels. With high CK and low VM‐expressing cell lines, PC‐9 and HCC827, the recovery rate of AXL‐expressing cancer cells was 1%‐17% using either CK or VM as markers. Whereas, with low CK and high VM‐expressing cell lines, MDA‐MB231 and H1299, it was 52%‐75% using CK and 72%‐88% using VM as a marker. For clinical evaluation, peripheral blood was collected from 20 non–small cell lung cancer patients and CTCs were detected using CK or VM as markers in parallel. Significantly more AXL‐expressing single CTCs were detected in VM‐positive than CK‐positive CTCs (P < .001). Furthermore, CTC clusters were identified only among VM‐positive CTCs in 20% of patients. Patients with one or more prior treatments harbored significantly more VM‐positive AXL‐expressing CTCs, suggesting the involvement of these CTCs in drug resistance. These results indicate the necessity of integrating mesenchymal markers with CTC detection and this should be further evaluated clinically.
Collapse
Affiliation(s)
- Mio Ikeda
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Koichi Sato
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Kuninobu Kanai
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Hayata
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Ozawa
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | - Katsuya Endo
- Medical Business Sector, Hitachi Chemical Co., Ltd., Chikusei, Japan
| | - Masayuki Higuchi
- Medical Business Sector, Hitachi Chemical Co., Ltd., Chikusei, Japan
| | | | - Hiroki Ueda
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
27
|
Ichimura H, Nawa T, Yamamoto Y, Shimizu K, Kobayashi K, Kitazawa S, Kanbara H, Odagiri T, Endo K, Matsunaga T, Nakamura S, Yagi S, Sato Y. Detection of circulating tumor cells in patients with lung cancer using metallic micro-cavity array filter: A pilot study. Mol Clin Oncol 2020; 12:278-283. [PMID: 32064107 DOI: 10.3892/mco.2020.1973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
We have developed a metallic micro-cavity array filter and an automated detection system for capturing circulating tumor cells (CTCs). In this single institutional pilot study, we assessed the ability of this device to detect CTCs in patients with lung cancer at each stage. Patients diagnosed with lung cancer, undergoing planned surgery for lung cancer, or suspected of having lung cancer were recruited (40 recruited and 2 excluded). Blood samples were obtained from the patients and 3 ml whole blood was applied to the device without any preparation. The captured cells were stained to differentiate the nucleus, and determine cytokeratin and CD45 expression. Subsequently, two operators blinded to clinical information counted the number of CTCs. Sample collection was performed at the time of recruitment, before treatment and ~3 months after initial blood collection. CTC counts at recruitment were 1.4±0.4, 1.8±1.2, 1.3±0.6 and 7.4±5.1 (mean ± SE) in clinical stages I, II, III and IV, respectively. No significant difference was observed among the stages. These data indicated the ability of this device to detect CTCs at early or non-metastatic stages of lung cancer. Further research on a larger scale is needed for a more accurate assessment of the device, and research on the utility of captured cells remains a future challenge.
Collapse
Affiliation(s)
- Hideo Ichimura
- Department of Thoracic Surgery, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan.,Department of Thoracic Surgery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Thoracic Surgery, Hitachi Medical Education and Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Nawa
- Department of Respiratory Medicine, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan
| | - Yusuke Yamamoto
- Department of Respiratory Medicine, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan
| | - Kei Shimizu
- Department of Respiratory Medicine, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan
| | - Keisuke Kobayashi
- Department of Thoracic Surgery, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan
| | - Shinsuke Kitazawa
- Department of Thoracic Surgery, Hitachi General Hospital, Hitachi, Ibaraki 317-0077, Japan
| | - Hisashige Kanbara
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Taihei Odagiri
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Katsuya Endo
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Tatsuya Matsunaga
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Seita Nakamura
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Satomi Yagi
- Life Science Business Headquaters, Hitachi Chemical Co., Ltd., Chikusei, Ibaraki 308-0861, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
28
|
|
29
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:8945974. [PMID: 31354892 PMCID: PMC6636595 DOI: 10.1155/2019/8945974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Integrated device with high purity for circulating tumor cell (CTC) identification has been regarded as a key goal to make CTC analysis a “bench-to-bedside” technology. Here, we have developed a novel integrated microfluidic device that can enrich and identify the CTCs from the blood of patients with colorectal cancer. To enrich CTCs from whole blood, microfabricated trapping chambers were included in the miniaturized device, allowing for the isolation of tumor cells based on differences in size and deformability between tumor and normal blood cells. Microvalves were also introduced sequentially in the device, enabling automatic CTC enrichment as well as immunostaining reagent delivery. Under optimized conditions, the whole blood spiked with caco-2 cells passing through the microfluidic device after leukocyte depletion and approximately 73% of caco-2 cells were identified by epithelial cell adhesion molecule (EpCAM) staining. In clinical samples, CTCs were detectable from all patients with advanced colorectal cancer within 3 h. In contrast, the number of CTCs captured on the device from the blood of healthy donors was significantly lower than that from the patients, suggesting the utilization of the integrated device for further molecular analyses of CTCs.
Collapse
|
31
|
Yin J, Mou L, Yang M, Zou W, Du C, Zhang W, Jiang X. Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. Anal Chim Acta 2019; 1060:133-141. [DOI: 10.1016/j.aca.2019.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
32
|
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12:48. [PMID: 31088479 PMCID: PMC6518774 DOI: 10.1186/s13045-019-0735-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis, namely, providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer, several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare, CTC methods are currently mainly used for research purposes, and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Therefore, the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits, we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages, use, and significance. Technologies using whole blood samples utilize size-based, immunoaffinity-based, and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet, they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus, a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
Collapse
Affiliation(s)
- Petra Bankó
- Department of Biochemical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sun Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | | | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Chang Hoon Chae
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - András Telekes
- Department of Oncology, St. Lazarus Hospital, Salgótarján, Hungary
| |
Collapse
|
33
|
Koh Y, Yagi S, Akamatsu H, Kanai K, Hayata A, Tokudome N, Akamatsu K, Higuchi M, Kanbara H, Nakanishi M, Ueda H, Yamamoto N. Heterogeneous Expression of Programmed Death Receptor-ligand 1 on Circulating Tumor Cells in Patients With Lung Cancer. Clin Lung Cancer 2019; 20:270-277.e1. [PMID: 31005568 DOI: 10.1016/j.cllc.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 03/17/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Blockade of the programmed death receptor-1 (PD-1) pathway is effective against solid tumors including lung cancer. PD-ligand 1 (PD-L1) expression on tumor tissue serves as a predictive biomarker for the efficacy of PD-1 pathway blockade. Here, we evaluated the expression of PD-L1 on circulating tumor cells (CTCs) in patients with lung cancer. MATERIALS AND METHODS Peripheral whole blood (3 mL) was collected from patients, and CTCs and PD-L1 expression were detected using a microcavity array (MCA) system. Immunohistochemistry for PD-L1 detection was also performed using matched tumor tissues. RESULTS Sixty-seven patients with lung cancer were enrolled in the study between July 2015 and April 2016 at Wakayama Medical University Hospital. The characteristics of the patients were as follows: median age, 71 years (range, 39-86 years); male, 72%; stage II to III/IV, 14%/85%; non-small-cell lung cancer/small-cell lung cancer/other, 73%/21%/6%. CTCs were detected in 66 of 67 patients (median, 19; range, 0-115), and more than 5 CTCs were detected in 78% of patients. PD-L1-expressing CTCs were detected in 73% of patients, and the proportion score of PD-L1-expressing CTCs ranged from 3% to 100%, suggesting intra-patient heterogeneity of PD-L1 expression on CTCs. Tumor tissues were available from 27 patients and were immunostained for PD-L1, and no correlation was observed between tumor tissues and CTCs based on the proportion score (R2 = 0.0103). CONCLUSION PD-L1 expression was detectable on CTCs in patients with lung cancer, and intra-patient heterogeneity was observed. No correlation was observed between PD-L1 expression in tumor tissues and CTCs.
Collapse
Affiliation(s)
- Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
| | - Satomi Yagi
- Medical Business Unit, Hitachi Chemical Co, Ltd, Ibaraki, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Kuninobu Kanai
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Hayata
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | - Hiroki Ueda
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
34
|
Choi MK, Kim GH, I H, Park SJ, Lee MW, Lee BE, Park DY, Cho YK. Circulating tumor cells detected using fluid-assisted separation technique in esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2019; 34:552-560. [PMID: 30426559 DOI: 10.1111/jgh.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Esophageal squamous cell carcinoma (ESCC) is one of the aggressive gastrointestinal tract cancers. Detection of circulating tumor cells (CTCs) in peripheral blood from patients with various malignancies has been reported to have diagnostic, prognostic, and therapeutic implications. We aimed to evaluate CTCs in patients with ESCC and assess the clinical significance of CTCs in the early diagnosis of ESCC. METHODS Peripheral blood samples for CTCs analyses were prospectively obtained from 73 patients with ESCC prior to treatment between March 2015 and June 2018. CTCs were detected using a centrifugal microfluidic system with a new fluid-assisted separation technique. Blood samples from 31 healthy volunteers were used as controls. RESULTS After creating a receiver operating characteristic curve to determine the optimal CTC threshold to differentiate patients with ESCC from healthy controls, sensitivity and specificity were most optimized at a CTC threshold of two per 7.5 mL of blood. Among 66 subjects with ≥ 2 CTCs per 7.5 mL of blood, 63 (95.5%) had ESCC. Among 38 subjects with < 2 CTCs per 7.5 mL of blood, 28 (73.7%) were healthy controls. When using this threshold, the sensitivity and specificity for differentiating patients with ESCC from healthy controls were 86.3% and 90.3%, respectively. CTC count was associated with tumor-node-metastasis stage, especially lymph node metastasis, but there was no correlation with any other relevant clinicopathologic variable. CONCLUSIONS Our results suggest that CTCs detected using fluid-assisted separation technique could be helpful for early diagnosis of ESCC. Further large-scale prospective studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Mun Ki Choi
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Hoseok I
- Department of Chest Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Su Jin Park
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Moon Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Bong Eun Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
35
|
Size Distribution Analysis with On-Chip Multi-Imaging Cell Sorter for Unlabeled Identification of Circulating Tumor Cells in Blood. MICROMACHINES 2019; 10:mi10020154. [PMID: 30823547 PMCID: PMC6413132 DOI: 10.3390/mi10020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
We report a change of the imaging biomarker distribution of circulating tumor cell (CTC) clusters in blood over time using an on-chip multi-imaging flow cytometry system, which can obtain morphometric parameters of cells and those clusters, such as cell number, perimeter, total cross-sectional area, aspect ratio, number of nuclei, and size of nuclei, as "imaging biomarkers". Both bright-field (BF) and fluorescent (FL) images were acquired at 200 frames per second and analyzed within the intervals for real-time cell sorting. A green fluorescent protein-transfected prostate cancer cell line (MAT-LyLu-GFP) was implanted into Copenhagen rats, and the blood samples of these rats were collected 2 to 11 days later and measured using the system. The results showed that cells having BF area of 90 μm² or larger increased in number seven days after the cancer cell implantation, which was specifically detected as a shift of the cell size distribution for blood samples of implanted rats, in comparison with that for control blood. All cells with BF area of 150 μm² or larger were arranged in cell clusters composed of at least two cells, as confirmed by FL nucleus number and area measurements, and they constituted more than 1% of all white blood cells. These results indicate that the mapping of cell size distribution is useful for identifying an increase of irregular cells such as cell clusters in blood, and show that CTC clusters become more abundant in blood over time after malignant tumor formation. The results also reveal that a blood sample of only 50 μL is sufficient to acquire a stable size distribution map of all blood cells to predict the presence of CTC clusters.
Collapse
|
36
|
Gao S, Chen S, Lu Q. Real-Time Profiling of Anti-(Epithelial Cell Adhesion Molecule)-Based Immune Capture from Molecules to Cells Using Multiparameter Surface Plasmon Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1040-1046. [PMID: 30605340 DOI: 10.1021/acs.langmuir.8b03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antibodies of epithelial cell-adhesion molecule (anti-EpCAM)-based interfaces have proven to be highly efficient at capturing circulating tumor cells (CTCs). To achieve the bonding of anti-EpCAM to the interface, biotin and streptavidin are used to modify the surface. These processes are critical to subsequent cell-capture efficiencies. However, quantitative research on the interactions between biotin, streptavidin, and biotinylated anti-EpCAM on the interface is lacking. In this work, the thermodynamics and kinetics of biomolecular interactions were determined by using surface plasmon resonance. The equilibrium binding affinities for biotinylated anti-EpCAM to streptavidin and streptavidin to biotin (illustrated by biotin-PEG400-thiol) were found to be 2.75 × 106 and 8.82 × 106 M-1, respectively. Each streptavidin can bind up to 2.30 biotinylated anti-EpCAM under thermodynamic equilibrium. The findings provide useful information to optimize the modification of anti-EpCAM and improve the capture efficiency of CTCs.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering , Tong Ji University , Shanghai 200092 , China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
37
|
Gao S, Chen S, Lu Q. Cell-imprinted biomimetic interface for intelligent recognition and efficient capture of CTCs. Biomater Sci 2019; 7:4027-4035. [DOI: 10.1039/c9bm01008d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synergistically contributing to plastic and natural antibodies, a cell-imprinted biomimetic interface exhibited high sensitivity and efficiency in CTC capture, providing novel insight into cell–biointerface interactions.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering
- Tong Ji University
- Shanghai
- China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
38
|
Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev 2018; 46:2038-2056. [PMID: 28393954 DOI: 10.1039/c6cs00803h] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that circulate in the blood stream after being naturally shed from original or metastatic tumors, and can lead to a new fatal metastasis. CTCs have become a hotspot research field during the last decade. Detection of CTCs, as a liquid biopsy of tumors, can be used for early diagnosis of cancers, earlier evaluation of cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer drugs. Therefore, CTC detection is a crucial tool to fight against cancer. Herein, we classify the currently reported CTC detection technologies, introduce some representative samples for each technology, conclude the advantages and limitations, and give a future perspective including the challenges and opportunities of CTC detection.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, Zhejiang 315201, China.
| | | | | |
Collapse
|
39
|
Xia Y, Wan Y, Hao S, Nisic M, Harouaka RA, Chen Y, Zou X, Zheng SY. Nucleus of Circulating Tumor Cell Determines Its Translocation Through Biomimetic Microconstrictions and Its Physical Enrichment by Microfiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802899. [PMID: 30286282 DOI: 10.1002/smll.201802899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The mechanism of cells passing through microconstrictions, such as capillaries and endothelial junctions, influences metastasis of circulating tumor cells (CTCs) in vivo, as well as size-based enrichment of CTCs in vitro. However, very few studies observe such translocation of microconstrictions in real time, and thus the inherent biophysical mechanism is poorly understood. In this study, a multiplexed microfluidic device is fabricated for real-time tracking of cell translocation under physiological pressure and recording deformation of the whole cell and nucleus, respectively. It is found that the deformability and size of the nucleus instead of the whole cell dominate cellular translocation through microconstrictions under a normal physiological pressure range. More specifically, cells with a large and stiff nucleus are prone to be blocked by relatively small constrictions. The same phenomenon is also observed in the size-based enrichment of CTCs from peripheral blood of metastatic cancer patients. These findings are different from a popular viewpoint that the size and deformability of a whole cell mainly determine cell translation through microconstrictions, and thus may elucidate interactions between CTCs and capillaries from a new perspective and guide the rational design of size-based microfilters for rare cell enrichment.
Collapse
Affiliation(s)
- Yiqiu Xia
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuan Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sijie Hao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Merisa Nisic
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ramdane A Harouaka
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Zou
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
40
|
Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O'Byrne K, Punyadeera C. The Prognostic Role of Circulating Tumor Cells (CTCs) in Lung Cancer. Front Oncol 2018; 8:311. [PMID: 30155443 PMCID: PMC6102369 DOI: 10.3389/fonc.2018.00311] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer affects over 1. 8 million people worldwide and is the leading cause of cancer related mortality globally. Currently, diagnosis of lung cancer involves a combination of imaging and invasive biopsies to confirm histopathology. Non-invasive diagnostic techniques under investigation include "liquid biopsies" through a simple blood draw to develop predictive and prognostic biomarkers. A better understanding of circulating tumor cell (CTC) dissemination mechanisms offers promising potential for the development of techniques to assist in the diagnosis of lung cancer. Enumeration and characterization of CTCs has the potential to act as a prognostic biomarker and to identify novel drug targets for a precision medicine approach to lung cancer care. This review will focus on the current status of CTCs and their potential diagnostic and prognostic utility in this setting.
Collapse
Affiliation(s)
- Joanna Kapeleris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Majid E. Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ian Vela
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Central Integrated Regional Cancer Service, Queensland Health, Brisbane, QLD, Australia
| | - Kenneth O'Byrne
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng 2018; 115:2504-2529. [DOI: 10.1002/bit.26787] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| | - Mehdi Mohammadi
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| |
Collapse
|
42
|
Negishi R, Takai K, Tanaka T, Matsunaga T, Yoshino T. High-Throughput Manipulation of Circulating Tumor Cells Using a Multiple Single-Cell Encapsulation System with a Digital Micromirror Device. Anal Chem 2018; 90:9734-9741. [DOI: 10.1021/acs.analchem.8b00896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ryo Negishi
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Takai
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
43
|
Santarpia M, Liguori A, D'Aveni A, Karachaliou N, Gonzalez-Cao M, Daffinà MG, Lazzari C, Altavilla G, Rosell R. Liquid biopsy for lung cancer early detection. J Thorac Dis 2018; 10:S882-S897. [PMID: 29780635 DOI: 10.21037/jtd.2018.03.81] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly targeted therapies and immune checkpoint inhibitors have markedly improved the therapeutic management of advanced lung cancer. However, it still remains the leading cause of cancer-related mortality worldwide, with disease stage at diagnosis representing the main prognostic factor. Detection of lung cancer at an earlier stage of disease, potentially susceptible of curative resection, can be critical to improve patients survival. Low-dose computed tomography (LDCT) screening of high-risk patients has been demonstrated to reduce mortality from lung cancer, but can be also associated with high false-positive rate, thus often resulting in unnecessary interventions for patients. Novel sensitive and specific biomarkers for identification of high-risk subjects and early detection that can be used alternatively and/or complement current routine diagnostic procedures are needed. Liquid biopsy has recently demonstrated its clinical usefulness in advanced NSCLC as a surrogate of tissue biopsy for noninvasive assessment of specific genomic alterations, thereby providing prognostic and predictive information. Different biosources from liquid biopsy, including cell free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs), have also been widely investigated for their potential role in lung cancer diagnosis. This review will provide an overview on the circulating biomarkers being evaluated for lung cancer detection, mainly focusing on results from most recent studies, the techniques developed to perform their assessment in blood and other biologic fluids and challenges in their clinical applications.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Liguori
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Alessandro D'Aveni
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Maria Grazia Daffinà
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele, Milan, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol University Hospital, Badalona, Spain.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
44
|
Kamiya K, Abe Y, Inoue K, Osaki T, Kawano R, Miki N, Takeuchi S. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions. Adv Healthc Mater 2018; 7:e1701208. [PMID: 29369539 DOI: 10.1002/adhm.201701208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Indexed: 11/10/2022]
Abstract
Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
| | - Yuta Abe
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
- School of Integrated Design Engineering Keio University 3‐14‐1, Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| | - Kosuke Inoue
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
- School of Integrated Design Engineering Keio University 3‐14‐1, Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153‐8505 Japan
| | - Ryuji Kawano
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
| | - Norihisa Miki
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
- Department of Mechanical Engineering Keio University 3‐14‐1, Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group Kanagawa Institute of Industrial Science and Technology KSP EAST 303, 3‐2‐1, Sakado Takatsu‐ku, Kawasaki Kanagawa 213‐0012 Japan
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153‐8505 Japan
| |
Collapse
|
45
|
Wang L, Dumenil C, Julié C, Giraud V, Dumoulin J, Labrune S, Chinet T, Emile JF, He B, Giroux Leprieur E. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017; 8:109818-109835. [PMID: 29312651 PMCID: PMC5752564 DOI: 10.18632/oncotarget.22651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular characterization of tumor cells is a key step in the diagnosis and optimal treatment of lung cancer. However, analysis of tumor samples, often corresponding to small biopsies, can be difficult and does not accurately reflect tumor heterogeneity. Recent studies have shown that isolation of circulating tumor cells (CTCs) is feasible in non-small cell lung cancer patients, even at early disease stages. The amount of CTCs corresponds to the metastatic potential of the tumor and to patient prognosis. Moreover, molecular analyses, even at the single-cell level, can be performed on CTCs. This review describes the technologies currently available for detecting and capturing CTCs, the potential for downstream molecular diagnostics, and the clinical applications of CTCs isolated from lung cancer patients as screening, prognostic, and predictive tools. Main limitations of CTCs are also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Catherine Julié
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Jean-François Emile
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
46
|
Xie Z, Gao X, Cheng K, Yu L. Correlation between the presence of circulating tumor cells and the pathologic type and staging of non-small cell lung cancer during the early postoperative period. Oncol Lett 2017; 14:5825-5830. [PMID: 29113213 PMCID: PMC5661428 DOI: 10.3892/ol.2017.6910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023] Open
Abstract
This study investigated possible correlations between the presence of circulating tumor cells (CTCs) and the pathologic types and staging of non-small cell lung cancer (NSCLC) during the early postoperative period. Sixty-nine patients with NSCLC were enrolled in the study. Clinical staging was performed by postoperative pathological examination and imaging. Multiple mRNA in situ analyses targeting specifically expressed genes were carried out to identify the presence of CTCs. Correlations between age, sex, TNM stage and pathological types with the detection rate of CTCs were also established. The results showed the positivity rate of CTCs in patients >55 years was significantly higher than that of patients <55 years (94.74 vs. 70.97%, P<0.05). There was no significant difference in the positivity rate of CTCs between male and female patients (85.71 vs. 85.29%, P>0.05). The correlations between the detection rate of epithelial type or mixed type CTCs with tumor size, lymph node metastasis and distant metastasis TNM in patients with NSCLC were not significant (P>0.05). However, higher TNM stages correlated with higher detection rates of mesenchymal CTCs (P<0.05). There were also significant differences in the detection rates of CTCs amongst the three different pathologic types (adenocarcinoma, squamous cell and large cell carcinomas) (P<0.05). Based on our results, the detection of mesenchymal CTCs during the early postoperative period can help prognosticate the recurrence and metastasis of NSCLC, which is beneficial to the development of individualized treatment strategies.
Collapse
Affiliation(s)
- Zhanqiang Xie
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaotian Gao
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Keluo Cheng
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lishuang Yu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
47
|
The Emerging Role of "Liquid Biopsies," Circulating Tumor Cells, and Circulating Cell-Free Tumor DNA in Lung Cancer Diagnosis and Identification of Resistance Mutations. Curr Oncol Rep 2017; 19:1. [PMID: 28110461 DOI: 10.1007/s11912-017-0564-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic advances in the treatment of lung cancer are in part due to a more complete understanding of its genomic portrait. The serial monitoring of tumor genotypes, which are instable and prone to changes under selective pressure, is becoming increasingly needed. Although tumor biopsies remain the reference standard for the diagnosis and genotyping of lung cancer, they are invasive and not always feasible. The "liquid biopsies" have the potential to overcome many of these hurdles, allowing a rapid and accurate identification of de novo and resistant genetic alterations and a real-time monitoring of treatment responses. In this review, we provide insights into new liquid diagnostic platforms and discuss the role of circulating tumor cells and circulating tumor DNA in the diagnosis and identification of resistance mutations in lung cancer.
Collapse
|
48
|
Kang HM, Kim GH, Jeon HK, Kim DH, Jeon TY, Park DY, Jeong H, Chun WJ, Kim MH, Park J, Lim M, Kim TH, Cho YK. Circulating tumor cells detected by lab-on-a-disc: Role in early diagnosis of gastric cancer. PLoS One 2017; 12:e0180251. [PMID: 28662130 PMCID: PMC5491173 DOI: 10.1371/journal.pone.0180251] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The use of circulating tumor cells (CTCs) as an early diagnostic biomarker and prognostic indicator after surgery or chemotherapy has been suggested for various cancers. This study aimed to evaluate CTCs in patients who underwent gastrectomy for gastric cancer and to explore their clinical usefulness in the early diagnosis of gastric cancer. METHODS A total of 116 patients with gastric cancer who underwent gastrectomy and 31 healthy volunteers were prospectively included between 2014 and 2015. Peripheral blood samples were collected before gastrectomy, and CTCs were examined using a centrifugal microfluidic system with a new fluid-assisted separation technique. RESULTS After creating a receiver operating characteristic curve to identify the discriminative CTC value needed differentiate patients with gastric cancer from healthy volunteers, sensitivity and specificity were nearly optimized at a CTC threshold of 2 per 7.5 mL of blood. Of the 102 persons with a CTC level ≥2 per 7.5 mL of blood, 99 (97.1%) had gastric cancer, and of the 45 persons with a CTC level <2 per 7.5 mL of blood, 28 (62.2%) were healthy controls. Accordingly, the sensitivity and specificity for the differentiation of patients with gastric cancer from healthy controls were 85.3% and 90.3%, respectively. However, the presence of CTCs was not associated with any clinicopathologic features such as staging, histologic type, or mucin phenotype. CONCLUSION Although we could not prove the clinical feasibility of CTCs for gastric cancer staging, our results suggest a potential role of CTCs as an early diagnostic biomarker of gastric cancer.
Collapse
Affiliation(s)
- Hwa Mi Kang
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- * E-mail:
| | - Hye Kyung Jeon
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Dae Hwan Kim
- Department of Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Tae Yong Jeon
- Department of Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
| | - Hyunjin Jeong
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Won Joo Chun
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Korea
| | - Minji Lim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Tae-Hyeong Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Korea
| | - Yoon-Kyung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
49
|
Yagi S, Koh Y, Akamatsu H, Kanai K, Hayata A, Tokudome N, Akamatsu K, Endo K, Nakamura S, Higuchi M, Kanbara H, Nakanishi M, Ueda H, Yamamoto N. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One 2017. [PMID: 28640869 PMCID: PMC5480994 DOI: 10.1371/journal.pone.0179744] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48–85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.
Collapse
Affiliation(s)
- Satomi Yagi
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiro Koh
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| | - Hiroaki Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Hayata
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nahomi Tokudome
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Endo
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | - Seita Nakamura
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | - Masayuki Higuchi
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | | | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Ueda
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
50
|
Hao N, Zhang JX. Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1320763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|