1
|
Microfluidic free-flow electrophoresis: a promising tool for protein purification and analysis in proteomics. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Two-photon fluorescence lifetime for label-free microfluidic droplet sorting. Anal Bioanal Chem 2021; 414:721-730. [PMID: 34792636 PMCID: PMC8748334 DOI: 10.1007/s00216-021-03745-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Microfluidic droplet sorting systems facilitate automated selective micromanipulation of compartmentalized micro- and nano-entities in a fluidic stream. Current state-of-the-art droplet sorting systems mainly rely on fluorescence detection in the visible range with the drawback that pre-labeling steps are required. This limits the application range significantly, and there is a high demand for alternative, label-free methods. Therefore, we introduce time-resolved two-photon excitation (TPE) fluorescence detection with excitation at 532 nm as a detection technique in droplet microfluidics. This enables label-free in-droplet detection of small aromatic compounds that only absorb in a deep-UV spectral region. Applying time-correlated single-photon counting, compounds with similar emission spectra can be distinguished due to their fluorescence lifetimes. This information is then used to trigger downstream dielectrophoretic droplet sorting. In this proof-of-concept study, we developed a polydimethylsiloxane-fused silica (FS) hybrid chip that simultaneously provides a very high optical transparency in the deep-UV range and suitable surface properties for droplet microfluidics. The herein developed system incorporating a 532-nm picosecond laser, time-correlated single-photon counting (TCSPC), and a chip-integrated dielectrophoretic pulsed actuator was exemplarily applied to sort droplets containing serotonin or propranolol. Furthermore, yeast cells were screened using the presented platform to show its applicability to study cells based on their protein autofluorescence via TPE fluorescence lifetime at 532 nm.
Collapse
|
3
|
Boppart SA, You S, Li L, Chen J, Tu H. Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. APL PHOTONICS 2019; 4:100901. [PMID: 33585678 PMCID: PMC7880241 DOI: 10.1063/1.5098349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/21/2019] [Indexed: 05/19/2023]
Abstract
Without sophisticated data inversion algorithms, nonlinear optical microscopy can acquire images at subcellular resolution and relatively large depth, with plausible endogenous contrasts indicative of authentic biological and pathological states. Although independent contrasts have been derived by sequentially imaging the same sample plane or volume under different and often optimized excitation conditions, new laser source engineering with inputs from key biomolecules surprisingly enable real-time simultaneous acquisition of multiple endogenous molecular contrasts to segment a rich set of cellular and extracellular components. Since this development allows simple single-beam single-shot excitation and simultaneous multicontrast epidirected signal detection, the resulting platform avoids perturbative sample pretreatments such as fluorescent labeling, mechanical sectioning, scarce or interdependent contrast generation, constraints to the sample or imaging geometry, and intraimaging motion artifacts that have limited in vivo nonlinear optical molecular imaging.
Collapse
Affiliation(s)
- Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sixian You
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Haohua Tu
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Heiland JJ, Geissler D, Piendl SK, Warias R, Belder D. Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Anal Chem 2019; 91:6134-6140. [DOI: 10.1021/acs.analchem.9b00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Josef J. Heiland
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Hasan S, Geissler D, Wink K, Hagen A, Heiland JJ, Belder D. Fluorescence lifetime-activated droplet sorting in microfluidic chip systems. LAB ON A CHIP 2019; 19:403-409. [PMID: 30604804 DOI: 10.1039/c8lc01278d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a highly efficient microfluidic fluorescence lifetime-activated droplet sorting (FLADS) approach as a novel technology for droplet manipulation in lab-on-a-chip devices. In a proof-of-concept study, we successfully applied the approach to sort droplets containing two different fluorescent compounds on the basis of their corresponding fluorescence lifetime. Towards this end, a technical set-up was developed enabling on-the-fly fluorescence lifetime determination of passing droplets. The herein developed LabVIEW program enabled fast triggering of a downstream dielectrophoretic force sorting functionality depending on average fluorescence lifetimes of individual droplets. The approach worked reliably at individual substrate concentrations from 1 nM to 1 mM. This not only allowed reliable sorting of droplets containing species with different fluorescence lifetimes but also enabled differentiation of mixtures in individual droplets.
Collapse
Affiliation(s)
- Sadat Hasan
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Wei K, Zhao J, Qin Y, Li S, Huang Y, Zhao S. A novel multiplex signal amplification strategy based on microchip electrophoresis platform for the improved separation and detection of microRNAs. Talanta 2018; 189:437-441. [DOI: 10.1016/j.talanta.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/18/2023]
|
7
|
Li J, Zhao J, Li S, Zhang L, Huang Y, Zhao S, Liu YM. Electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence signal amplification strategy on a microchip platform for highly sensitive detection of microRNA. Chem Commun (Camb) 2018; 52:12806-12809. [PMID: 27711307 DOI: 10.1039/c6cc06327f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed an electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence (CL) signal amplification strategy on a microchip platform for the detection of trace microRNA. This strategy exhibits high sensitivity and specificity for detection of target molecules.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St, Jackson, MS 39217, USA
| |
Collapse
|
8
|
Qin Y, Zhang L, Li S, Zhao J, Huang Y, Zhao S, Liu YM. A microchip electrophoresis-based fluorescence signal amplification strategy for highly sensitive detection of biomolecules. Chem Commun (Camb) 2017; 53:455-458. [PMID: 27966686 DOI: 10.1039/c6cc08911a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have developed a microchip electrophoresis (MCE)-based fluorescence signal amplification strategy as a universal MCE method for the detection of trace biomolecules. This strategy exhibits high sensitivity and specificity for target molecules, and has been applied for the detection of interferon-gamma (IFN-γ) in human plasma with satisfactory results.
Collapse
Affiliation(s)
- Yingfeng Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA
| |
Collapse
|
9
|
Kochmann S, Krylov SN. Image processing and analysis system for development and use of free flow electrophoresis chips. LAB ON A CHIP 2017; 17:256-266. [PMID: 27957577 DOI: 10.1039/c6lc01381c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present an image processing and analysis system to facilitate detailed performance analysis of free flow electrophoresis (FFE) chips. It consists of a cost-effective self-built imaging setup and a comprehensive customizable software suite. Both components were designed modularly to be accessible, adaptable, versatile, and automatable. The system provides tools for i) automated identification of chip features (e.g. separation zone and flow markers), ii) extraction and analysis of stream trajectories, and iii) evaluation of flow profiles and separation quality (e.g. determination of resolution). Equipped with these tools, the presented image processing and analysis system will enable faster development of FFE chips and applications. It will also serve as a robust detector for fluorescence-based analytical applications of FFE.
Collapse
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
10
|
Dietze C, Hackl C, Gerhardt R, Seim S, Belder D. Chip-based electrochromatography coupled to ESI-MS detection. Electrophoresis 2016; 37:1345-52. [DOI: 10.1002/elps.201500543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Claudia Dietze
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Claudia Hackl
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Renata Gerhardt
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Stephan Seim
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Detlev Belder
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|
11
|
Krone KM, Warias R, Ritter C, Li A, Acevedo-Rocha CG, Reetz MT, Belder D. Analysis of Enantioselective Biotransformations Using a Few Hundred Cells on an Integrated Microfluidic Chip. J Am Chem Soc 2016; 138:2102-5. [DOI: 10.1021/jacs.5b12443] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin M. Krone
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Cornelia Ritter
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Aitao Li
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Carlos G. Acevedo-Rocha
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Manfred T. Reetz
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Detlev Belder
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Geissler D, Belder D. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips. Electrophoresis 2015; 36:2976-82. [DOI: 10.1002/elps.201500192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Affiliation(s)
- David Geissler
- Universität Leipzig; Institut für Analytische Chemie; Leipzig Germany
| | - Detlev Belder
- Universität Leipzig; Institut für Analytische Chemie; Leipzig Germany
| |
Collapse
|
13
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
14
|
Hackl C, Beyreiss R, Geissler D, Jezierski S, Belder D. Rapid prototyping of electrochromatography chips for improved two-photon excited fluorescence detection. Anal Chem 2014; 86:3773-9. [PMID: 24666258 DOI: 10.1021/ac500793e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we introduce two-photon excitation at 532 nm for label-free fluorescence detection in chip electrochromatography. Two-photon excitation at 532 nm offers a promising alternative to one-photon excitation at 266 nm, as it enables the use of economic chip materials instead of fused silica. In order to demonstrate these benefits, one-photon and two-photon induced fluorescence detection are compared in different chip layouts and materials with respect to the achievable sensitivity in the detection of polycyclic aromatic hydrocarbons (PAHs). Customized chromatography chips with cover or bottom slides of different material and thickness are produced by means of a rapid prototyping method based on liquid-phase lithography. The design of thin bottom chips (180 μm) enables the use of high-performance immersion objectives with low working distances, which allows one to exploit the full potential of two-photon excitation for a sensitive detection. The developed method is applied for label-free analysis of PAHs separated on a polymer monolith inside polymer glass sandwich chips made from fused silica or soda-lime glass. The obtained limits of detection range from 40 nM to 1.95 μM, with similar sensitivities in fused silica thin bottom chips for one-photon and two-photon excitation. In deep-UV non- or less-transparent devices two-photon excitation is mandatory for label-free detection of aromatics with high sensitivity.
Collapse
Affiliation(s)
- Claudia Hackl
- Institut für Analytische Chemie, Universität Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|