1
|
Wald J, Goessweiner-Mohr N, Real-Hohn A, Blaas D, Marlovits TC. DMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations. Sci Rep 2024; 14:30408. [PMID: 39639094 PMCID: PMC11621809 DOI: 10.1038/s41598-024-81789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Dimethyl sulfoxide (DMSO) is a widely used solvent in drug research. However, recent studies indicate that even at low concentration DMSO might cause structural changes of proteins and RNA. The pyrazolopyrimidine antiviral OBR-5-340 dissolved in DMSO inhibits rhinovirus-B5 infection yet is inactive against RV-A89. This is consistent with our structural observation that OBR-5-340 is only visible at the pocket factor site in rhinovirus-B5 and not in RV-A89, where the hydrophobic pocket is collapsed. Here, we analyze the impact of DMSO in RV-A89 by high-resolution cryo-electron microscopy. Our 1.76 Å cryo-EM reconstruction of RV-A89 in plain buffer, without DMSO, reveals that the pocket-factor binding site is occupied by myristate and that the previously observed local heterogeneity at protein-RNA interfaces is absent. These findings suggest that DMSO elutes the pocket factor, leading to a collapse of the hydrophobic pocket of RV-A89. Consequently, the conformational heterogeneity observed at the RNA-protein interface in the presence of DMSO likely results from increased capsid flexibility due to the absence of the pocket factor and DMSO-induced affinity modifications. This local asymmetry may promote a directional release of the RNA genome during infection.
Collapse
Affiliation(s)
- Jiri Wald
- Institute of Microbial and Molecular Sciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| | | | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Max Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria.
| | - Thomas C Marlovits
- Institute of Microbial and Molecular Sciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| |
Collapse
|
2
|
Lau MH, Madika A, Zhang Y, Minton NP. Parageobacillus thermoglucosidasius Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression. ACS Synth Biol 2024; 13:1237-1245. [PMID: 38517011 PMCID: PMC11036489 DOI: 10.1021/acssynbio.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
The relentless increase in atmospheric greenhouse gas concentrations as a consequence of the exploitation of fossil resources compels the adoption of sustainable routes to chemical and fuel manufacture based on biological fermentation processes. The use of thermophilic chassis in such processes is an attractive proposition; however, their effective exploitation will require improved genome editing tools. In the case of the industrially relevant chassis Parageobacillus thermoglucosidasius, CRISPR/Cas9-based gene editing has been demonstrated. The constitutive promoter used, however, accentuates the deleterious nature of Cas9, causing decreased transformation and low editing efficiencies, together with an increased likelihood of off-target effects or alternative mutations. Here, we rectify this issue by controlling the expression of Cas9 through the use of a synthetic riboswitch that is dependent on the nonmetabolized, nontoxic, and cheap inducer, theophylline. We demonstrate that the riboswitches are dose-dependent, allowing for controlled expression of the target gene. Through their use, we were then able to address the deleterious nature of Cas9 and produce an inducible system, RiboCas93. The benefits of RiboCas93 were demonstrated by increased transformation efficiency of the editing vectors, improved efficiency in mutant generation (100%), and a reduction of Cas9 toxicity, as indicated by a reduction in the number of single nucleotide polymorphisms (SNPs) observed. This new system provides a quick and efficient way to produce mutants in P. thermoglucosidasius.
Collapse
Affiliation(s)
- Matthew
S. H. Lau
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Abubakar Madika
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Department
of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ying Zhang
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, Nottingham
University Hospitals NHS Trust and The University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Tidwell ED, Kilde IR, Leskaj S, Koutmos M. Fluorescent Ligand Equilibrium Displacement: A High-Throughput Method for Identification of FMN Riboswitch-Binding Small Molecules. Int J Mol Sci 2024; 25:735. [PMID: 38255809 PMCID: PMC11154562 DOI: 10.3390/ijms25020735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Antibiotic resistance remains a pressing global concern, with most antibiotics targeting the bacterial ribosome or a limited range of proteins. One class of underexplored antibiotic targets is bacterial riboswitches, structured RNA elements that regulate key biosynthetic pathways by binding a specific ligand. We developed a methodology termed Fluorescent Ligand Equilibrium Displacement (FLED) to rapidly discover small molecules that bind the flavin mononucleotide (FMN) riboswitch. FLED leverages intrinsically fluorescent FMN and the quenching effect on RNA binding to create a label-free, in vitro method to identify compounds that can bind the apo population of riboswitch in a system at equilibrium. The response difference between known riboswitch ligands and controls demonstrates the robustness of the method for high-throughput screening. An existing drug discovery library that was screened using FLED resulted in a final hit rate of 0.67%. The concentration response of each hit was determined and revealed a variety of approximate effective concentration values. Our preliminary screening data support the use of FLED to identify small molecules for medicinal chemistry development as FMN riboswitch-targeted antibiotic compounds. This robust, label-free, and cell-free method offers a strong alternative to other riboswitch screening methods and can be adapted to a variety of laboratory setups.
Collapse
Affiliation(s)
| | - Ingrid R. Kilde
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Suada Leskaj
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Markos Koutmos
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
4
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
5
|
Banijamali E, Baronti L, Becker W, Sajkowska-Kozielewicz JJ, Huang T, Palka C, Kosek D, Sweetapple L, Müller J, Stone MD, Andersson ER, Petzold K. RNA:RNA interaction in ternary complexes resolved by chemical probing. RNA (NEW YORK, N.Y.) 2023; 29:317-329. [PMID: 36617673 PMCID: PMC9945442 DOI: 10.1261/rna.079190.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RNA regulation can be performed by a second targeting RNA molecule, such as in the microRNA regulation mechanism. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probes the structure of RNA molecules and can resolve RNA:protein interactions, but RNA:RNA interactions have not yet been addressed with this technique. Here, we apply SHAPE to investigate RNA-mediated binding processes in RNA:RNA and RNA:RNA-RBP complexes. We use RNA:RNA binding by SHAPE (RABS) to investigate microRNA-34a (miR-34a) binding its mRNA target, the silent information regulator 1 (mSIRT1), both with and without the Argonaute protein, constituting the RNA-induced silencing complex (RISC). We show that the seed of the mRNA target must be bound to the microRNA loaded into RISC to enable further binding of the compensatory region by RISC, while the naked miR-34a is able to bind the compensatory region without seed interaction. The method presented here provides complementary structural evidence for the commonly performed luciferase-assay-based evaluation of microRNA binding-site efficiency and specificity on the mRNA target site and could therefore be used in conjunction with it. The method can be applied to any nucleic acid-mediated RNA- or RBP-binding process, such as splicing, antisense RNA binding, or regulation by RISC, providing important insight into the targeted RNA structure.
Collapse
Affiliation(s)
- Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Walter Becker
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Ting Huang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christina Palka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - David Kosek
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lara Sweetapple
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Juliane Müller
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
6
|
An H, Elvers KT, Gillespie JA, Jones K, Atack JR, Grubisha O, Shelkovnikova TA. A toolkit for the identification of NEAT1_2/paraspeckle modulators. Nucleic Acids Res 2022; 50:e119. [PMID: 36099417 PMCID: PMC9723620 DOI: 10.1093/nar/gkac771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Paraspeckles are ribonucleoprotein granules assembled by NEAT1_2 lncRNA, an isoform of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1). Dysregulation of NEAT1_2/paraspeckles has been linked to multiple human diseases making them an attractive drug target. However currently NEAT1_2/paraspeckle-focused translational research and drug discovery are hindered by a limited toolkit. To fill this gap, we developed and validated a set of tools for the identification of NEAT1_2 binders and modulators comprised of biochemical and cell-based assays. The NEAT1_2 triple helix stability element was utilized as the target in the biochemical assays, and the cellular assay ('ParaQuant') was based on high-content imaging of NEAT1_2 in fixed cells. As a proof of principle, these assays were used to screen a 1,200-compound FDA-approved drug library and a 170-compound kinase inhibitor library and to confirm the screening hits. The assays are simple to establish, use only commercially-available reagents and are scalable for higher throughput. In particular, ParaQuant is a cost-efficient assay suitable for any cells growing in adherent culture and amenable to multiplexing. Using ParaQuant, we identified dual PI3K/mTOR inhibitors as potent negative modulators of paraspeckles. The tools we describe herein should boost paraspeckle studies and help guide the search, validation and optimization of NEAT1_2/paraspeckle-targeted small molecules.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Kimberley Jones
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - John R Atack
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tatyana A Shelkovnikova
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
7
|
Binding Properties of RNA Quadruplex of SARS-CoV-2 to Berberine Compared to Telomeric DNA Quadruplex. Int J Mol Sci 2022; 23:ijms23105690. [PMID: 35628500 PMCID: PMC9145931 DOI: 10.3390/ijms23105690] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.
Collapse
|
8
|
Liu X, Huang H, Karbstein K. Using DMS-MaPseq to Uncover the Roles of DEAD-box Proteins in Ribosome Assembly. Methods 2022; 204:249-257. [PMID: 35550176 PMCID: PMC10152975 DOI: 10.1016/j.ymeth.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
DMS (dimethylsulfate) is a time-tested chemical probe for nucleic acid secondary structure that has recently re-emerged as a powerful tool to study RNA structure and structural changes, by coupling it to high throughput sequencing techniques. This variant, termed DMS-MaPseq, allows for mapping of all RNAs in a cell at the same time. However, if an RNA adopts different structures, for example during the assembly of an RNA-protein complex, or as part of its functional cycle, then DMS-MaPseq cannot differentiate between these structures, and an ensemble average will be produced. This is especially challenging for long-lived RNAs, such as ribosomes, whose steady-state abundance far exceeds that of any assembly intermediates, rendering those inaccessible to DMS-MaPseq on total RNAs. These challenges can be overcome by purification of assembly intermediates stalled at specific assembly steps (or steps in the functional cycle), via a combination of affinity tags and mutants stalled at defined steps, and subsequent DMS probing of these intermediates. Interpretation of the differences in DMS accessibility is facilitated by additional structural information, e.g. from cryo-EM experiments, available for many functional RNAs. While this approach is generally useful for studying RNA folding or conformational changes within RNA-protein complexes, it can be particularly valuable for studying the role(s) of DEAD-box proteins, as these tend to lead to larger conformational rearrangements, often resulting from the release of an RNA-binding protein from a bound RNA. Here we provide an adaptation of the DMS-MaPseq protocol to study RNA conformational transitions during ribosome assembly, which addresses the challenges arising from the presence of many assembly intermediates, all at concentrations far below that of mature ribosomes. While this protocol was developed for the yeast S. cerevisiae, we anticipate that it should be readily transferable to other model organisms for which affinity purification has been established.
Collapse
|
9
|
Bryant CJ, McCool MA, Abriola L, Surovtseva YV, Baserga SJ. A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biol 2022; 12:210305. [PMID: 35078352 PMCID: PMC8790372 DOI: 10.1098/rsob.210305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.
Collapse
Affiliation(s)
- Carson J. Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Mason A. McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA,Department of Genetics, Yale School of Medicine, New Haven, CT, USA,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Yu CH, Kabza AM, Sczepanski JT. Assembly of long L-RNA by native RNA ligation. Chem Commun (Camb) 2021; 57:10508-10511. [PMID: 34550128 DOI: 10.1039/d1cc04296c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their intrinsic nuclease resistance, L-oligonucleotides are being increasingly utilized in the development of molecular tools and sensors. Yet, it remains challenging to synthesize long L-oligonucleotides, potential limiting future applications. Herein, we report straightforward and versitile approach to assemble long L-RNAs from two or more shorter fragments using T4 RNA ligase 1. We show that this approach is compatible with the assembly of several classes of functional L-RNA, which we highlight by generating a 124 nt L-RNA biosensor that functions in serum.
Collapse
Affiliation(s)
- Chen-Hsu Yu
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Adam M Kabza
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
11
|
A New Specific and Sensitive RT-qPCR Method Based on Splinted 5' Ligation for the Quantitative Detection of RNA Species Shorter than microRNAs. Noncoding RNA 2021; 7:ncrna7030059. [PMID: 34564321 PMCID: PMC8482087 DOI: 10.3390/ncrna7030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, we discovered a new family of unusually short RNAs mapping to 5.8S ribosomal RNA (rRNA) and which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. To confirm these small RNA-sequencing (RNA-Seq) data, validate the existence of the two overly abundant doRNAs-the minimal core 12-nt doRNA sequence and its + 1-nt variant bearing a 5' Cytosine, C-doRNA-and streamline their analysis, we developed a new specific and sensitive splinted 5' ligation reverse transcription (RT)-quantitative polymerase chain reaction (qPCR) method. This method is based on a splint-assisted ligation of an adapter to the 5' end of doRNAs, followed by RT-qPCR amplification and quantitation. Our optimized protocol, which may discriminate between doRNA, C-doRNA, mutated and precursor sequences, can accurately detect as low as 240 copies and is quantitatively linear over a range of 7 logs. This method provides a unique tool to expand and facilitate studies exploring the molecular and cellular biology of RNA species shorter than microRNAs.
Collapse
|
12
|
Blanco Carcache PJ, Guo S, Li H, Zhang K, Xu C, Chiu W, Guo P. Regulation of reversible conformational change, size switching, and immunomodulation of RNA nanocubes. RNA (NEW YORK, N.Y.) 2021; 27:971-980. [PMID: 34193550 PMCID: PMC8370748 DOI: 10.1261/rna.078718.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
In biological systems, conformational changes and allosteric modulation play pivotal roles in regulating biological functions, such as the dynamic change of protein molecules, in response to binding or interacting with other factors such as pH, voltage, salt, light, or ligand. RNA can be manipulated and tuned with a level of simplicity that is characteristic of DNA or polymers, while displaying versatility in structure, diversity in function, and adaptability in a configuration similar to proteins. In the past, the work on the investigation of conformational change mainly focused on protein. The induced-fit and conformational capture in RNA have also been explored, such as in the study of riboswitches. Herein, we report the engineering of three-dimensional RNA nanocubes and demonstrated the operation and regulation for its configuration. We demonstrate the operation of reconfigurable RNA nanocubes whose shapes change precisely and reversibly in response to a specific trigger strand. The shape, size, and conformation can be regulated precisely and reversibly in response to the specific triggering signals. The shape and conformational conversion were observed by cryo-EM and gel electrophoresis, respectively. Harnessing the size, shape, conformation, and self-assembly capabilities of the RNA nanocube can provide a new potential use of this technology as nanocarriers for the treatment of various diseases.
Collapse
Affiliation(s)
- Peter J Blanco Carcache
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, California 94305, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Molecular diagnostic of toxigenic Corynebacterium diphtheriae strain by DNA sensor potentially suitable for electrochemical point-of-care diagnostic. Talanta 2021; 227:122161. [PMID: 33714465 DOI: 10.1016/j.talanta.2021.122161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The presented study is focused on the development of electrochemical genosensor for detection of tox gene fragment of toxigenic Corynebacterium diphtheriae strain. Together with our previous studies it fulfils the whole procedure for fast and accurate diagnostic of diphtheria at its early stage of infection with the use of electrochemical methods. The developed DNA sensor potentially can be used in more sophisticated portable device. After the electrochemical stem-loop probe structure optimization the conditions for real asymmetric PCR (aPCR) product detection were selected. As was shown it was crucial to optimize the magnesium and organic solvent concentrations in detection buffer. Under optimal conditions it was possible to selectively detect as low as 20.8 nM of complementary stand in 5 min or 0.5 nM in 30 min with sensitivity of 12.81 and 0.24 1⋅μM-1 respectively. The unspecific biosensor response was elucidated with the use of new electrode blocking agent, diethyldithiocarbamate. Its application in electrochemical genosensors lead to significant higher current values and the biosensor response even in conditions with magnesium ion depletion. The developed biosensor selectivity was examined using samples containing genetic material originated from a number of non-target bacterial species which potentially can be present in the human upper respiratory tract.
Collapse
|
14
|
Kumar V, Krolewski DM, Hebda-Bauer EK, Parsegian A, Martin B, Foltz M, Akil H, Watson SJ. Optimization and evaluation of fluorescence in situ hybridization chain reaction in cleared fresh-frozen brain tissues. Brain Struct Funct 2021; 226:481-499. [PMID: 33386994 DOI: 10.1007/s00429-020-02194-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Abstract
Transcript labeling in intact tissues using in situ hybridization chain reaction has potential to provide vital spatiotemporal information for molecular characterization of heterogeneous neuronal populations. However, large tissue labeling in non-perfused or fresh-frozen rodent and postmortem human samples, which provide more flexible utilization than perfused tissues, is largely unexplored. In the present study, we optimized the combination of in situ hybridization chain reaction in fresh-frozen rodent brains and then evaluated the uniformity of neuronal labeling between two clearing methods, CLARITY and iDISCO+. We found that CLARITY yielded higher signal-to-noise ratios but more limited imaging depth and required longer clearing times, whereas, iDISCO+ resulted in better tissue clearing, greater imaging depth and a more uniform labeling of larger samples. Based on these results, we used iDISCO+-cleared fresh-frozen rodent brains to further validate this combination and map the expression of a few genes of interest pertaining to mood disorders. We then examined the potential of in situ hybridization chain reaction to label transcripts in cleared postmortem human brain tissues. The combination failed to produce adequate mRNA labeling in postmortem human cortical slices but produced visually adequate labeling in the cerebellum tissues. We next, investigated the multiplexing ability of in situ hybridization chain reaction in cleared tissues which revealed inconsistent fluorescence output depending upon the fluorophore conjugated to the hairpins. Finally, we applied our optimized protocol to assess the effect of glucocorticoid receptor overexpression on basal somatostatin expression in the mouse cortex. The constitutive glucocorticoid receptor overexpression resulted in lower number density of somatostatin-expressing neurons compared to wild type. Overall, the combination of in situ hybridization chain reaction with clearing methods, especially iDISCO+, may find broad application in the transcript analysis in rodent studies, but its limited use in postmortem human tissues can be improved by further optimizations.
Collapse
Affiliation(s)
- Vivek Kumar
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA.
| | - David M Krolewski
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Elaine K Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Aram Parsegian
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Brian Martin
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Matthew Foltz
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher pl, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Umuhire Juru A, Cai Z, Jan A, Hargrove AE. Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. Chem Commun (Camb) 2020; 56:3555-3558. [PMID: 32104839 DOI: 10.1039/d0cc00266f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study establishes the applicability of imine-based dynamic combinatorial chemistry to discover non-covalent ligands for RNA targets. We elucidate properties underlying the reactivity of arylamines and demonstrate target-guided amplification of tight binders in an amiloride-based dynamic library.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Zhengguo Cai
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Adina Jan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| |
Collapse
|
16
|
Chang AT, Chen L, Song L, Zhang S, Nikonowicz EP. 2-Amino-1,3-benzothiazole-6-carboxamide Preferentially Binds the Tandem Mismatch Motif r(UY:GA). Biochemistry 2020; 59:3225-3234. [PMID: 32786414 DOI: 10.1021/acs.biochem.0c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA helices are often punctuated with non-Watson-Crick features that may be targeted by chemical compounds, but progress toward identifying such compounds has been slow. We embedded a tandem UU:GA mismatch motif (5'-UG-3':5'-AU-3') within an RNA hairpin stem to identify compounds that bind the motif specifically. The three-dimensional structure of the RNA hairpin and its interaction with a small molecule identified through virtual screening are presented. The G-A mismatch forms a sheared pair upon which the U-U base pair stacks. The hydrogen bond configuration of the U-U pair involves O2 of the U adjacent to the G and O4 of the U adjacent to the A. The G-A and U-U pairs are flanked by A-U and G-C base pairs, respectively, and the stability of the mismatch is greater than when the motif is within the context of other flanking base pairs or when the 5'-3' orientation of the G-A and U-U pairs is swapped. Residual dipolar coupling constants were used to generate an ensemble of structures against which a virtual screen of 64480 small molecules was performed. The tandem mismatch was found to be specific for one compound, 2-amino-1,3-benzothiazole-6-carboxamide, which binds with moderate affinity but extends the motif to include the flanking A-U and G-C base pairs. The finding that the affinity for the UU:GA mismatch is dependent on flanking sequence emphasizes the importance of the motif context and potentially increases the number of small noncanonical features within RNA that can be specifically targeted by small molecules.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States.,Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford Medicine, Stanford, California 94305-5103, United States
| | - Lu Chen
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Luo Song
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Edward P Nikonowicz
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
| |
Collapse
|
17
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
18
|
Gracia B, Al-Hashimi HM, Bisaria N, Das R, Herschlag D, Russell R. Hidden Structural Modules in a Cooperative RNA Folding Transition. Cell Rep 2019; 22:3240-3250. [PMID: 29562180 PMCID: PMC5894117 DOI: 10.1016/j.celrep.2018.02.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/05/2018] [Accepted: 02/26/2018] [Indexed: 02/01/2023] Open
Abstract
Large-scale, cooperative rearrangements underlie the functions of RNA in RNA-protein machines and gene regulation. To understand how such rearrangements are orchestrated, we used high-throughput chemical footprinting to dissect a seemingly concerted rearrangement in P5abc RNA, a paradigm of RNA folding studies. With mutations that systematically disrupt or restore putative structural elements, we found that this transition reflects local folding of structural modules, with modest and incremental cooperativity that results in concerted behavior. First, two distant secondary structure changes are coupled through a bridging three-way junction and Mg2+-dependent tertiary structure. Second, long-range contacts are formed between modules, resulting in additional cooperativity. Given the sparseness of RNA tertiary contacts after secondary structure formation, we expect that modular folding and incremental cooperativity are generally important for specifying functional structures while also providing productive kinetic paths to these structures. Additionally, we expect our approach to be useful for uncovering modularity in other complex RNAs.
Collapse
Affiliation(s)
- Brant Gracia
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Chemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Namita Bisaria
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Calabrese DR, Connelly CM, Schneekloth JS. Ligand-observed NMR techniques to probe RNA-small molecule interactions. Methods Enzymol 2019; 623:131-149. [PMID: 31239044 DOI: 10.1016/bs.mie.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A growing understanding of the structure and function of RNA has revealed it as a key regulator of gene expression and disease. A multitude of noncoding functions apart from the central roles of RNA in coding for and facilitating protein biogenesis has stimulated research into RNA as a pharmacological target. Despite many exciting advances, RNA remains an understudied target for small molecules, and techniques to investigate RNA-binding molecules are still emerging. A key stumbling block in this area has been validation of RNA-small molecule interactions. Our laboratory has recently used multiple ligand-observed NMR techniques in this regard, including CPMG and WaterLOGSY. This work describes methods to use these techniques in the context of studying RNA-ligand interactions.
Collapse
Affiliation(s)
- David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
20
|
Umuhire Juru A, Patwardhan NN, Hargrove AE. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions. ACS Chem Biol 2019; 14:824-838. [PMID: 31042354 DOI: 10.1021/acschembio.8b00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implication of RNA in multiple cellular processes beyond protein coding has revitalized interest in the development of small molecules for therapeutically targeting RNA and for further probing its cellular biology. However, the process of rationally designing such small molecule probes is hampered by the paucity of information about fundamental molecular recognition principles of RNA. In this Review, we summarize two important and often underappreciated aspects of RNA-small molecule recognition: RNA conformational dynamics and the biophysical properties of interactions of small molecules with RNA, specifically thermodynamics and kinetics. While conformational flexibility is often said to impede RNA ligand development, the ability of small molecules to influence the RNA conformational landscape can have a significant effect on the cellular functions of RNA. An analysis of the conformational landscape of RNA and the interactions of individual conformations with ligands can thus guide the development of new small molecule probes, which needs to be investigated further. Additionally, while it is common practice to quantify the binding affinities ( Ka or Kd) of small molecules for biomacromolecules as a measure of their activity, further biophysical characterization of their interaction can provide a deeper understanding. Studies that focus on the thermodynamic and kinetic parameters for interaction between RNA and ligands are next discussed. Finally, this Review provides the reader with a perspective on how such in-depth analysis of biophysical characteristics of the interaction of RNA and small molecules can impact our understanding of these interactions and how they will benefit the future design of small molecule probes.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neeraj N. Patwardhan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Tunçer S, Gurbanov R, Sheraj I, Solel E, Esenturk O, Banerjee S. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci Rep 2018; 8:14828. [PMID: 30287873 PMCID: PMC6172209 DOI: 10.1038/s41598-018-33234-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is a small molecule with polar, aprotic and amphiphilic properties. It serves as a solvent for many polar and nonpolar molecules and continues to be one of the most used solvents (vehicle) in medical applications and scientific research. To better understand the cellular effects of DMSO within the concentration range commonly used as a vehicle (0.1-1.5%, v/v) for cellular treatments, we applied Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FT-IR) spectroscopy to DMSO treated and untreated epithelial colon cancer cells. Both unsupervised (Principal Component Analysis-PCA) and supervised (Linear Discriminant Analysis-LDA) pattern recognition/modelling algorithms applied to the IR data revealed total segregation and prominent differences between DMSO treated and untreated cells at whole, lipid and nucleic acid regions. Several of these data were supported by other independent techniques. Further IR data analyses of macromolecular profile indicated comprehensive alterations especially in proteins and nucleic acids. Protein secondary structure analysis showed predominance of β-sheet over α-helix in DMSO treated cells. We also observed for the first time, a reduction in nucleic acid level upon DMSO treatment accompanied by the formation of Z-DNA. Molecular docking and binding free energy studies indicated a stabilization of Z-DNA in the presence of DMSO. This alternate DNA form may be related with the specific actions of DMSO on gene expression, differentiation, and epigenetic alterations. Using analytical tools combined with molecular and cellular biology techniques, our data indicate that even at very low concentrations, DMSO induces a number of changes in all macromolecules, which may affect experimental outcomes where DMSO is used as a solvent.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
- Vocational School of Health Services, Department of Medical Laboratory Techniques, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
| | - Ege Solel
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
- Department of Biomedicine, University of Bergen, Postbox 7804, Bergen, N-5020, Norway
| | - Okan Esenturk
- Department of Chemistry, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey.
| |
Collapse
|
22
|
Lammert H, Wang A, Mohanty U, Onuchic JN. RNA as a Complex Polymer with Coupled Dynamics of Ions and Water in the Outer Solvation Sphere. J Phys Chem B 2018; 122:11218-11227. [PMID: 30102033 DOI: 10.1021/acs.jpcb.8b06874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We unravel the internal and collective modes of a widely studied 58-nucleotide rRNA fragment in solvent using atomically detailed molecular dynamics simulations. The variation of lifetimes for water hydrogen bonds with nucleotide groups indicates heterogeneity of water dynamics on the RNA surface. The time scales of interactions of the discrete water molecules with RNA nucleotides extend from several hundred picoseconds to a few nanoseconds. We determine all of the association sites and the spatial distribution of residence times for Mg2+, K+, and water molecules in those sites. We provide insights into the population of Mg2+ and K+ ions and water molecules in the outer sphere and how their fluctuations are intricately linked with the kinetics of the 58-mer. We find that many of the long-lived Mg2+ sites identified from the simulations agree with the locations of ions in the X-ray structure. We determine the excess ion atmosphere around the rRNA and compare it with experimental data. We investigate the collective behavior of RNA, ions, and water, by performing a joint principle component analysis for the Cartesian coordinates of the RNA phosphorus atoms and for the occupation counts of the association sites. Our results indicate that the 58-mer system is a complex polymer, composed of RNA that is encased by a fluctuating network of associated counterions, co-ions, and water.
Collapse
Affiliation(s)
| | - Ailun Wang
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Udayan Mohanty
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | | |
Collapse
|
23
|
Fessler AB, Dey A, Garmon CB, Finis DS, Saleh NA, Fowler AJ, Jones DS, Chakrabarti K, Ogle CA. Water-Soluble Isatoic Anhydrides: A Platform for RNA-SHAPE Analysis and Protein Bioconjugation. Bioconjug Chem 2018; 29:3196-3202. [DOI: 10.1021/acs.bioconjchem.8b00518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Rodriguez-Cordero M, Cigüela N, Llovera L, González T, Briceño A, Landaeta VR, Pastrán J. Synthesis, structural elucidation and DNA binding profile of Zn(II) bis-benzimidazole complexes. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Li C, Zhang J. Multi-environment fitness landscapes of a tRNA gene. Nat Ecol Evol 2018; 2:1025-1032. [PMID: 29686238 PMCID: PMC5966336 DOI: 10.1038/s41559-018-0549-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/27/2018] [Indexed: 11/09/2022]
Abstract
A fitness landscape (FL) describes the genotype-fitness relationship in a given environment. To explain and predict evolution, it is imperative to measure the FL in multiple environments because the natural environment changes frequently. Using a high-throughput method that combines precise gene replacement with next-generation sequencing, we determine the in vivo FL of a yeast tRNA gene comprising over 23,000 genotypes in four environments. Although genotype-by-environment interaction (G×E) is abundantly detected, its pattern is so simple that we can transform an existing FL to that in a new environment with fitness measures of only a few genotypes in the new environment. Under each environment, we observe prevalent, negatively biased epistasis between mutations (G×G). Epistasis-by-environment interaction (G×G×E) is also prevalent, but trends in epistasis difference between environments are predictable. Our study thus reveals simple rules underlying seemingly complex FLs, opening the door to understanding and predicting FLs in general.
Collapse
Affiliation(s)
- Chuan Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Romanelli A, Affinito A, Avitabile C, Catuogno S, Ceriotti P, Iaboni M, Modica J, Condorelli G, Catalucci D. An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells. PLoS One 2018. [PMID: 29513717 PMCID: PMC5841773 DOI: 10.1371/journal.pone.0193392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Collapse
Affiliation(s)
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
| | - Paola Ceriotti
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Jessica Modica
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Geroloma Condorelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
- * E-mail: (GC); (DC)
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
- * E-mail: (GC); (DC)
| |
Collapse
|
27
|
Senac C, Desgranges S, Contino-Pépin C, Urbach W, Fuchs PFJ, Taulier N. Effect of Dimethyl Sulfoxide on the Binding of 1-Adamantane Carboxylic Acid to β- and γ-Cyclodextrins. ACS OMEGA 2018; 3:1014-1021. [PMID: 31457945 PMCID: PMC6641370 DOI: 10.1021/acsomega.7b01212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Most therapeutic targets are proteins whose binding sites are hydrophobic cavities. For this reason, the majority of drugs under development are hydrophobic molecules exhibiting low solubility in water. To tackle this issue, a few percent of cosolvent, such as dimethyl sulfoxide (DMSO), is usually employed to increase drug solubility during the drug screening process. However, the few published studies dealing with the effect of adding DMSO showed that the affinity of hydrophobic ligands is systematically underestimated. To better understand the effect of DMSO, there is a need of studying its effect on a large range of systems. In this work, we used β- and γ-cyclodextrins (made of 6 and 7 α-d-glucopyranoside units, respectively) as models of hydrophobic cavities to investigate the effect of the addition 5% DMSO on the affinity of 1-adamantane carboxylic acid (ADA) to these cyclodextrins. The two systems differ by the size of the cyclodextrin cavity. The evaluation of binding constants was performed using ultrasound velocimetry, nuclear magnetic resonance spectroscopy, and molecular simulations. All techniques show that the presence of 5% DMSO does not significantly modify the affinity of ADA for γ-cyclodextrin, while the affinity is dramatically reduced for β-cyclodextrin. The bias induced by the presence of DMSO is thus more important when the ligand volume better fits the cyclodextrin cavity. Our work also suggests that free energy calculations provide a sound alternative to experimental techniques when dealing with poorly water-soluble drugs.
Collapse
Affiliation(s)
- Caroline Senac
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
| | - Stéphane Desgranges
- Equipe
Chimie Bioorganique et Systémes Amphiphiles, Institut des Biomolécules
Max Mousseron, UMR 5247, Université
d’Avignon et des Pays de Vaucluse, 84911 Avignon, France
- Faculty
of Medecine, Radiology, University of Geneva, 1205 Geneva, Switzerland
| | - Christiane Contino-Pépin
- Equipe
Chimie Bioorganique et Systémes Amphiphiles, Institut des Biomolécules
Max Mousseron, UMR 5247, Université
d’Avignon et des Pays de Vaucluse, 84911 Avignon, France
| | - Wladimir Urbach
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
- Laboratoire
de Physique Statistique, Departement de Physique de l’ENS, PSL Research University, Université Paris Diderot, Sorbonne
Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Patrick F. J. Fuchs
- Université
Paris Diderot, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ. Paris 06, École Normale Supérieure,
PSL Research University, CNRS, Laboratoire
des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France
| | - Nicolas Taulier
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
- E-mail:
| |
Collapse
|
28
|
Rife Magalis B, Kosakovsky Pond SL, Summers MF, Salemi M. Evaluation of global HIV/SIV envelope gp120 RNA structure and evolution within and among infected hosts. Virus Evol 2018; 4:vey018. [PMID: 29951250 PMCID: PMC6014367 DOI: 10.1093/ve/vey018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lentiviral RNA genomes contain structural elements that play critical roles in viral replication. Although structural features of 5'-untranslated regions have been well characterized, attempts to identify important structures in other genomic regions by Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) have led to conflicting structural and mechanistic conclusions. Previous approaches accounted neither for sequence heterogeneity that is ubiquitous in viral populations, nor for selective constraints operating at the protein level. We developed an approach that augments SHAPE with phylogenetic analyses and applied it to investigate structure in coding regions (cRNA) within the HIV and SIV envelope genes. Analysis of single-genome SHAPE data with phylogenetic information from diverse lentiviral sequences argues against the conservation of a putative global gp120 RNA structure but points to the existence of core RNA sub-structures. Our findings establish a framework for considering sequence heterogeneity and protein function in de novo RNA structure inference approaches.
Collapse
Affiliation(s)
- Brittany Rife Magalis
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- Institute for Genomics and Evolutionary Medicine and Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine and Department of Biology, Temple University, Philadelphia, PA, USA
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Marco Salemi
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
An in vivo high-throughput screening for riboswitch ligands using a reverse reporter gene system. Sci Rep 2017; 7:7732. [PMID: 28798404 PMCID: PMC5552694 DOI: 10.1038/s41598-017-07870-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Riboswitches are bacterial RNA elements that regulate gene expression in response to metabolite or ion abundance and are considered as potential drug targets. In recent years a number of methods to find non-natural riboswitch ligands have been described. Here we report a high-throughput in vivo screening system that allows identifying OFF-riboswitch modulators in a 384 well bioluminescence assay format. We use a reverse reporter gene setup in Bacillus subtilis, consisting of a primary screening assay, a secondary assay as well as counter assays to detect compounds in a library of 1,280 molecules that act on the guanine-responsive xpt riboswitch from B. anthracis. With this in vivo high-throughput approach we identified several hit compounds and could validate the impact of one of them on riboswitch-mediated gene regulation, albeit this might not be due to direct binding to the riboswitch. However, our data demonstrate the capability of our screening assay for bigger high-throughput screening campaigns. Furthermore, the screening system described here can not only be generally employed to detect non-natural ligands or compounds influencing riboswitches acting as genetic OFF switches, but it can also be used to investigate natural ligands of orphan OFF-riboswitches.
Collapse
|
30
|
Hansen MMK, Ventosa Rosquelles M, Yelleswarapu M, Maas RJM, van Vugt-Jonker AJ, Heus HA, Huck WTS. Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems. ACS Synth Biol 2016; 5:1433-1440. [PMID: 27306580 DOI: 10.1021/acssynbio.6b00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Secondary structure formation of mRNA, caused by desynchronization of transcription and translation, is known to impact gene expression in vivo. Yet, inactivation of mRNA by secondary structures in cell-free protein expression is frequently overlooked. Transcription and translation rates are often not highly synchronized in cell-free expression systems, leading to a temporal mismatch between the processes and a drop in efficiency of protein production. By devising a cell-free gene expression platform in which transcriptional and translational elongation are successfully performed independently, we determine that sequence-dependent mRNA secondary structures are the main cause of mRNA inactivation in in vitro gene expression.
Collapse
Affiliation(s)
- Maike M. K. Hansen
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Marta Ventosa Rosquelles
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Maaruthy Yelleswarapu
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Aafke J. van Vugt-Jonker
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
31
|
Merriman DK, Xue Y, Yang S, Kimsey IJ, Shakya A, Clay M, Al-Hashimi HM. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales. Biochemistry 2016; 55:4445-56. [PMID: 27232530 DOI: 10.1021/acs.biochem.6b00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Shan Yang
- Baxter Health Care (Suzhou) Company, Ltd. , Suzhou, Jiang Su 215028, China
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Anisha Shakya
- Department of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mary Clay
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
32
|
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 2016; 8:11-23. [PMID: 28510143 DOI: 10.1007/s12551-015-0188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.
Collapse
|
33
|
Shakya A, Dougherty CA, Xue Y, Al-Hashimi HM, Banaszak Holl MM. Rapid Exchange Between Free and Bound States in RNA-Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules 2016; 17:154-64. [PMID: 26595195 PMCID: PMC5070374 DOI: 10.1021/acs.biomac.5b01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A combination of solution NMR, dynamic light scattering (DLS), and fluorescence quenching assays were employed to obtain insights into the dynamics and structural features of a polyplex system consisting of HIV-1 transactivation response element (TAR) and PEGylated generation 5 poly(amidoamine) dendrimer (G5-PEG). NMR chemical shift mapping and (13)C spin relaxation based dynamics measurements depict the polyplex system as a highly dynamic assembly where the RNA, with its local structure and dynamics preserved, rapidly exchanges (
Collapse
Affiliation(s)
- Anisha Shakya
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Casey A. Dougherty
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yi Xue
- Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
34
|
Qi L, Huo Y, Wang H, Zhang J, Dang FQ, Zhang ZQ. Fluorescent DNA-Protected Silver Nanoclusters for Ligand-HIV RNA Interaction Assay. Anal Chem 2015; 87:11078-83. [PMID: 26447651 DOI: 10.1021/acs.analchem.5b03166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studying ligand-biomacromolecule interactions provides opportunities for creating new compounds that can efficiently regulate specific biological processes. Ribonucleic acid (RNA) molecules have become attractive drug targets since the discovery of their roles in modulating gene expression, while only a limited number of studies have investigated interactions between ligands and functional RNA molecules, especially those based on nanotechnology. DNA-protected silver nanoclusters (AgNCs) were used to investigate ligand-RNA interactions for the first time in this study. The anthracycline anticancer drug mitoxantrone (MTX) was found to quench the fluorescence of AgNCs. After adding human immunodeficiency virus trans-activation responsive region (TAR) RNA or Rev-response element (RRE) RNA to AgNCs-MTX mixtures, the fluorescence of the AgNCs recovered due to interactions between MTX with RNAs. The binding constants and number of binding sites of MTX to TAR and RRE RNA were determined through theoretical calculations. MTX-RNA interactions were further confirmed in fluorescence polarization and mass spectrometry experiments. The mechanism of MTX-based fluorescence quenching of the AgNCs was also explored. This study provides a new strategy for ligand-RNA binding interaction assay.
Collapse
Affiliation(s)
- Liang Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Yuan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Huan Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Fu-Quan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| |
Collapse
|
35
|
Abstract
The T box riboswitch is an intriguing potential target for antibacterial drug discovery. Found primarily in Gram-positive bacteria, the riboswitch regulates gene expression by selectively responding to uncharged tRNA to control transcription readthrough. Polyamines and molecular crowding are known to specifically affect RNA function, but their effect on T box riboswitch efficacy and tRNA affinity have not been fully characterized. A fluorescence-monitored in vitro transcription assay was developed to readily quantify these molecular interactions and to provide a moderate-throughput functional assay for a comprehensive drug discovery screening cascade. The polyamine spermidine specifically enhanced T box riboswitch readthrough efficacy with an EC50 = 0.58 mM independent of tRNA binding. Molecular crowding, simulated by the addition of polyethylene glycol, had no effect on tRNA affinity for the riboswitch, but did reduce the efficacy of tRNA-induced readthrough. These results indicate that the T box riboswitch tRNA affinity and readthrough efficacy are intricately modulated by environmental factors.
Collapse
|
36
|
Fluorescence assays for monitoring RNA-ligand interactions and riboswitch-targeted drug discovery screening. Methods Enzymol 2014; 550:363-83. [PMID: 25605395 DOI: 10.1016/bs.mie.2014.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboswitches and other noncoding regulatory RNA are intriguing targets for the development of therapeutic agents. A significant challenge in the drug discovery process, however, is the identification of potent compounds that bind the target RNA specifically and disrupt its function. Essential to this process is an effectively designed cascade of screening assays. A screening cascade for identifying compounds that target the T box riboswitch antiterminator element is described. In the primary assays, moderate to higher throughput screening of compound libraries is achieved by combining the sensitivity of fluorescence techniques with functionally relevant assays. Active compounds are then validated and the binding to target RNA further characterized in secondary assays. The cascade of assays monitor ligand-induced changes in the steady-state fluorescence of an attached dye or internally incorporated 2-aminopurine; the fluorescence anisotropy of an RNA complex; and, the thermal denaturation fluorescence profile of a fluorophore-quencher labeled RNA. While the assays described have been developed for T box riboswitch-targeted drug discovery, the fluorescence methods and screening cascade design principles can be applied to drug discovery efforts targeted toward other medicinally relevant noncoding RNA.
Collapse
|