1
|
Sikes JC, Wonner K, Nicholson A, Cignoni P, Fritsch I, Tschulik K. Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS PHYSICAL CHEMISTRY AU 2022; 2:289-298. [PMID: 35915589 PMCID: PMC9335947 DOI: 10.1021/acsphyschemau.1c00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Redox magnetohydrodynamics
(RMHD) microfluidics is coupled with
dark-field microscopy (DFM) to offer high-throughput single-nanoparticle
(NP) differentiation in situ and operando in a flowing mixture by localized surface plasmon resonance (LSPR)
and tracking of NPs. The color of the scattered light allows visualization
of the NPs below the diffraction limit. Their Brownian motion in 1-D
superimposed on and perpendicular to the RMHD trajectory yields their
diffusion coefficients. LSPR and diffusion coefficients provide two
orthogonal modalities for characterization where each depends on a
particle’s material composition, shape, size, and interactions
with the surrounding medium. RMHD coupled with DFM was demonstrated
on a mixture of 82 ± 9 nm silver and 140 ± 10 nm gold-coated
silica nanospheres. The two populations of NPs in the mixture were
identified by blue/green and orange/red LSPR and their scattering
intensity, respectively, and their sizes were further evaluated based
on their diffusion coefficients. RMHD microfluidics facilitates high-throughput
analysis by moving the sample solution across the wide field of view
absent of physical vibrations within the experimental cell. The well-controlled
pumping allows for a continuous, reversible, and uniform flow for
precise and simultaneous NP tracking of the Brownian motion. Additionally,
the amounts of nanomaterials required for the analysis are minimized
due to the elimination of an inlet and outlet. Several hundred individual
NPs were differentiated from each other in the mixture flowing in
forward and reverse directions. The ability to immediately reverse
the flow direction also facilitates re-analysis of the NPs, enabling
more precise sizing.
Collapse
Affiliation(s)
- Jazlynn C. Sikes
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kevin Wonner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Aaron Nicholson
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Paolo Cignoni
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Ingrid Fritsch
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kristina Tschulik
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| |
Collapse
|
2
|
Miles M, Bhattacharjee B, Sridhar N, Fajrial AK, Ball K, Lee YC, Stowell MHB, Old WM, Ding X. Flattening of Diluted Species Profile via Passive Geometry in a Microfluidic Device. MICROMACHINES 2019; 10:E839. [PMID: 31801276 PMCID: PMC6952922 DOI: 10.3390/mi10120839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/02/2022]
Abstract
In recent years, microfluidic devices have become an important tool for use in lab-on-a-chip processes, including drug screening and delivery, bio-chemical reactions, sample preparation and analysis, chemotaxis, and separations. In many such processes, a flat cross-sectional concentration profile with uniform flow velocity across the channel is desired to achieve controlled and precise solute transport. This is often accommodated by the use of electroosmotic flow, however, it is not an ideal for many applications, particularly biomicrofluidics. Meanwhile, pressure-driven systems generally exhibit a parabolic cross-sectional concentration profile through a channel. We draw inspiration from finite element fluid dynamics simulations to design and fabricate a practical solution to achieving a flat solute concentration profile in a two-dimensional (2D) microfluidic channel. The channel possesses geometric features to passively flatten the solute profile before entering the defined region of interest in the microfluidic channel. An obviously flat solute profile across the channel is demonstrated in both simulation and experiment. This technology readily lends itself to many microfluidic applications which require controlled solute transport in pressure driven systems.
Collapse
Affiliation(s)
- Michael Miles
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
| | - Biddut Bhattacharjee
- Department Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0552, USA; (B.B.); (K.B.)
| | - Nakul Sridhar
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
| | - Apresio Kefin Fajrial
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
| | - Kerri Ball
- Department Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0552, USA; (B.B.); (K.B.)
| | - Yung Cheng Lee
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
| | - Michael H. B. Stowell
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
- Department Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0552, USA; (B.B.); (K.B.)
| | - William M. Old
- Department Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0552, USA; (B.B.); (K.B.)
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0552, USA; (M.M.); (N.S.); (A.K.F.); (Y.C.L.); (M.H.B.S.)
| |
Collapse
|
3
|
Haehnel V, Khan FZ, Mutschke G, Cierpka C, Uhlemann M, Fritsch I. Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems. Sci Rep 2019; 9:5103. [PMID: 30911104 PMCID: PMC6433926 DOI: 10.1038/s41598-019-41284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN)6]3-/[Fe(CN)6]4- performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized.
Collapse
Affiliation(s)
- Veronika Haehnel
- Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany
| | - Foysal Z Khan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Gerd Mutschke
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01328, Dresden, Germany
| | - Christian Cierpka
- Institute of Thermodynamics and Fluid Mechanics,Technische Universität Ilmenau, D-98684, Ilmenau, Germany
| | - Margitta Uhlemann
- Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany.
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
4
|
Sahore V, Doonan SR, Bailey RC. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:4264-4274. [PMID: 30886651 PMCID: PMC6419776 DOI: 10.1039/c8ay01474d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have developed droplet microfluidic devices in thermoplastics and demonstrated the integration of key functional components that not only facilitate droplet generation, but also include electric field-assisted reagent injection, droplet splitting, and magnetic field-assisted bead extraction. We manufactured devices in poly(methyl methacrylate) and cyclic olefin polymer using a hot-embossing procedure employing silicon masters fabricated via photolithography and deep reactive ion etching techniques. Device characterization showed robust fabrication with uniform feature transfer and good embossing yield. Channel modification with heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane increased device hydrophobicity, allowing stable generation of 330-pL aqueous droplets using T-junction configuration. Picoinjector and K-channel motifs were also both successfully integrated into the thermoplastic devices, allowing for robust control over electric field-assisted reagent injection, as well as droplet splitting with the K-channel. A magnetic field was also introduced to the K-channel geometry to allow for selective concentration of magnetic beads while decanting waste volume through droplet splitting. To show the ability to link multiple, modular features in a single thermoplastic device, we integrated droplet generation, reagent injection, and magnetic field-assisted droplet splitting on a single device, realizing a magnetic bead washing scheme to selectively exchange the fluid composition around the magnetic particles, analogous to the washing steps in many common biochemical assays. Finally, integrated devices were used to perform a proof-of-concept in-droplet β-galactosidase enzymatic assay combining enzyme-magnetic bead containing droplet generation, resorufin-β-D-galactopyranoside substrate injection, enzyme-substrate reaction, and enzyme-magnetic bead washing. By integrating multiple droplet operations and actuation forces we have demonstrated the potential of thermoplastic droplet microfluidic devices for complex (bio)chemical analysis, and we envision a path toward mass fabrication of droplet microfluidic devices for a range of (bio)chemical applications.
Collapse
|
5
|
Khan FZ, Hutcheson JA, Hunter CJ, Powless AJ, Benson D, Fritsch I, Muldoon TJ. Redox-Magnetohydrodynamically Controlled Fluid Flow with Poly(3,4-ethylenedioxythiophene) Coupled to an Epitaxial Light Sheet Confocal Microscope for Image Cytometry Applications. Anal Chem 2018; 90:7862-7870. [PMID: 29873231 DOI: 10.1021/acs.analchem.7b05312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the merging of two technologies to perform continuous high-resolution fluorescence imaging of cellular suspensions in a deep microfluidics chamber with no moving parts. An epitaxial light sheet confocal microscope (e-LSCM) was used to image suspensions enabled by fluid transport via redox-magnetohydrodynamics (R-MHD). The e-LSCM features a linear solid state sensor, oriented perpendicular to the direction of flow, that can bin the emission across different numbers of pixels, yielding electronically adjustable optical sectioning. This, in addition to intensity thresholding, defines the axial resolution, which was validated with an optical phantom of polystyrene microspheres suspended in agarose. The linear fluid speed within the microfluidics chamber was uniform (0.16-2.9%) across the 0.5-1.0 mm lateral field of view (dependent upon the chosen magnification) with continuous acquisition. Also, the camera's linear exposure periods were controlled to ensure an accurate image aspect ratio across this span. Poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited as an immobilized redox film on electrodes of a chip for R-MHD, and the fluid flow was calibrated to specific linear speeds as a function of applied current. Images of leukocytes stained with acridine orange, a fluorescent, amphipathic vital dye that intercalates DNA, were acquired in the R-MHD microfluidics chamber with the e-LSCM to demonstrate imaging of biological samples. The combination of these technologies provides a miniaturizable platform for large sample volumes and high-throughput, image-based analysis without the requirement of moving parts, enabling development of robust, point-of-care image cytometry.
Collapse
Affiliation(s)
- Foysal Z Khan
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Joshua A Hutcheson
- Department of Biomedical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Courtney J Hunter
- Department of Biomedical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Amy J Powless
- Department of Biomedical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Devin Benson
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Timothy J Muldoon
- Department of Biomedical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
6
|
Nash CK, Fritsch I. Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution. Anal Chem 2016; 88:1601-9. [DOI: 10.1021/acs.analchem.5b03182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christena K. Nash
- Department
of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ingrid Fritsch
- Department
of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Sahore V, Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses. Anal Chem 2014; 86:9405-11. [PMID: 25171501 DOI: 10.1021/ac502014t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A proof-of-concept superparamagnetic microbead-enzyme complex was integrated with microfluidics pumped by redox-magneto-hydrodynamics (MHD) to take advantage of the magnet (0.56 T) beneath the chip and the uniform flat flow profile, as a first step toward developing multiple, parallel chemical analyses on a chip without the need for independent channels. The superparamagnetic beads were derivatized with alkaline phosphatase (a common enzyme label for biochemical assays) and magnetically immobilized at three different locations on the chip with one directly on the path to the detector and the other two locations adjacent to, but off the path, by a distance >5 times the detector diameter. Electroactive p-aminophenol, enzymatically generated at the bead-enzyme complex from its electroinactive precursor p-aminophenyl phosphate in a solution containing a redox species [Ru(NH3)6](3+/2+) for pumping and Tris buffer, was transported by redox-MHD and detected with square wave voltammetry at a 312 μm diameter gold microdisk stationed 2 mm downstream from the bead-complex on the flow path. Oppositely biased pumping electrodes, consisting of 2.5 cm long gold bands and separated by 5.6 mm, flanked the active flow region containing the bead-enzyme complex and detection site. The signal from adjacent paths was only 20% of that for the direct path and ≤8% when pumping electrodes were inactive.
Collapse
Affiliation(s)
- Vishal Sahore
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | | |
Collapse
|