1
|
Yamazaki Y, Hitomi T, Homma C, Rungreungthanapol T, Tanaka M, Yamada K, Hamasaki H, Sugizaki Y, Isobayashi A, Tomizawa H, Okochi M, Hayamizu Y. Enantioselective Detection of Gaseous Odorants with Peptide-Graphene Sensors Operating in Humid Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18564-18573. [PMID: 38567738 DOI: 10.1021/acsami.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tatsuru Hitomi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Kou Yamada
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hiroshi Hamasaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
A review on rapid detection of modified quartz crystal microbalance sensors for food: Contamination, flavour and adulteration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit. ELECTRONICS 2022. [DOI: 10.3390/electronics11030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.
Collapse
|
4
|
Abstract
Metal phthalocyanines bearing electron-withdrawing fluorine substituents were synthesized a long time ago, but interest in the study of their films has emerged in recent decades. This is due to the fact that, unlike unsubstituted phthalocyanines, films of some fluorinated phthalocyanines exhibit the properties of n-type semiconductors, which makes them promising candidates for application in ambipolar transistors. Apart from this, it was shown that the introduction of fluorine substituents led to an increase in the sensitivity of phthalocyanine films to reducing gases. This review analyzes the state of research over the last fifteen years in the field of applications of fluoro-substituted metal phthalocyanines as active layers of gas sensors, with a primary focus on chemiresistive ones. The active layers on the basis of phthalocyanines with fluorine and fluorine-containing substituents of optical and quartz crystal microbalance sensors are also considered. Attention is paid to the analysis of the effect of molecular structure (central metal, number and type of fluorine substituent etc.) on sensor properties of fluorinated phthalocyanine films.
Collapse
|
5
|
Wan N, Jiang J, Hu F, Chen P, Zhu K, Deng D, Xie Y, Wu C, Hua L, Li H. Nonuniform Electric Field-Enhanced In-Source Declustering in High-Pressure Photoionization/Photoionization-Induced Chemical Ionization Mass Spectrometry for Operando Catalytic Reaction Monitoring. Anal Chem 2021; 93:2207-2214. [PMID: 33410328 DOI: 10.1021/acs.analchem.0c04081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoionization mass spectrometry (PI-MS) is a powerful and highly sensitive analytical technique for online monitoring of volatile organic compounds (VOCs). However, due to the large difference of PI cross sections for different compounds and the limitation of photon energy, the ability of lamp-based PI-MS for detection of compounds with low PI cross sections and high ionization energies (IEs) is insufficient. Although the ion production rate can be improved by elevating the ion source pressure, the problem of generating plenty of cluster ions, such as [MH]+·(H2O)n (n = 1 and 2) and [M2]+, needs be solved. In this work, we developed a new nonuniform electric field high-pressure photoionization/photoionization-induced chemical ionization (NEF-HPPI/PICI) source with the abilities of both HPPI and PICI, which was accomplished through ion-molecule reactions with high-intensity H3O+ reactant ions generated by photoelectron ionization (PEI) of water molecules. By establishing a nonuniform electric field in a three-zone ionization region to enhance in-source declustering and using 99.999% helium as the carrier gas, not only the formation of cluster ions was significantly diminished, but the ion transmission efficiency was also improved. Consequently, the main characteristic ion for each analyte both in HPPI and PICI occupied more than 80%, especially [HCOOH·H]+ with a yield ratio of 99.2% for formic acid. The analytical capacity of this system was demonstrated by operando monitoring the hydrocarbons and oxygenated VOC products during the methanol-to-olefins and methane conversion catalytic reaction processes, exhibiting wide potential applications in process monitoring, reaction mechanism research, and online quality control.
Collapse
Affiliation(s)
- Ningbo Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Fan Hu
- Henan Medical Instruments Testing Institute, 79 Xiongerhe Road, Zhengzhou 450018, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Kaixin Zhu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Chenxin Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
6
|
Bwambok DK, Siraj N, Macchi S, Larm NE, Baker GA, Pérez RL, Ayala CE, Walgama C, Pollard D, Rodriguez JD, Banerjee S, Elzey B, Warner IM, Fakayode SO. QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6982. [PMID: 33297345 PMCID: PMC7730680 DOI: 10.3390/s20236982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.
Collapse
Affiliation(s)
- David K. Bwambok
- Chemistry and Biochemistry, California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA;
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Nathaniel E. Larm
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Caitlan E. Ayala
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Charuksha Walgama
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - David Pollard
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr Dr, Winston-Salem, NC 27013, USA;
| | - Jason D. Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO 63110, USA;
| | - Souvik Banerjee
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - Brianda Elzey
- Science, Engineering, and Technology Department, Howard Community College, 10901 Little Patuxent Pkwy, Columbia, MD 21044, USA;
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Sayo O. Fakayode
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| |
Collapse
|
7
|
Oprea A, Weimar U. Gas sensors based on mass-sensitive transducers. Part 2: Improving the sensors towards practical application. Anal Bioanal Chem 2020; 412:6707-6776. [PMID: 32737549 PMCID: PMC7496080 DOI: 10.1007/s00216-020-02627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 01/03/2023]
Abstract
Within the framework outlined in the first part of the review, the second part addresses attempts to increase receptor material performance through the use of sensor systems and chemometric methods, in conjunction with receptor preparation methods and sensor-specific tasks. Conclusions are then drawn, and development perspectives for gravimetric sensors are discussed.
Collapse
Affiliation(s)
- Alexandru Oprea
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University, Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| | - Udo Weimar
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
8
|
Materials design and sensing mechanism of novel calix[6]arene composite for sensitively detecting amine drugs. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Liu K, Zhang C. Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chem 2020; 334:127615. [PMID: 32711261 DOI: 10.1016/j.foodchem.2020.127615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
10
|
|
11
|
Quartz Crystal Microbalance Based Sensor Arrays for Detection and Discrimination of VOCs Using Phosphonium Ionic Liquid Composites. SENSORS 2020; 20:s20030615. [PMID: 31979151 PMCID: PMC7037595 DOI: 10.3390/s20030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
Abstract
Herein, we examine two sensing schemes for detection and discrimination of chlorinated volatile organic compounds (VOCs). In this work, phosphonium ionic liquids (ILs) were synthesized and vapor sensing properties examined and compared to phosphonium IL-polymer composites. Pure IL sensors were used to develop a QCM-based multisensory array (MSA), while IL-polymer composites were used to develop an MSA and virtual sensor arrays (VSAs). It was found that by employing the composite MSA, five chlorinated VOCs were accurately discriminated at 95.56%, which was an increase in accuracy as compared to pure ILs MSA (84.45%). Data acquired with two out of three VSAs allowed discrimination of chlorinated VOCs with 100% accuracy. These studies have provided greater insight into the benefits of incorporating polymers in coating materials for enhanced discrimination accuracies of QCM-based sensor arrays. To the best of our knowledge, this is the first report of a QCM-based VSA for discrimination of closely related chlorinated VOCs.
Collapse
|
12
|
Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. SENSORS 2019; 19:s19245382. [PMID: 31817599 PMCID: PMC6960530 DOI: 10.3390/s19245382] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
Abstract
Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous, as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of the sample. Virtual sensor arrays utilize only one sensor but combine it with enhanced signal evaluation methods or preceding sample separation, which results in similar results as obtained with multi-sensor arrays. Both array types have shown to be promising with regard to system integration and low costs. This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on developments of the past decade.
Collapse
|
13
|
Toniolo R, Dossi N, Bortolomeazzi R, Bonazza G, Daniele S. Volatile aldehydes sensing in headspace using a room temperature ionic liquid-modified electrochemical microprobe. Talanta 2019; 197:522-529. [PMID: 30771971 DOI: 10.1016/j.talanta.2019.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
The cyclic voltammetric behaviour of propionaldehyde (PA) and hexanaldehyde (HA), in 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTF2]), 1-butyl-3-methylimidazolium hydrogen sulphate ([BMIM][HSO4]) and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) was investigated at a platinum microelectrode. A clear oxidation process for both aldehydes was recorded only in [BMIM][OH]. On the basis of these evidences, an electrochemical microprobe (EMP), incorporating [BMIM][OH] as electrolyte, was assembled for sensing these aldehydes in gaseous phases. The EMP exposed in the headspace of the liquid aldehydes displayed voltammetric and amperometric responses, which depended on the aldehyde vapour pressures and, consequently, on the temperature employed. The usefulness of the [BMIM][OH] coated EMP for practical applications was assessed in the detection of HA vapour released from squalene (i.e., a lipid simulant matrix) samples spiked with known amounts of the aldehyde. Calibration plots were constructed at 40 °C, 50 °C and 60 °C, using both voltammetry and chronoamperometry. In both cases, good linearity between current and HA concentration in squalene was obtained over the range 3-300 ppm, with correlation coefficients higher than 0.991. Reproducibility, evaluated from at least three replicates, was within 5%. Detection limits, evaluated for a signal-to-noise ratio of 3, were in any case lower than 1.7 ppm. These analytical performances are suitable for monitoring VAs coming from lipid oxidation processes in food. An application concerning the determination of VAs in headspace of sunflower oil during an induced oxidative test to establish its thermal stability was also performed.
Collapse
Affiliation(s)
- Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Renzo Bortolomeazzi
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gregorio Bonazza
- Department of Molecular Sciences and Nanosystems, University Cà Foscari Venice, via Torino, 155, I-30137 Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Cà Foscari Venice, via Torino, 155, I-30137 Mestre-Venezia, Italy.
| |
Collapse
|
14
|
Vaughan SR, Speller NC, Chhotaray P, McCarter KS, Siraj N, Pérez RL, Li Y, Warner IM. Class specific discrimination of volatile organic compounds using a quartz crystal microbalance based multisensor array. Talanta 2018; 188:423-428. [PMID: 30029397 DOI: 10.1016/j.talanta.2018.05.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022]
Abstract
The use of quartz crystal microbalance (QCM) sensor arrays for analyses of volatile organic compounds (VOC) has attracted significant interest in recent years. In this regard, a group of uniformed materials based on organic salts (GUMBOS) has proven to be promising recognition elements in QCM based sensor arrays due to diverse properties afforded by this class of tunable materials. Herein, we examine the application of four novel phthalocyanine based GUMBOS as recognition elements for VOC sensing using a QCM based multisensor array (MSA). These synthesized GUMBOS are composed of copper (II) phthalocyaninetetrasulfonate (CuPcS4) anions coupled with ammonium or phosphonium cations respectively (tetrabutylammonium (TBA), tetrabutylphosphonium (P4444), 3-(dodecyldimethyl-ammonio)propanesulfonate (DDMA), and tributyl-n-octylphosphonium (P4448)). These materials were characterized using ESI-MS and FTIR, while thermal properties were investigated using TGA. Vapor sensing properties of these GUMBOS towards a set of common VOCs at three sample flow rate ratios were examined. Upon exposure to VOCs, each sensor generated analyte specific response patterns that were recorded and analyzed using principal component and discriminant analyses. Use of this MSA allowed discrimination of analytes into different functional group classes (alcohols, chlorohydrocarbons, aromatic hydrocarbons, and hydrocarbons) with 98.6% accuracy. Evaluation of these results provides further insight into the use of phthalocyanine GUMBOS as recognition elements for QCM-based MSAs for VOC discrimination.
Collapse
Affiliation(s)
- Stephanie R Vaughan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas C Speller
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pratap Chhotaray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Kevin S McCarter
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Noureen Siraj
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Rocío L Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yue Li
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isiah M Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Mehta NA, Levin DA. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models. Phys Rev E 2018; 97:033306. [PMID: 29776180 DOI: 10.1103/physreve.97.033306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 06/08/2023]
Abstract
Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.
Collapse
Affiliation(s)
- Neil A Mehta
- The University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Deborah A Levin
- The University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
16
|
Mehta NA, Levin DA. Comparison of two protic ionic liquid behaviors in the presence of an electric field using molecular dynamics. J Chem Phys 2017; 147:234505. [DOI: 10.1063/1.5001827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Neil A. Mehta
- The University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Deborah A. Levin
- The University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
17
|
13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. ACTA ACUST UNITED AC 2017. [DOI: 10.1201/9781315153209-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Modulation of volumetric properties of d(+)-glucose in aqueous 3-hydroxypropylammonium acetate solutions. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Speller NC, Siraj N, Vaughan S, Speller LN, Warner IM. Assessment of QCM array schemes for mixture identification: citrus scented odors. RSC Adv 2016. [DOI: 10.1039/c6ra16988k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A comparative study of QCM based MSAs, VSAs, and V-MSAs for complex mixture analysis.
Collapse
Affiliation(s)
| | - Noureen Siraj
- Department of Chemistry
- University of Arkansas at Little Rock
- Little Rock
- USA
| | | | - Lauren N. Speller
- College of Arts and Sciences
- Washington University in St. Louis
- St. Louis
- USA
| | - Isiah M. Warner
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
20
|
Toniolo R, Dossi N, Svigelj R, Pigani L, Terzi F, Abollino O, Bontempelli G. A Deep Eutectic Solvent-based Amperometric Sensor for the Detection of Low Oxygen Contents in Gaseous Atmospheres. ELECTROANAL 2015. [DOI: 10.1002/elan.201500515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Bragazzi NL, Amicizia D, Panatto D, Tramalloni D, Valle I, Gasparini R. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:149-211. [PMID: 26572979 DOI: 10.1016/bs.apcsb.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanobiotechnologies, from the convergence of nanotechnology and molecular biology and postgenomics medicine, play a major role in the field of public health. This overview summarizes the potentiality of piezoelectric sensors, and in particular, of quartz-crystal microbalance (QCM), a physical nanogram-sensitive device. QCM enables the rapid, real time, on-site detection of pathogens with an enormous burden in public health, such as influenza and other respiratory viruses, hepatitis B virus (HBV), and drug-resistant bacteria, among others. Further, it allows to detect food allergens, food-borne pathogens, such as Escherichia coli and Salmonella typhimurium, and food chemical contaminants, as well as water-borne microorganisms and environmental contaminants. Moreover, QCM holds promises in early cancer detection and screening of new antiblastic drugs. Applications for monitoring biohazards, for assuring homeland security, and preventing bioterrorism are also discussed.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Amicizia
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Tramalloni
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Ivana Valle
- SSD "Popolazione a rischio," Health Prevention Department, Local Health Unit ASL3 Genovese, Genoa, Italy
| | - Roberto Gasparini
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy.
| |
Collapse
|
22
|
Rehman A, Zeng X. Methods and approaches of utilizing ionic liquids as gas sensing materials. RSC Adv 2015; 5:58371-58392. [PMID: 29142738 PMCID: PMC5683717 DOI: 10.1039/c5ra06754e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gas monitoring is of increasing significance for a broad range of applications in the fields of environmental and civil infrastructures, climate and energy, health and safety, industry and commerce. Even though there are many gas detection devices and systems available, the increasing needs for better detection technologies that not only satisfy the high analytical standards but also meet additional device requirements (e.g., being robust to survive under field conditions, low cost, small, smart, more mobile), demand continuous efforts in developing new methods and approaches for gas detection. Ionic Liquids (ILs) have attracted a tremendous interest as potential sensing materials for the gas sensor development. Being composed entirely of ions and with a broad structural and functional diversity, i.e., bifunctional (organic/inorganic), biphasic (solid/liquid) and dual-property (solvent/electrolyte), they have the complementing attributes and the required variability to allow a systematic design process across many sensing components to enhance sensing capability especially for miniaturized sensor system implementation. The emphasis of this review is to describe molecular design and control of IL interface materials to provide selective and reproducible response and to synergistically integrate IL sensing materials with low cost and low power electrochemical, piezoelectric/QCM and optical transducers to address many gas detection challenges (e.g., sensitivity, selectivity, reproducibility, speed, stability, cost, sensor miniaturization, and robustness). We further show examples to justify the importance of understanding the mechanisms and principles of physicochemical and electrochemical reactions in ILs and then link those concepts to developing new sensing methods and approaches. By doing this, we hope to stimulate further research towards the fundamental understanding of the sensing mechanisms and new sensor system development and integration, using simple sensing designs and flexible sensor structures both in terms of scientific operation and user interface that can be miniaturized and interfaced with modern wireless monitoring technologies to achieve specifications heretofore unavailable on current markets for the next generation of gas sensor applications.
Collapse
|
23
|
Speller NC, Siraj N, Regmi BP, Marzoughi H, Neal C, Warner IM. Rational Design of QCM-D Virtual Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination. Anal Chem 2015; 87:5156-66. [DOI: 10.1021/ac5046824] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas C. Speller
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Noureen Siraj
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bishnu P. Regmi
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Hassan Marzoughi
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Courtney Neal
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Isiah M. Warner
- Department of Chemistry, ‡Department of Information Systems and Decision Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
24
|
Galpothdeniya WIS, Regmi BP, McCarter KS, de Rooy SL, Siraj N, Warner IM. Virtual Colorimetric Sensor Array: Single Ionic Liquid for Solvent Discrimination. Anal Chem 2015; 87:4464-71. [DOI: 10.1021/acs.analchem.5b00714] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Waduge Indika S. Galpothdeniya
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bishnu P. Regmi
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin S. McCarter
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sergio L. de Rooy
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Noureen Siraj
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Isiah M. Warner
- Department of Chemistry, and ‡Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Amperometric Sniffer for Volatile Amines Based on Paper-Supported Room Temperature Ionic Liquids Enabling Rapid Assessment of Fish Spoilage. ELECTROANAL 2014. [DOI: 10.1002/elan.201400276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Galpothdeniya WIS, McCarter KS, De Rooy SL, Regmi BP, Das S, Hasan F, Tagge A, Warner IM. Ionic liquid-based optoelectronic sensor arrays for chemical detection. RSC Adv 2014. [DOI: 10.1039/c3ra47518b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
27
|
Benedetti TM, Torresi RM. Rheological changes and kinetics of water uptake by poly(ionic liquid)-based thin films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15589-15595. [PMID: 24289223 DOI: 10.1021/la4038809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Water uptake by thin films composed of the poly(ionic liquid) poly[diallyldimethylammonium bis(trifluoromethanesulfonyl)imide] (PDDATf2N) and the ionic liquid N,N-butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr1.4Tf2N) was studied with a quartz crystal microbalance with dissipation. The data obtained for films with different compositions during the passage of dry and wet N2 flow through the films were simulated with the Kevin-Voigt viscoelastic model for assessment of the mass of uptake water as well as the viscoelastic parameters. Our results show that the ionic liquid acts as a plasticizer, reducing the rigidity of the film and decreasing the capacity of water uptake. Introduction to a Li salt (LiTf2N) increases the water uptake capacity and also affects both elastic and viscous parameters due to aggregation among the ions from the ionic liquid and Li(+). However, due to the preferable interaction of Li(+) ions with water molecules, these aggregates are broken when the film is hydrated. In short, the presence of water in such films affects their mechanical properties, which can reflect in their performances as solid state electrolytes and ion-conducting membranes for electrochemical applications.
Collapse
Affiliation(s)
- Tânia M Benedetti
- Instituto de Química, Universidade de São Paulo (USP) , CP 26077, 05513-970, São Paulo-SP, Brazil
| | | |
Collapse
|