1
|
Seder I, Ham KM, Jun BH, Kim SJ. Mechanical Timer-Actuated Fluidic Dispensing System: Applications to an Automated Multistep Lateral Flow Immunoassay with High Sensitivity. Anal Chem 2022; 94:12884-12889. [PMID: 36069050 DOI: 10.1021/acs.analchem.2c02945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a fluidic dispensing system that can automate the sequential fluidic delivery of multiple reagents for lateral flow assays. Highly sensitive assays typically require multiple solution-based sequences, including washing steps and signal amplification. However, implementation of these types of sequences on an automated and highly sensitive point-of-care testing (POCT) platform remains challenging. Our platform consists of two disposable cartridges with reagent chambers and a test strip and an instrument that has a mechanical timer to actuate the cam-follower-gear components. The timer rotation sequentially shifts the position of the chambers and loads the reagents to the test paper strip. The dispensing intervals are controlled at a variation of <1% within a total actuation time of 60 min. Unlike other POCT devices, the timing of fluid delivery in our timer-actuated platform is not dependent on the selection of substrates and reagents, and the unique approach to fluidic delivery results in no reagent overlap or carryover, minimal reagent loss, and highly accurate fluidic timing control for highly sensitive solution-based assays. As a model application, the proposed platform applies a gold enhancement solution to amplify the detection signal and detect prostate-specific antigen with a limit of detection of 86 pg/mL within 27 min. This platform provides an opportunity for solution-based POCT applications with high sensitivity, thereby satisfying the requirement for user-friendly operations in resource-limited settings.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Seder I, Jo A, Jun BH, Kim SJ. Movable Layer Device for Rapid Detection of Influenza a H1N1 Virus Using Highly Bright Multi-Quantum Dot-Embedded Particles and Magnetic Beads. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:284. [PMID: 35055303 PMCID: PMC8778663 DOI: 10.3390/nano12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
Preventing the rapid spread of viral infectious diseases has become a major concern for global health. In this study, we present a microfluidic platform that performs an immunoassay of viral antigens in a simple, automated, yet highly sensitive manner. The device uses silica particles embedded with highly bright quantum dots (QD2) and performs the immunoassay with a vertically movable top layer and a rotating bottom layer. Through the motion of the layers and the surface tension in the liquids, reagents move from top chambers to bottom chambers and mix homogeneously. A tip in the top layer with a mobile permanent magnet moves the immune complexes comprising the magnetic beads, virus particles, and QD2 between the bottom chambers. In this way, our automated device achieves a highly sensitive magnetic bead-based sandwich immunoassay for the influenza A H1N1 virus within 32.5 min. The detection limit of our method is 5.1 × 10-4 hemagglutination units, which is 2 × 103 times more sensitive than that of the conventional hemagglutination method and is comparable to PCR. Our device is useful for the rapid and sensitive detection of infectious diseases in point-of-care applications and resource-limited environments.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
4
|
Kvas M, Teixeira AG, Chiang B, Frampton JP. Aqueous two-phase system antibody confinement enables cost-effective analysis of protein analytes by sandwich enzyme-linked immunosorbent assay with minimal optical crosstalk. Analyst 2020; 145:5458-5465. [PMID: 32578585 DOI: 10.1039/d0an00699h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system formed from polyethylene glycol and dextran was used to uniformly coat the bottom surfaces of the wells of standard 96-well assay plates with capture and detection antibodies to improve the performance and cost-effectiveness of sandwich enzyme-linked immunosorbent assay (ELISA). Using this approach, limits of detection and linear dynamic range values comparable to those obtained for conventional sandwich ELISA were obtained using considerably lower antibody quantities due to the much lower reagent volumes required when antibodies are applied in a dextran solution beneath a polyethylene glycol overlay. Confinement of the antibody reagents to the bottom surfaces of the wells within the dextran phase also dramatically decreased the optical crosstalk present between neighboring wells when using transparent microplates. Adaptation of the conventional single sandwich ELISA for aqueous two-phase system antibody confinement was demonstrated by analysis of standard curves for C-reactive protein, transforming growth factor beta 1, and the chemokine CXCL10.
Collapse
Affiliation(s)
- Maia Kvas
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | | | | | | |
Collapse
|
5
|
Lee Y, Seder I, Kim SJ. Influence of surface tension-driven network parameters on backflow strength. RSC Adv 2019; 9:10345-10351. [PMID: 35520946 PMCID: PMC9062321 DOI: 10.1039/c8ra09756a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
This paper analyzes the effect of device elements on backflow of a surface tension-driven microfluidic device.
Collapse
Affiliation(s)
- Yonghun Lee
- Department of Mechanical Engineering
- Konkuk University
- Seoul
- Republic of Korea
| | - Islam Seder
- Department of Mechanical Engineering
- Konkuk University
- Seoul
- Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering
- Konkuk University
- Seoul
- Republic of Korea
| |
Collapse
|
6
|
Gong Y, Fan N, Yang X, Peng B, Jiang H. New advances in microfluidic flow cytometry. Electrophoresis 2018; 40:1212-1229. [PMID: 30242856 DOI: 10.1002/elps.201800298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 01/22/2023]
Abstract
In recent years, researchers are paying the increasing attention to the development of portable microfluidic diagnostic devices including microfluidic flow cytometry for the point-of-care testing. Microfluidic flow cytometry, where microfluidics and flow cytometry work together to realize novel functionalities on the microchip, provides a powerful tool for measuring the multiple characteristics of biological samples. The development of a portable, low-cost, and compact flow cytometer can benefit the health care in underserved areas such as Africa or Asia. In this article, we review recent advancements of microfluidics including sample pumping, focusing and sorting, novel detection approaches, and data analysis in the field of flow cytometry. The challenge of microfluidic flow cytometry is also examined briefly.
Collapse
Affiliation(s)
- Yanli Gong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Na Fan
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xu Yang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
7
|
Olanrewaju A, Beaugrand M, Yafia M, Juncker D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. LAB ON A CHIP 2018; 18:2323-2347. [PMID: 30010168 DOI: 10.1039/c8lc00458g] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidics offer economy of reagents, rapid liquid delivery, and potential for automation of many reactions, but often require peripheral equipment for flow control. Capillary microfluidics can deliver liquids in a pre-programmed manner without peripheral equipment by exploiting surface tension effects encoded by the geometry and surface chemistry of a microchannel. Here, we review the history and progress of microchannel-based capillary microfluidics spanning over three decades. To both reflect recent experimental and conceptual progress, and distinguish from paper-based capillary microfluidics, we adopt the more recent terminology of capillaric circuits (CCs). We identify three distinct waves of development driven by microfabrication technologies starting with early implementations in industry using machining and lamination, followed by development in the context of micro total analysis systems (μTAS) and lab-on-a-chip devices using cleanroom microfabrication, and finally a third wave that arose with advances in rapid prototyping technologies. We discuss the basic physical laws governing capillary flow, deconstruct CCs into basic circuit elements including capillary pumps, stop valves, trigger valves, retention valves, and so on, and describe their operating principle and limitations. We discuss applications of CCs starting with the most common usage in automating liquid delivery steps for immunoassays, and highlight emerging applications such as DNA analysis. Finally, we highlight recent developments in rapid prototyping of CCs and the benefits offered including speed, low cost, and greater degrees of freedom in CC design. The combination of better analytical models and lower entry barriers (thanks to advances in rapid manufacturing) make CCs both a fertile research area and an increasingly capable technology for user-friendly and high-performance laboratory and diagnostic tests.
Collapse
Affiliation(s)
- Ayokunle Olanrewaju
- Biomedical Engineering Department, McGill University, Genome Quebec and McGill University Innovation Centre, Canada.
| | | | | | | |
Collapse
|
8
|
Seder I, Kim DM, Hwang SH, Sung H, Kim DE, Kim SJ. Microfluidic chip with movable layers for the manipulation of biochemicals. LAB ON A CHIP 2018; 18:1867-1874. [PMID: 29877550 DOI: 10.1039/c8lc00382c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple and effective platform that can conglomerate various microfluidic functions in a single chip is essential for many bioassays, especially for point-of-care testing applications. Here, a chip that exploits surface tension in solutions with movable top and bottom layers is presented, for use in fluid transport, mixing, maintaining metered volumes, and biomolecule capture and release. The chip has open chambers in vertically mobile top layers and rotationally mobile bottom layers to exploit surface tension in biochemical solutions, and implements control over fluid motion. To manipulate biomolecules, a vertically mobile tip with a permanent magnet at the top layer performs collection, transport, release, and dispersion of magnetic beads. Thus, the chip orchestrates various fluidic control functions without using on-chip valves and pumps that increase operational and structural complexity. To demonstrate its utility, the chip performs automated DNA extraction by obtaining genomic DNA from a sample containing cells. Our approach provides a useful and effective alternative to numerous platforms that use active and passive on-chip components for bioassays.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
9
|
Dang VB, Kim SJ. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator. Electrophoresis 2017; 38:977-982. [DOI: 10.1002/elps.201600495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Van Bac Dang
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| |
Collapse
|
10
|
Bioanalytical advances in assays for C-reactive protein. Biotechnol Adv 2016; 34:272-90. [DOI: 10.1016/j.biotechadv.2015.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
11
|
Microfluidic distillation chip for methanol concentration detection. Anal Chim Acta 2016; 912:97-104. [DOI: 10.1016/j.aca.2016.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
|
12
|
Choi M, Na Y, Kim SJ. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber. Electrophoresis 2015; 36:2896-901. [DOI: 10.1002/elps.201500258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Munseok Choi
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Yang Na
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| |
Collapse
|
13
|
Graft-versus-host disease biomarkers: omics and personalized medicine. Int J Hematol 2014; 98:275-92. [PMID: 23959582 DOI: 10.1007/s12185-013-1406-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 02/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective form of tumor immunotherapy available to date and the frequency of transplants continues to increase worldwide. However, while allo-HSCT usually induces a beneficial graft-versus leukemia effect, a major source of morbidity and mortality following allo-HSCT is graft-versus-host disease (GVHD). Currently available diagnostic and staging tools frequently fail to identify those at higher risk for GVHD morbidity, treatment unresponsiveness, and death. Furthermore, there are shortcomings in the risk stratification of patients before GVHD clinical signs develop. In parallel, recent years have been characterized by an explosive evolution of omics technologies, largely due to technological advancements in chemistry, engineering, and bioinformatics. Building on these opportunities, plasma biomarkers have been identified and validated as promising diagnostic and prognostic tools for acute GVHD. This review summarizes current information on the types of GVHD biomarkers, the omics tools used to identify them, the biomarkers currently validated as acute GVHD markers, and future recommendations for incorporating biomarkers into new grading algorithms for risk-stratifying patients and creating more personalized treatment courses. Future directions will include randomized evaluations of these biomarkers in multicenter prospective studies while extending on the need for biomarkers of chronic GVHD.
Collapse
|