1
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
2
|
Jaugstetter M, Blanc N, Kratz M, Tschulik K. Electrochemistry under confinement. Chem Soc Rev 2022; 51:2491-2543. [PMID: 35274639 DOI: 10.1039/d1cs00789k] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the term 'confinement' regularly appears in electrochemical literature, elevated by continuous progression in the research of nanomaterials and nanostructures, up until today the various aspects of confinement considered in electrochemistry are rather scattered individual contributions outside the established disciplines in this field. Thanks to a number of highly original publications and the growing appreciation of confinement as an overarching link between different exciting new research strategies, 'electrochemistry under confinement' is the process of forming a research discipline of its own. To aid the development a coherent terminology and joint basic concepts, as crucial factors for this transformation, this review provides an overview on the different effects on electrochemical processes known to date that can be caused by confinement. It also suggests where boundaries to other effects, such as nano-effects could be drawn. To conceptualize the vast amount of research activities revolving around the main concepts of confinement, we define six types of confinement and select two of them to discuss the state of the art and anticipated future developments in more detail. The first type concerns nanochannel environments and their applications for electrodeposition and for electrochemical sensing. The second type covers the rather newly emerging field of colloidal single entity confinement in electrochemistry. In these contexts, we will for instance address the influence of confinement on the mass transport and electric field distributions and will link the associated changes in local species concentration or in the local driving force to altered reaction kinetics and product selectivity. Highlighting pioneering works and exciting recent developments, this educational review does not only aim at surveying and categorizing the state-of-the-art, but seeks to specifically point out future perspectives in the field of confinement-controlled electrochemistry.
Collapse
Affiliation(s)
- Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus Kratz
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G. Electrochemically Modulated Liquid-Liquid Extraction for Sample Enrichment. Anal Chem 2019; 91:7466-7473. [PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
Collapse
Affiliation(s)
- Maizatul Najwa Jajuli
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) , UMR 7564, CNRS - Université de Lorraine , 405 rue de Vandoeuvre , Villers-lès-Nancy , F-54600 , France.,Analytical Chemistry Section - School of Chemical Sciences - Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - M Hazwan Hussin
- Analytical Chemistry Section - School of Chemical Sciences - Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - Bahruddin Saad
- Analytical Chemistry Section - School of Chemical Sciences - Universiti Sains Malaysia , 11800 Penang , Malaysia.,Fundamental and Applied Sciences Department - Universiti Teknologi Petronas , 32610 Seri Iskandar , Perak , Malaysia
| | - Afidah Abdul Rahim
- Analytical Chemistry Section - School of Chemical Sciences - Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - Marc Hébrant
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) , UMR 7564, CNRS - Université de Lorraine , 405 rue de Vandoeuvre , Villers-lès-Nancy , F-54600 , France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) , UMR 7564, CNRS - Université de Lorraine , 405 rue de Vandoeuvre , Villers-lès-Nancy , F-54600 , France
| |
Collapse
|
4
|
Vega Mercado F, Fernández R, Iglesias R, Dassie S. Facilitated proton transfer reactions via water autoprotolysis across oil|water interfaces. Spectroelectrochemical analysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Takaishi M, Shirai O, Kitazumi Y, Kano K. Electrochemical Study on Quantitative Structure‐activity Relationship (QSAR) Analysis under Steady‐state Conditions. ELECTROANAL 2018. [DOI: 10.1002/elan.201800351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Takaishi
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - O. Shirai
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Y. Kitazumi
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - K. Kano
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
6
|
Laborda E, Olmos J, Serna C, Millán-Barrios E, Molina A. Unravelling the effects of non-target ions in two polarizable interface systems: A general analytical theory. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Molina Á, Laborda E, Olmos JM, Millán-Barrios E. Double Transfer Voltammetry in Two-Polarizable Interface Systems: Effects of the Lipophilicity and Charge of the Target and Compensating Ions. Anal Chem 2018; 90:3402-3408. [PMID: 29397699 DOI: 10.1021/acs.analchem.7b05051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.
Collapse
Affiliation(s)
- Ángela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , 30100 Murcia , Spain
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , 30100 Murcia , Spain
| | - José Manuel Olmos
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , 30100 Murcia , Spain
| | - Enrique Millán-Barrios
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias , Universidad de los Andes , 5101 Mérida , Venezuela
| |
Collapse
|
8
|
Chen JH, Le TTM, Hsu KC. Application of PolyHIPE Membrane with Tricaprylmethylammonium Chloride for Cr(VI) Ion Separation: Parameters and Mechanism of Transport Relating to the Pore Structure. MEMBRANES 2018; 8:membranes8010011. [PMID: 29498709 PMCID: PMC5872193 DOI: 10.3390/membranes8010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022]
Abstract
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10−11 m2 s−1. Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery.
Collapse
Affiliation(s)
- Jyh-Herng Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei 10608, Taiwan.
| | - Thi Tuyet Mai Le
- College of Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei 10608, Taiwan.
| | - Kai-Chung Hsu
- College of Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei 10608, Taiwan.
| |
Collapse
|
9
|
Gunderson CG, Peng Z, Zhang B. Collision and Coalescence of Single Attoliter Oil Droplets on a Pipet Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2699-2707. [PMID: 29400980 DOI: 10.1021/acs.langmuir.7b04090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe the use of a quartz pipet nanopore to study the collision and coalescence of individual emulsion oil droplets and their subsequent nanopore translocation. Collision and coalescence of single toluene droplets at a nanopore orifice are driven primarily by electroosmosis and electrophoresis and lead to the fast growth of a trapped oil droplet. This results in a stepwise current response due to the coalesced oil droplet increasing its volume and its ability to partially block the nanopore's ionic current, allowing us to use the resistive-pulse method to resolve single droplet collisions. Further growth of the trapped oil droplet leads to a complete blockage of the nanopore and a nearly 100% current decay. The trapped oil droplet shows enormous mechanical stability at lower voltages and stays in its trapped status for hundreds of seconds. An increased voltage can be used to drive the trapped droplet into the pipet pore within several milliseconds. Simultaneous fluorescence imaging and amperometry were performed to examine droplet collision, coalescence, and translocation, further confirming the proposed mechanism of droplet-nanopore interaction. Moreover, we demonstrate the unique ability to perform fast voltammetric measurements on a nanopore-supported attoliter oil droplet and study its voltage-driven ion transfer processes.
Collapse
Affiliation(s)
- Christopher G Gunderson
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Zhuoyu Peng
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Olmos JM, Molina Á, Laborda E, Millán-Barrios E, Ortuño JÁ. Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces. Anal Chem 2018; 90:2088-2094. [PMID: 29260554 DOI: 10.1021/acs.analchem.7b04321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.
Collapse
Affiliation(s)
- José Manuel Olmos
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia , 30100 Murcia, Spain
| | - Ángela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia , 30100 Murcia, Spain
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia , 30100 Murcia, Spain
| | - Enrique Millán-Barrios
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes , 5101 Mérida, Venezuela
| | - Joaquín Ángel Ortuño
- Departamento de Química Analítica, Facultad de Química, Universidad de Murcia , 30100 Murcia, Spain
| |
Collapse
|
11
|
Scott D, Ghosh A, Di L, Maurer T. Passive drug permeation through membranes and cellular distribution. Pharmacol Res 2017; 117:94-102. [DOI: 10.1016/j.phrs.2016.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022]
|
12
|
Arrigan DWM, Alvarez de Eulate E, Liu Y. Electroanalytical Opportunities Derived from Ion Transfer at Interfaces between Immiscible Electrolyte Solutions. Aust J Chem 2016. [DOI: 10.1071/ch15796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review presents an introduction to electrochemistry at interfaces between immiscible electrolyte solutions and surveys recent studies of this form of electrochemistry in electroanalytical strategies. Simple ion and facilitated ion transfers across interfaces varying from millimetre scale to nanometre scales are considered. Target detection strategies for a range of ions, inorganic, organic, and biological, including macromolecules, are discussed.
Collapse
|
13
|
Toth PS, Dryfe RAW. Novel organic solvents for electrochemistry at the liquid/liquid interface. Analyst 2015; 140:1947-54. [DOI: 10.1039/c4an02250e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5-nonanone organic phase has been shown to be a stable solvent for use in electrochemistry, ion and electron transfer has been studied at the organic/water interface.
Collapse
Affiliation(s)
- Peter S. Toth
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
14
|
Herzog G. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 2015; 140:3888-96. [DOI: 10.1039/c5an00601e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most recent developments on electrochemical sensing of ions at the liquid–liquid interface are reviewed here.
Collapse
Affiliation(s)
- Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME)
- UMR 7564
- CNRS – Université de Lorraine
- Villers-lès-Nancy
- France
| |
Collapse
|
15
|
Moazami HR, Nojavan S, Zahedi P, Davarani SSH. Electronic simulation of the supported liquid membrane in electromembrane extraction systems: Improvement of the extraction by precise periodical reversing of the field polarity. Anal Chim Acta 2014; 841:24-32. [DOI: 10.1016/j.aca.2014.06.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|