1
|
Desai PJ. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568860. [PMID: 38076893 PMCID: PMC10705244 DOI: 10.1101/2023.11.28.568860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.
Collapse
Affiliation(s)
- Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Cao S, Peterson SM, Müller S, Reichelt M, McRoberts Amador C, Martinez-Martin N. A membrane protein display platform for receptor interactome discovery. Proc Natl Acad Sci U S A 2021; 118:e2025451118. [PMID: 34531301 PMCID: PMC8488672 DOI: 10.1073/pnas.2025451118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors are critical for cell signaling and constitute a quarter of all human genes. Despite their importance and abundance, receptor interaction networks remain understudied because of difficulties associated with maintaining membrane proteins in their native conformation and their typically weak interactions. To overcome these challenges, we developed an extracellular vesicle-based method for membrane protein display that enables purification-free and high-throughput detection of receptor-ligand interactions in membranes. We demonstrate that this platform is broadly applicable to a variety of membrane proteins, enabling enhanced detection of extracellular interactions over a wide range of binding affinities. We were able to recapitulate and expand the interactome for prominent members of the B7 family of immunoregulatory proteins such as PD-L1/CD274 and B7-H3/CD276. Moreover, when applied to the orphan cancer-associated fibroblast protein, LRRC15, we identified a membrane-dependent interaction with the tumor stroma marker TEM1/CD248. Furthermore, this platform enabled profiling of cellular receptors for target-expressing as well as endogenous extracellular vesicles. Overall, this study presents a sensitive and easy to use screening platform that bypasses membrane protein purification and enables characterization of interactomes for any cell surface-expressed target of interest in its native state.
Collapse
Affiliation(s)
- Shengya Cao
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
| | - Sean M Peterson
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080
| | - Sören Müller
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080
| | - Mike Reichelt
- Pathology Labs, Genentech, South San Francisco, CA 94080
| | | | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
- Biologics, Almirall, 08022 Barcelona, Spain
| |
Collapse
|
3
|
Syu GD, Johansen E, Zhu H. Virion Display: A High-Throughput Method to Express Functional Membrane Proteins. ACTA ACUST UNITED AC 2020; 132:e126. [PMID: 32965799 DOI: 10.1002/cpmb.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transmembrane proteins are responsible for many critical cellular functions and represent one of the largest families of drug targets. However, these proteins, especially multipass transmembrane proteins, are difficult to study because they must be embedded in a lipid bilayer to maintain their native conformations. The development of the virion display (VirD) technology enables transmembrane proteins to be integrated into the viral envelope of herpes simplex virus 1 (HSV-1). Combining high-throughput cloning, expression, and purification techniques, VirD technology has been applied to the largest set of human transmembrane proteins, namely G-protein-coupled receptors, and has allowed the identification of interactions that are both specific and functional. This article describes the procedures to integrate an open reading frame for any transmembrane protein into the HSV-1 genome and produce recombinant HSV-1 virus to ultimately generate pure VirD virions for biological and pharmaceutical studies. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Gateway cloning of transmembrane proteins Support Protocol 1: Ethanol precipitation of bacterial artificial chromosomal DNA Support Protocol 2: Preparation of competent cells Basic Protocol 2: Production of recombinant HSV-1 virions.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Eric Johansen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Feng Y, Huang J, Qu C, Huang M, Chen Z, Tang D, Xu Z, Wang B, Chen Z. Future perspective: high-throughput construction of new ultrasensitive cytokine and virion liquid chips for high-throughput screening (HTS) of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases. Anal Bioanal Chem 2020; 412:7685-7699. [PMID: 32870351 PMCID: PMC7459963 DOI: 10.1007/s00216-020-02894-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Pathogen-host cell interactions play an important role in many human infectious and inflammatory diseases. Several pathogens, including Escherichia coli (E. coli), Mycobacterium tuberculosis (M. tb), and even the recent 2019 novel coronavirus (2019-nCoV), can cause serious breathing and brain disorders, tissue injury and inflammation, leading to high rates of mortality and resulting in great loss to human physical and mental health as well as the global economy. These infectious diseases exploit the microbial and host factors to induce serious inflammatory and immunological symptoms. Thus the development of anti-inflammatory drugs targeting bacterial/viral infection is an urgent need. In previous studies, YojI-IFNAR2, YojI-IL10RA, YojI-NRP1,YojI-SIGLEC7, and YojI-MC4R membrane-protein interactions were found to mediate E. coli invasion of the blood-brain barrier (BBB), which activated the downstream anti-inflammatory proteins NACHT, LRR and PYD domains-containing protein 2(NLRP2), using a proteomic chip conjugated with cell immunofluorescence labeling. However, the studies of pathogen (bacteria/virus)-host cell interactions mediated by membrane protein interactions did not extend their principles to broad biomedical applications such as 2019-nCoV infectious disease therapy. The first part of this feature article presents in-depth analysis of the cross-talk of cellular anti-inflammatory transduction signaling among interferon membrane protein receptor II (IFNAR2), interleukin-10 receptor subunit alpha (IL-10RA), NLRP2 and [Ca2+]-dependent phospholipase A2 (PLA2G5), based on experimental results and important published studies, which lays a theoretical foundation for the high-throughput construction of the cytokine and virion solution chip. The paper then moves on to the construction of the novel GPCR recombinant herpes virion chip and virion nano-oscillators for profiling membrane protein functions, which drove the idea of constructing the new recombinant virion and cytokine liquid chips for HTS of leading drugs. Due to the different structural properties of GPCR, IFNAR2, ACE2 and Spike of 2019-nCoV, their ligands will either bind the extracellular domain of IFNAR2/ACE2/Spike or the specific loops of the GPCR on the envelope of the recombinant herpes virions to induce dynamic charge distribution changes that lead to the variable electron transition for detection. Taken together, the combined overview of two of the most innovative and exciting developments in the immunoinflammatory field provides new insight into high-throughput construction of ultrasensitive cytokine and virion liquid chips for HTS of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases including infectious diseases, acute or chronic inflammation (acute gouty arthritis or rheumatoid arthritis), cardiovascular disease, atheromatosis, diabetes, obesity, tissue injury and tumors. It has significant value in the prevention and treatment of these serious and painful diseases. Graphical abstract.
Collapse
Affiliation(s)
- Yingzhu Feng
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China. .,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
| | - Jiuhong Huang
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Chuanhua Qu
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Mengjun Huang
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Zhencong Chen
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Dianyong Tang
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Zhigang Xu
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China
| | - Bochu Wang
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China. .,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
| | - Zhongzhu Chen
- College of Pharmacy & International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Art and Sciences, Chongqing, 402160, China.
| |
Collapse
|
5
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
6
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| | - Fei Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
7
|
Syu GD, Wang SC, Ma G, Liu S, Pearce D, Prakash A, Henson B, Weng LC, Ghosh D, Ramos P, Eichinger D, Pino I, Dong X, Xiao J, Wang S, Tao N, Kim KS, Desai PJ, Zhu H. Development and application of a high-content virion display human GPCR array. Nat Commun 2019; 10:1997. [PMID: 31040288 PMCID: PMC6491619 DOI: 10.1038/s41467-019-09938-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human G protein-coupled receptors (GPCRs) respond to various ligands and stimuli. However, GPCRs rely on membrane for proper folding, making their biochemical properties difficult to study. By displaying GPCRs in viral envelopes, we fabricated a Virion Display (VirD) array containing 315 non-olfactory human GPCRs for functional characterization. Using this array, we found that 10 of 20 anti-GPCR mAbs were ultra-specific. We further demonstrated that those failed in the mAb assays could recognize their canonical ligands, suggesting proper folding. Next, using two peptide ligands on the VirD-GPCR array, we identified expected interactions and novel interactions. Finally, we screened the array with group B Streptococcus, a major cause of neonatal meningitis, and demonstrated that inhibition of a newly identified target, CysLTR1, reduced bacterial penetration both in vitro and in vivo. We believe that the VirD-GPCR array holds great potential for high-throughput screening for small molecule drugs, affinity reagents, and ligand deorphanization.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Shih-Chin Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuang Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donna Pearce
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Atish Prakash
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brandon Henson
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Lien-Chun Weng
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Devlina Ghosh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pedro Ramos
- CDI Laboratories, Inc., Mayaguez, Puerto Rico, 00682, USA
| | | | - Ignacio Pino
- CDI Laboratories, Inc., Mayaguez, Puerto Rico, 00682, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Kwang Sik Kim
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Prashant J Desai
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
8
|
Ma G, Syu GD, Shan X, Henson B, Wang S, Desai PJ, Zhu H, Tao N. Measuring Ligand Binding Kinetics to Membrane Proteins Using Virion Nano-oscillators. J Am Chem Soc 2018; 140:11495-11501. [PMID: 30114365 DOI: 10.1021/jacs.8b07461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane proteins play vital roles in cellular signaling processes and serve as the most popular drug targets. A key task in studying cellular functions and developing drugs is to measure the binding kinetics of ligands with the membrane proteins. However, this has been a long-standing challenge because one must perform the measurement in a membrane environment to maintain the conformations and functions of the membrane proteins. Here, we report a new method to measure ligand binding kinetics to membrane proteins using self-assembled virion oscillators. Virions of human herpesvirus were used to display human G-protein-coupled receptors (GPCRs) on their viral envelopes. Each virion was then attached to a gold-coated glass surface via a flexible polymer to form an oscillator and driven into oscillation with an alternating electric field. By tracking changes in the oscillation amplitude in real-time with subnanometer precision, the binding kinetics between ligands and GPCRs was measured. We anticipate that this new label-free detection technology can be readily applied to measure small or large ligand binding to any type of membrane proteins and thus contribute to the understanding of cellular functions and screening of drugs.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors , Arizona State University , Tempe , Arizona 85287 , United States
| | - Guan-Da Syu
- Viral Oncology Program , The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , Maryland 21231 , United States.,Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States.,Center for High-Throughput Biology , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Xiaonan Shan
- Biodesign Center for Bioelectronics and Biosensors , Arizona State University , Tempe , Arizona 85287 , United States.,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| | - Brandon Henson
- Viral Oncology Program , The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , Maryland 21231 , United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors , Arizona State University , Tempe , Arizona 85287 , United States
| | - Prashant J Desai
- Viral Oncology Program , The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , Maryland 21231 , United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States.,Center for High-Throughput Biology , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors , Arizona State University , Tempe , Arizona 85287 , United States.,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
9
|
The Applications of Promoter-gene-Engineered Biosensors. SENSORS 2018; 18:s18092823. [PMID: 30150540 PMCID: PMC6164924 DOI: 10.3390/s18092823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
A promoter is a small region of a DNA sequence that responds to various transcription factors, which initiates a particular gene expression. The promoter-engineered biosensor can activate or repress gene expression through a transcription factor recognizing specific molecules, such as polyamine, sugars, lactams, amino acids, organic acids, or a redox molecule; however, there are few reported applications of promoter-enhanced biosensors. This review paper highlights the strategies of construction of promoter gene-engineered biosensors with human and bacteria genetic promoter arrays with regard to high-throughput screening (HTS) molecular drugs, the study of the membrane protein’s localization and nucleocytoplasmic shuttling mechanism of regulating factors, enzyme activity, detection of the toxicity of intermediate chemicals, and probing bacteria density to improve value-added product titer. These biosensors’ sensitivity and specificity can be further improved by the proposed approaches of Mn2+ and Mg2+ added random error-prone PCR that is a technique used to generate randomized genomic libraries and site-directed mutagenesis approach, which is applied for the construction of bacteria’s “mutant library”. This is expected to establish a flexible HTS platform (biosensor array) to large-scale screen transcription factor-acting drugs, reduce the toxicity of intermediate compounds, and construct a gene-dynamic regulatory system in “push and pull” mode, in order to effectively regulate the valuable medicinal product production. These proposed novel promoter-engineered biosensors aiding in synthetic genetic circuit construction will maximize the efficiency of the bio-synthesis of medicinal compounds, which will greatly promote the development of microbial metabolic engineering and biomedical science.
Collapse
|
10
|
Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 2016; 15:2839-51. [PMID: 27364157 PMCID: PMC5013302 DOI: 10.1074/mcp.m116.059311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays.
Collapse
Affiliation(s)
- Yangyang Sun
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China; §§Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Li Cheng
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; §School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihua Gu
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Aijie Xin
- **Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Bin Wu
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Shumin Zhou
- ‡‡Institute for Microsurgery of Limbs, Shanghai sixth hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujuan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Huijuan Shi
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Guangyu Wang
- §§Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; §School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
11
|
Yu X, Petritis B, LaBaer J. Advancing translational research with next-generation protein microarrays. Proteomics 2016; 16:1238-50. [PMID: 26749402 PMCID: PMC7167888 DOI: 10.1002/pmic.201500374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)BeijingP. R. China
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
12
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
13
|
Harrer S, Kim SC, Schieber C, Kannam S, Gunn N, Moore S, Scott D, Bathgate R, Skafidas S, Wagner JM. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications. NANOTECHNOLOGY 2015; 26:182502. [PMID: 25875197 DOI: 10.1088/0957-4484/26/18/182502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.
Collapse
Affiliation(s)
- S Harrer
- IBM Research-Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia. University of Melbourne, 3010 Parkville, VIC, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qi H, Wang F, Petrenko VA, Liu A. Peptide microarray with ligands at high density based on symmetrical carrier landscape phage for detection of cellulase. Anal Chem 2014; 86:5844-50. [PMID: 24837076 DOI: 10.1021/ac501265y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peptide microarrays evolved recently as a routine analytical implementation in various research areas due to their unique characteristics. However, the immobilization of peptides with high density in each spot during the fabricating process remains a problem, which will affect the performance of the resultant microarray greatly. To respond to this challenge, a novel peptide immobilization method using symmetrical phage carrier was developed in this work. The cellulytic enzyme endoglucanase I (EG I) was used as a model for selection of its specific peptide ligands from the f8/8 landscape library. Three phage monoclones were selected and identified by the specificity array, of which one phage monoclone displaying the fusion peptide EGSDPRMV (phage EGSDPRMV) could bind EG I specifically with highest affinity. Subsequently, the phage EGSDPRMV was used directly to construct peptide microarray. For comparison, major coat protein pVIII fused EG I specific peptide EGSDPRMV (pVIII-fused EGSDPRMV) which was isolated from phage EGSDPRMV was also immobilized by traditional method to fabricate peptide microarray. The fluorescent signal of the phage EGSDPRMV-mediated peptide microarray was more reproducible and about four times higher than the value for pVIII-fused EGSDPRMV-based microarray, suggesting the high efficiency of the proposed phage EGSDPRMV-mediated peptide immobilization method. Further, the phage EGSDPRMV based microarray not only simplified the procedure of microarray construction but also exhibited significantly enhanced sensitivity due to the symmetrical carrier landscape phage, which dramatically increased the density and sterical regularity of immobilized peptides in each spot. Thus, the proposed strategy has the advantages that the immobilizing peptide ligands were not disturbed by their composition and the immobilized peptides were highly regular with free amino-terminal.
Collapse
Affiliation(s)
- Huan Qi
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences , 189 Songling Road, Qingdao 266101, China
| | | | | | | |
Collapse
|