1
|
Bertolini S, Delcorte A. Molecular Dynamics Simulations of Soft and Reactive Landing of Proteins Desorbed by Argon Cluster Bombardment. J Phys Chem B 2024; 128:6716-6729. [PMID: 38975731 DOI: 10.1021/acs.jpcb.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.
Collapse
Affiliation(s)
- Samuel Bertolini
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Di Palma G, Kotowska AM, Hart LR, Scurr DJ, Rawson FJ, Tommasone S, Mendes PM. Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8937-8944. [PMID: 30726052 DOI: 10.1021/acsami.9b00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supramolecular strategy to directly assemble proteins on surfaces based on multivalent host-guest interactions. The host-guest interactions are achieved by one-step nanofabrication of a well-oriented β-cyclodextrin host-derived self-assembled monolayer on gold (β-CD-SAM) that forms specific inclusion complexes with hydrophobic amino acids located on the surface of the protein. Cytochrome c, insulin, α-chymotrypsin, and RNase A are used as model guest proteins. Surface plasmon resonance and static time-of-flight secondary ion mass spectrometry studies demonstrate that all four proteins interact with the β-CD-SAM in a specific manner via the hydrophobic amino acids on the surface of the protein. The β-CD-SAMs bind the proteins with high nanomolar to single-digit micromolar dissociation constants ( KD). Importantly, while the proteins can be captured with high affinity, their release from the surface can be achieved under very mild conditions. Our results expose the great advantages of using a supramolecular approach for controlling protein immobilization, in which the strategy described herein provides unprecedented opportunities to create advanced bioanalytic and biosensor technologies.
Collapse
Affiliation(s)
- Giuseppe Di Palma
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Anna M Kotowska
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Lewis R Hart
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - David J Scurr
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Frankie J Rawson
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Stefano Tommasone
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Paula M Mendes
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| |
Collapse
|
3
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
4
|
Hacohen N, Ip CJX, Gordon R. Analysis of Egg White Protein Composition with Double Nanohole Optical Tweezers. ACS OMEGA 2018; 3:5266-5272. [PMID: 31458737 PMCID: PMC6641915 DOI: 10.1021/acsomega.8b00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 05/21/2023]
Abstract
We use a double nanohole optical tweezer to analyze the protein composition of egg white through analysis of many individual protein trapping events. The proteins are grouped by mass based on two metrics: standard deviation of the trapping laser intensity fluctuations from the protein diffusion and the time constant of these fluctuations coming from the autocorrelation. Quantitative analysis is demonstrated for artificial samples, and then, the approach is applied to real egg white. The composition found from real egg white corresponds well to past reports using gel electrophoresis. This approach differs from past works by allowing for individual protein analysis in heterogeneous solutions without the need for denaturing, labeling, or tethering.
Collapse
Affiliation(s)
- Noa Hacohen
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Candice J X Ip
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Reuven Gordon
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
5
|
Yusko EC, Bruhn BR, Eggenberger OM, Houghtaling J, Rollings RC, Walsh NC, Nandivada S, Pindrus M, Hall AR, Sept D, Li J, Kalonia DS, Mayer M. Real-time shape approximation and fingerprinting of single proteins using a nanopore. NATURE NANOTECHNOLOGY 2017; 12:360-367. [PMID: 27992411 DOI: 10.1038/nnano.2016.267] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Established methods for characterizing proteins typically require physical or chemical modification steps or cannot be used to examine individual molecules in solution. Ionic current measurements through electrolyte-filled nanopores can characterize single native proteins in an aqueous environment, but currently offer only limited capabilities. Here we show that the zeptolitre sensing volume of bilayer-coated solid-state nanopores can be used to determine the approximate shape, volume, charge, rotational diffusion coefficient and dipole moment of individual proteins. To do this, we developed a theory for the quantitative understanding of modulations in ionic current that arise from the rotational dynamics of single proteins as they move through the electric field inside the nanopore. The approach allows us to measure the five parameters simultaneously, and we show that they can be used to identify, characterize and quantify proteins and protein complexes with potential implications for structural biology, proteomics, biomarker detection and routine protein analysis.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brandon R Bruhn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Olivia M Eggenberger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Ryan C Rollings
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Nathan C Walsh
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Santoshi Nandivada
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mariya Pindrus
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Adam R Hall
- Department of Biomedical Engineering and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiali Li
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Devendra S Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael Mayer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Sanders BJ, Kim DC, Dunn RC. Recent Advances in Microscale Western Blotting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7002-7013. [PMID: 28392839 PMCID: PMC5383213 DOI: 10.1039/c6ay01947a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins. Samples are first separated based on size and then probed with antibodies specific for the protein of interest. This confirmatory approach helps avoid pitfalls associated with antibody cross-reactivity and specificity issues. While the technique has evolved since its inception, the last decade has witnessed a paradigm shift in Western blotting technology. The introduction of capillary and microfluidic platforms has significantly decreased time and sample requirements while enabling high-throughput capabilities. These advances have enabled Western analysis down to the single cell level in highly parallel formats, opening vast new opportunities for studying cellular heterogeneity. Recent innovations in microscale Western blotting are surveyed, and the potential for enhancing detection using advances in label-free biosensing is briefly discussed.
Collapse
Affiliation(s)
- Brittany J Sanders
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Daniel C Kim
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Robert C Dunn
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| |
Collapse
|