1
|
Setzler CJ, Petty JT. Click catalysis and DNA conjugation using a nanoscale DNA/silver cluster pair. NANOSCALE 2024; 16:17868-17876. [PMID: 39257181 DOI: 10.1039/d4nr02938k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
DNA-bound silver clusters are most readily recognized by their strong fluorescence that spans the visible and near-infrared regions. From this suite of chromophores, we chose a green-emitting Ag106+ bound to C4AC4TC3GT4 and describe how this DNA/cluster pair is also a catalyst. A DNA-tethered alkyne conjugates with an azide via cycloaddition, an inherently slow reaction that is facilitated through the joint efforts of the cluster and DNA. The Ag106+ structure is the catalytic core in this complex, and it has three distinguishing characteristics. It facilitates cycloaddition while preserving its stoichiometry, charge, and spectra. It also acidifies its nearby alkyne to promote H/D exchange, suggesting a silver-alkyne complex. Finally, it is markedly more efficient when compared with related multinuclear DNA-silver complexes. The Ag106+ is trapped within its C4AC4TC3GT4 host, which governs the catalytic activity in two ways. The DNA has orthogonal functional groups for both the alkyne and cluster, and these can be systematically separated to quench the click reaction. It is also a polydentate ligand that imprints an elongated shape on its cluster adduct. This extended structure suggests that DNA may pry apart the cluster to open coordination sites for the alkyne and azide reactants. These studies indicate that this DNA/silver cluster pair work together with catalysis directly driven by the silver cluster and indirectly guided by the DNA host.
Collapse
Affiliation(s)
- Caleb J Setzler
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| |
Collapse
|
2
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
3
|
Liasi Z, Hillers-Bendtsen AE, Jensen L, Mikkelsen KV. Elucidating the Mystery of DNA-Templating Effects on a Silver Nanocluster. J Phys Chem Lett 2023:5727-5733. [PMID: 37318362 DOI: 10.1021/acs.jpclett.3c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This presentation considers the effects that DNA-templating has on the optical properties of a 16-atom silver cluster. To accomplish this, hybrid quantum mechanical and molecular mechanical simulations of a Ag16-DNA complex have been carried out and compared with pure time-dependent density functional theory calculations of two Ag16 clusters in vacuum. The presented results show that the templating DNA polymers both red-shift the one-photon absorption of the silver cluster and increase its intensity. This occurs through a change in cluster shape prompted by the structural constraints of the DNA ligands combined with silver-DNA interactions. The overall charge of the cluster also contributes to the observed optical response, as oxidation of the cluster results in a simultaneous blue-shift of the one-photon absorption and a decrease in intensity. Additionally, the changes in shape and environment also lead to a blue-shift and enhancement of the two-photon absorption.
Collapse
Affiliation(s)
- Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Lewis D, Setzler C, Goodwin PM, Thomas K, Branham M, Arrington CA, Petty JT. Interrupted DNA and Slow Silver Cluster Luminescence. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10574-10584. [PMID: 37313118 PMCID: PMC10258842 DOI: 10.1021/acs.jpcc.3c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/15/2023]
Abstract
A DNA-silver cluster conjugate is a hierarchical chromophore with a partly reduced silver core embedded within the DNA nucleobases that are covalently linked by the phosphodiester backbone. Specific sites within a polymeric DNA can be targeted to spectrally tune the silver cluster. Here, the repeated (C2A)6 strand is interrupted with a thymine, and the resulting (C2A)2-T-(C2A)4 forms only Ag106+, a chromophore with both prompt (∼1 ns) green and sustained (∼102 μs) red luminescence. Thymine is an inert placeholder that can be removed, and the two fragments (C2A)2 and (C2A)4 also produce the same Ag106+ adduct. In relation to (C2A)2T(C2A)4, the (C2A)2 + (C2A)4 pair is distinguished because the red Ag106+ luminescence is ∼6× lower, relaxes ∼30% faster, and is quenched ∼2× faster with O2. These differences suggest that a specific break in the phosphodiester backbone can regulate how a contiguous vs broken scaffold wraps and better protects its cluster adduct.
Collapse
Affiliation(s)
- David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Peter M. Goodwin
- Center
for Integrated Nanotechnologies, Mail Stop K771, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kirsten Thomas
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Makayla Branham
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
5
|
García JF, Reguera D, Valls A, Aviñó A, Dominguez A, Eritja R, Gargallo R. Detection of pyrimidine-rich DNA sequences based on the formation of parallel and antiparallel triplex DNA and fluorescent silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122752. [PMID: 37084680 DOI: 10.1016/j.saa.2023.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.
Collapse
Affiliation(s)
- Juan Fernando García
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - David Reguera
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Andrea Valls
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Arnau Dominguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
David F, Setzler C, Sorescu A, Lieberman RL, Meilleur F, Petty JT. Mapping H + in the Nanoscale (A 2C 4) 2-Ag 8 Fluorophore. J Phys Chem Lett 2022; 13:11317-11322. [PMID: 36453924 DOI: 10.1021/acs.jpclett.2c03161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.
Collapse
Affiliation(s)
- Fred David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caleb Setzler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Alexandra Sorescu
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, North Carolina 27695, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
7
|
Petty JT, Lewis D, Carnahan S, Kim D, Couch C. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores. J Phys Chem B 2022; 126:3822-3830. [PMID: 35594191 DOI: 10.1021/acs.jpcb.2c01054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular chromophores form when a DNA traps silvers that then coalesce into clusters with discrete, molecular electronic states. However, DNA strands are polymeric ligands that disperse silvers and thus curb agglomeration. We study this competition using two chromophores that share three common components: a dimeric DNA scaffold, Ag+-nucleobase base pairs, and Ag0 chromophores. The DNA host C4-A2-iC4T mimics structural elements in a DNA-cluster crystal structure using a phosphodiester backbone with combined 5' → 3' and 3' → 5' (indicated by "i") directions. The backbone directions must alternate to form the two silver clusters, and this interdependence supports a silver-linked structure. This template creates two chromophores with distinct sizes, charges, and hence spectra: (C4-A2-iC4T)2/Ag117+ with λabs/λem = 430/520 nm and (C4-A2-iC4T)2/Ag148+ with λabs/λem = 510/630 nm. The Ag+ and Ag0 constituents in these partially oxidized clusters are linked with structural elements in C4-A2-iC4T. Ag+ alone binds sparsely but strongly to form C4-A2-iC4T/3-4 Ag+ and (C4-A2-iC4T)2/7-8 Ag+ complexes, and these stoichiometries suggest that Ag+ cross-links pairs of cytosines to form a hairpin with a metallo-C4/iC4 duplex and an adenine loop. The Ag0 are chemically orthogonal because they can be oxidatively etched without disrupting the underlying Ag+-DNA matrix, and their reactivity is attributed to their valence electrons and weaker chelation by the adenines. These studies suggest that Ag+ disperses with the cytosines to create an adenine binding pocket for the Ag0 cluster chromophores.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caroline Couch
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
8
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
9
|
Wu Q, Liu C, Liu Y, Cui C, Ge J, Tan W. Multibranched Linear DNA-Controlled Assembly of Silver Nanoclusters and Their Applications in Aptamer-Based Cell Recognition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14953-14960. [PMID: 35344322 DOI: 10.1021/acsami.1c24547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) are promising fluorescent materials and have been used in cancer diagnosis. Although many different DNA-AgNC applications have been realized, most of them rely on individual DNA-AgNCs or assembled DNA-AgNCs with limited recognition abilities, resulting in low detection sensitivity or off-target effects, in turn, hindering the performance of DNA-AgNCs in cancer cell recognition. As a solution, we assembled DNA-AgNCs by a multibranched linear (MBL) DNA structure formed through a trigger-initiated hybridization chain reaction (HCR) regarding the natural compatibility of DNA-AgNCs with DNA programmability and the advantages of DNA assembly in incorporating repetitive and functional moieties into one structure. By the specific modification of the trigger, MBL-AgNCs tethered with the targeting aptamer and partially hybridized duplex, which works as a component of DNA logic platform relying on the combination of cascade strand displacement reaction and specific recognition ability of aptamers, were obtained, respectively. DNA-AgNCs assembled by the aptamer-tethered MBL structure exhibited about 20-fold enhanced detection sensitivity in recognizing cancer cells compared to individual aptamer-tethered DNA-AgNCs. DNA-AgNCs assembled by the duplex-attached MBL exhibited logic performance in analyzing dual cell surface receptors with the assistance of "AND" logic platform, thus identifying cancer cells with high sensitivity and resolution. The facile conjugation of the MBL structure with different functional DNA structures makes it an ideal platform to assemble DNA-AgNCs used for aptamer-based cell recognition, thus broadening the potential applications of DNA-AgNCs.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Chengcheng Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jia Ge
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
10
|
Zhang Y, He C, de La Harpe K, Goodwin PM, Petty JT, Kohler B. A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. J Chem Phys 2021; 155:094305. [PMID: 34496579 DOI: 10.1063/5.0056836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag10 6+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag10 6+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2-NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs-400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster-ligand interactions and, in turn, cluster brightness.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, USA
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
11
|
Petty JT, Carnahan S, Kim D, Lewis D. Long-lived Ag 10 6+ luminescence and a split DNA scaffold. J Chem Phys 2021; 154:244302. [PMID: 34241360 DOI: 10.1063/5.0056214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular silver clusters emit across the visible to near-infrared, and specific chromophores can be formed using DNA strands. We study C4AC4TC3G that selectively coordinates and encapsulates Ag10 6+, and this chromophore has two distinct electronic transitions. The green emission is strong and prompt with ϕ = 18% and τ = 1.25 ns, and the near-infrared luminescence is weaker, slower with τ = 50 µs, and is partly quenched by oxygen, suggesting phosphorescence. This lifetime can be modulated by the DNA host, and we consider two derivatives of C4AC4TC3G with similar sequences but distinct structures. In one variant, thymine was excised to create an abasic gap in an otherwise intact strand. In the other, the covalent phosphate linkage was removed to split the DNA scaffold into two fragments. In relation to the contiguous strands, the broken template speeds the luminescence decay by twofold, and this difference may be due to greater DNA flexibility. These modifications suggest that a DNA can be structurally tuned to modulate metastable electronic states in its silver cluster adducts.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| |
Collapse
|
12
|
Rück V, Cerretani C, Neacşu VA, Liisberg MB, Vosch T. Observation of microsecond luminescence while studying two DNA-stabilized silver nanoclusters emitting in the 800-900 nm range. Phys Chem Chem Phys 2021; 23:13483-13489. [PMID: 34109959 DOI: 10.1039/d1cp01731d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We investigated two DNA-stabilized silver nanoclusters (DNA-AgNCs) that show multiple absorption features in the visible region, and emit around 811 nm (DNA811-AgNC) and 841 nm (DNA841-AgNC). Both DNA-AgNCs have large Stokes shifts and can be efficiently excited with red light. A comparison with the commercially available Atto740 yielded fluorescence quantum yields in the same order of magnitude, but a higher photon output above 800 nm since both DNA-AgNCs are more red-shifted. The study of both DNA-AgNCs also revealed previously unobserved photophysical behavior for this class of emitters. The fluorescence quantum yield and decay time of DNA841-AgNC can be increased upon consecutive heating/cooling cycles. DNA811-AgNC has an additional absorption band around 470 nm, which is parallel in orientation to the lowest energy transition at 640 nm. Furthermore, we observed for the first time a DNA-AgNC population (as part of the DNA811-AgNC sample) with green and near-infrared emissive states with nanosecond and microsecond decay times, respectively. A similar dual emissive DNA-AgNC stabilized by a different 10-base DNA strand is also reported in the manuscript. These two examples highlight the need to investigate the presence of red-shifted microsecond emission for this class of emitters.
Collapse
Affiliation(s)
- Vanessa Rück
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Cecilia Cerretani
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Vlad A Neacşu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Mikkel B Liisberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
13
|
Gambucci M, Zampini G, Quaglia G, Vosch T, Latterini L. Probing the Fluorescence Behavior of DNA‐Stabilized Silver Nanoclusters in the Presence of Biomolecules. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Quaglia
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Tom Vosch
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
14
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
15
|
de la Hoz A, Navarro A, Aviñó A, Eritja R, Gargallo R. Studies on the interactions of Ag(i) with DNA and their implication on the DNA-templated synthesis of silver nanoclusters and on the interaction with complementary DNA and RNA sequences. RSC Adv 2021; 11:9029-9042. [PMID: 35423401 PMCID: PMC8695332 DOI: 10.1039/d1ra00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoclusters (AgNCs) prepared by the reduction of silver ions in the presence of DNA oligonucleotides have attracted great interest as potential diagnostic tools for their tunable and high fluorescent properties. In this work, three DNA sequences that consist of a 12-nucleotide long probe sequence at the 5′-end linked to the complementary sequence to three miRNAs are studied. First, the interaction of these sequences with Ag(i) was characterized by means of circular dichroism spectroscopy. By applying multivariate methods to the analysis of spectroscopic data, two complexes with different Ag(i) : DNA ratios were resolved. Secondly, the impact of several experimental variables, such as temperature, borohydride concentration and reaction time, on the formation of AgNCs templated by these three sequences was studied. Finally, the fluorescence properties of the duplexes formed by DNA probes with complementary DNA or miRNA sequences were studied. The results presented here highlight the role of the secondary structure adopted by the DNA probe on the fluorescence properties of DNA-stabilized AgNCs which, in turn, affect the development of methods for miRNA detection. Variables affecting the fluorescent properties of DNA-stabilized silver nanoclusters are studied. The secondary structure of the AgNC-stabilizing DNA sequence dramatically affects the analytical signal behind the hybridization reaction.![]()
Collapse
Affiliation(s)
- Alejandra de la Hoz
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Alba Navarro
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| |
Collapse
|
16
|
Liisberg MB, Shakeri Kardar Z, Copp SM, Cerretani C, Vosch T. Single-Molecule Detection of DNA-Stabilized Silver Nanoclusters Emitting at the NIR I/II Border. J Phys Chem Lett 2021; 12:1150-1154. [PMID: 33476515 DOI: 10.1021/acs.jpclett.0c03688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The near-infrared (NIR) I and II regions are known for having good light transparency of tissue and less scatter compared to the visible region of the electromagnetic spectrum. However, the number of bright fluorophores in these regions is limited. Here we present a detailed spectroscopic characterization of a DNA-stabilized silver nanocluster (DNA-AgNC) that emits at around 960 nm in solution. The DNA-AgNC converts to blue-shifted emitters over time. Embedding these DNA-AgNCs in poly(vinyl alcohol) (PVA) shows that they are bright and photostable enough to be detected at the single-molecule level. Photon antibunching experiments were performed to confirm single emitter behavior. Our findings highlight that the screening and exploration of DNA-AgNCs in the NIR II region might yield promising bright, photostable emitters that could help develop bioimaging applications with unprecedented signal-to-background ratios and single-molecule sensitivity.
Collapse
Affiliation(s)
- Mikkel B Liisberg
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Zahra Shakeri Kardar
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv 2020; 11:1153-1163. [PMID: 35423706 PMCID: PMC8693506 DOI: 10.1039/d0ra08066g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
18
|
Qiu Q, Gao RR, Xie A, Jiao Y, Dong W. A ratiometric fluorescent sensor with different DNA-templated Ag NCs as signals for ATP detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Cerretani C, Kondo J, Vosch T. Removal of the A10 adenosine in a DNA-stabilized Ag16 nanocluster. RSC Adv 2020; 10:23854-23860. [PMID: 35517326 PMCID: PMC9054913 DOI: 10.1039/d0ra02672g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
The role of the terminal adenosine (A10) on the spectroscopic and structural properties of a previously described DNA-stabilized Ag16 nanocluster (DNA:Ag16NC) is presented. In the original DNA:Ag16NCs (5′-CACCTAGCGA-3′), the A10 nucleobase was involved in an Ag+-mediated interaction with an A10 in a neighboring asymmetric unit, and did not interact with the Ag16NC. Therefore, we synthesized AgNCs embedded in the corresponding 9-base sequence in order to investigate the crystal structure of these new DNA-A10:Ag16NCs and analyze the photophysical properties of the solution and crystalline state. The X-ray crystallography and spectroscopic measurements revealed that the 3′-end adenosine has little importance with respect to the photophysics and structure of the Ag16NCs. Additionally, the new crystallographic data was recorded with higher spatial resolution leading to a more detailed insight in the interactions between the nucleotides and Ag atoms. We investigated the effect of removing the A10 from 5′-CACCTAGCGA-3′ on the photophysical and structural properties of a DNA-stabilized Ag16NC.![]()
Collapse
Affiliation(s)
- Cecilia Cerretani
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences
- Sophia University
- 102-8554 Tokyo
- Japan
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| |
Collapse
|
20
|
Blevins MS, Kim D, Crittenden CM, Hong S, Yeh HC, Petty JT, Brodbelt JS. Footprints of Nanoscale DNA-Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS NANO 2019; 13:14070-14079. [PMID: 31755695 PMCID: PMC7047740 DOI: 10.1021/acsnano.9b06470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | | | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:.
| |
Collapse
|
21
|
Schultz D, Brinson RG, Sari N, Fagan JA, Bergonzo C, Lin NJ, Dunkers JP. Structural insights into DNA-stabilized silver clusters. SOFT MATTER 2019; 15:4284-4293. [PMID: 31094392 PMCID: PMC11204197 DOI: 10.1039/c9sm00198k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their great promise as fluorescent biological probes and sensors, the structure and dynamics of Ag complexes derived from single stranded DNA (ssDNA) are less understood than their double stranded counterparts. In this work, we seek new insights into the structure of single AgNssDNA clusters using analytical ultracentrifugation (AUC), nuclear magnetic resonance spectroscopy, infrared spectroscopy and molecular dynamics simulations (MD) of a fluorescent (AgNssDNA)8+ nanocluster. The results suggest that the purified (AgNssDNA)8+ nanocluster is a mixture of predominantly Ag15 and Ag16 species that prefer two distinct long-lived conformational states: one extended, the other approaching spherical. However, the ssDNA strands within these clusters are highly mobile. Ag(i) interacts preferentially with the nucleobase rather than the phosphate backbone, causing a restructuring of the DNA strand relative to the bare DNA. Infrared spectroscopy and MD simulations of (AgNssDNA)8+ and model nucleic acid homopolymers suggest that Ag(i) has a higher affinity for cytosine over guanine bases, little interaction with adenine, and virtually none with thymine. Ag(i) shows a tendency to interact with cytosine N3 and O2 and guanine N7 and O6, opening the possibility for a Ag(i)-base bifurcated bond to act as a nanocluster nucleation and strand stabilizing site. This work provides valuable insight into nanocluster structure and dynamics which drive stability and optical properties, and additional studies using these types of characterization techniques are important for the rational design of single stranded AgDNA nanocluster sensors.
Collapse
Affiliation(s)
- Danielle Schultz
- Biomaterials Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Cerretani C, Vosch T. Switchable Dual-Emissive DNA-Stabilized Silver Nanoclusters. ACS OMEGA 2019; 4:7895-7902. [PMID: 31459877 PMCID: PMC6693819 DOI: 10.1021/acsomega.9b00614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 05/10/2023]
Abstract
We investigated an ss-DNA sequence that can stabilize a red- and a green-emissive silver nanocluster (DNA-AgNC). These two emitters can convert between each other in a reversible way. The change from red- to green-emitting DNA-AgNCs can be triggered by the addition of H2O2, while the opposite conversion can be achieved by the addition of NaBH4. Besides demonstrating the switching between red- and green-emissive DNA-AgNCs and determining the recoverability, we fully characterized the photophysical properties, such as steady-state emission, quantum yield, fluorescence lifetime, and anisotropy of the two emissive species. Understanding the mechanism behind the remarkable conversion between the two emitters could lead to the development of a new range of DNA-AgNC-based ratiometric sensors.
Collapse
|
23
|
Huard DJE, Demissie A, Kim D, Lewis D, Dickson RM, Petty JT, Lieberman RL. Atomic Structure of a Fluorescent Ag 8 Cluster Templated by a Multistranded DNA Scaffold. J Am Chem Soc 2019; 141:11465-11470. [PMID: 30562465 DOI: 10.1021/jacs.8b12203] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multinuclear silver clusters encapsulated by DNA exhibit size-tunable emission spectra and rich photophysics, but their atomic organization is poorly understood. Herein, we describe the structure of one such hybrid chromophore, a green-emitting Ag8 cluster arranged in a Big Dipper-shape bound to the oligonucleotide A2C4. Three 3' cytosine metallo-base pairs stabilize a parallel A-form-like duplex with a 5' adenine-rich pocket, which binds a metallic, trapezoidal-shaped Ag5 moiety via Ag-N bonds to endo- and exocyclic nitrogens of cytosine and adenine. The unique DNA configuration, constrained coordination environment, and templated Ag8 cluster arrangement highlight the reciprocity between the silvers and DNA in adopting this structure. These first atomic details of a DNA-encapsulated Ag cluster fluorophore illuminate many aspects of biological assembly, nanoscience, and metal cluster photophysics.
Collapse
Affiliation(s)
- Dustin J E Huard
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aida Demissie
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Dahye Kim
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - David Lewis
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jeffrey T Petty
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
24
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
25
|
Bogh S, Cerretani C, Kacenauskaite L, Carro-Temboury MR, Vosch T. Excited-State Relaxation and Förster Resonance Energy Transfer in an Organic Fluorophore/Silver Nanocluster Dyad. ACS OMEGA 2017; 2:4657-4664. [PMID: 31457751 PMCID: PMC6641894 DOI: 10.1021/acsomega.7b00582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/03/2017] [Indexed: 05/21/2023]
Abstract
A single-stranded DNA-based (ssDNA) dyad was constructed comprising 15 silver atoms stabilized by a ssDNA scaffold (DNA-AgNC) and an Alexa 546 fluorophore bound to the 5' end. The Alexa 546 was chosen to function as a Förster resonance energy transfer (FRET) donor for the AgNC. Time-correlated single photon counting (TCSPC) experiments allowed unraveling the excited-state relaxation processes of the purified DNA-AgNC-only system. The TCSPC results revealed slow relaxation dynamics and a red shift of the emission spectrum during the excited-state lifetime. The results from the model systems were needed to understand the more complicated decay pathways present in the collected high-performance liquid chromatography fraction, which contained the dyad (37% of the emissive population). In the dyad system, the FRET efficiency between donor and acceptor was determined to be 94% using TCSPC, yielding a center-to-center distance of 4.6 nm. To date, only limited structural information on DNA-AgNCs is available and the use of TCSPC and FRET can provide information on the center-to-center distance between chromophores and provide positional information in nanostructures composed of AgNCs.
Collapse
Affiliation(s)
| | | | - Laura Kacenauskaite
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Miguel R. Carro-Temboury
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
27
|
Han GM, Jia ZZ, Zhu YJ, Jiao JJ, Kong DM, Feng XZ. Biostable L-DNA-Templated Aptamer-Silver Nanoclusters for Cell-Type-Specific Imaging at Physiological Temperature. Anal Chem 2016; 88:10800-10804. [PMID: 27797508 DOI: 10.1021/acs.analchem.6b02871] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The high susceptibility of the natural D-conformation of DNA (D-DNA) to nucleases greatly limits the application of DNA-templated silver nanoclusters (Ag NCs) in biological matrixes. Here we demonstrate that the L-conformation of DNA (L-DNA), the enantiomer of D-DNA, can also be used for the preparation of aptamer-Ag NCs. The extraordinary resistance of L-DNA to nuclease digestion confers much higher biostability to these NCs than those templated by D-DNA, thus making cell-type-specific imaging possible at physiological temperatures, using at least 100-times lower Ag NC concentration than reported D-DNA-templated ones. The L-DNA-templated metal NC probes with enhanced biostability might promote the applications of metal nanocluster probes in complex biological systems.
Collapse
Affiliation(s)
- Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Zhen-Zhen Jia
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| | - Yan-Jun Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Jia-Jia Jiao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| |
Collapse
|
28
|
Ramazanov RR, Sych TS, Reveguk ZV, Maksimov DA, Vdovichev AA, Kononov AI. Ag-DNA Emitter: Metal Nanorod or Supramolecular Complex? J Phys Chem Lett 2016; 7:3560-6. [PMID: 27564452 DOI: 10.1021/acs.jpclett.6b01672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters.
Collapse
Affiliation(s)
- Ruslan R Ramazanov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| | - Tomash S Sych
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| | - Zakhar V Reveguk
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| | - Dmitriy A Maksimov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| | - Artem A Vdovichev
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University , 199034 St. Petersburg, Russia
| |
Collapse
|
29
|
Jin R, Zeng C, Zhou M, Chen Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 2016; 116:10346-413. [DOI: 10.1021/acs.chemrev.5b00703] [Citation(s) in RCA: 1953] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuxiang Chen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
A luminescent novel octanuclear silver(I) cluster framework with potential Cr 2 O 7 2− sensing. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Petty JT, Sergev OO, Ganguly M, Rankine IJ, Chevrier DM, Zhang P. A Segregated, Partially Oxidized, and Compact Ag10 Cluster within an Encapsulating DNA Host. J Am Chem Soc 2016; 138:3469-77. [PMID: 26924556 PMCID: PMC6118400 DOI: 10.1021/jacs.5b13124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silver clusters develop within DNA strands and become optical chromophores with diverse electronic spectra and wide-ranging emission intensities. These studies consider a specific cluster that absorbs at 400 nm, has low emission, and exclusively develops with single-stranded oligonucleotides. It is also a chameleon-like chromophore that can be transformed into different highly emissive fluorophores. We describe four characteristics of this species and conclude that it is highly oxidized yet also metallic. One, the cluster size was determined via electrospray ionization mass spectrometry. A common silver mass is measured with different oligonucleotides and thereby supports a Ag10 cluster. Two, the cluster charge was determined by mass spectrometry and Ag L3-edge X-ray absorption near-edge structure spectroscopy. Respectively, the conjugate mass and the integrated white-line intensity support a partially oxidized cluster with a +6 and +6.5 charge, respectively. Three, the cluster chirality was gauged by circular dichroism spectroscopy. This chirality changes with the length and sequence of its DNA hosts, and these studies identified a dispersed binding site with ∼20 nucleobases. Four, the structure of this complex was investigated via Ag K-edge extended X-ray absorption fine structure spectroscopy. A multishell fitting analysis identified three unique scattering environments with corresponding bond lengths, coordination numbers, and Debye-Waller factors for each. Collectively, these findings support the following conclusion: a Ag10(+6) cluster develops within a 20-nucleobase DNA binding site, and this complex segregates into a compact, metal-like silver core that weakly links to an encapsulating silver-DNA shell. We consider different models that account for silver-silver coordination within the core.
Collapse
Affiliation(s)
- Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Orlin O. Sergev
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Ian J. Rankine
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Daniel M. Chevrier
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
32
|
Shah P, Choi SW, Kim HJ, Cho SK, Bhang YJ, Ryu MY, Thulstrup PW, Bjerrum MJ, Yang SW. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs. Nucleic Acids Res 2015; 44:e57. [PMID: 26681688 PMCID: PMC4824086 DOI: 10.1093/nar/gkv1377] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Suk Won Choi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Ho-Jin Kim
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Seok Keun Cho
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Yong-Joo Bhang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Moon Young Ryu
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Morten Jannik Bjerrum
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seong Wook Yang
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Korea
| |
Collapse
|
33
|
Ganguly M, Bradsher C, Goodwin P, Petty JT. DNA-Directed Fluorescence Switching of Silver Clusters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:27829-27837. [PMID: 30220954 PMCID: PMC6136663 DOI: 10.1021/acs.jpcc.5b08834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Silver clusters with ≲30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This ~20-nucleotide strand has two components, a cluster domain (S1) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet absorption and low emission. This conjugate hybridizes with S2C to form S1-S2:S2C, and the violet chromophore transforms to a fluorescent counterpart with λex ≈ 490 nm/λem ≈ 550 nm and with ~100-fold stronger emission. Our studies focus on both the S1 sequence and structure that direct this violet → blue-green cluster transformation. From the sequence perspective, C4X sequences with X = adenine, thymine, and/or guanine favor the blue-green cluster, and the specificity of the binding site depends on three factors: the number of C4X repeats, the identity of the X nucleobase, and the number of contiguous cytosines. A systematic series of oligonucleotides identified the optimal S1 sequence C4AC4T and discerned distinct roles for the adenine, thymine, and cytosines. From the structure perspective, two factors guide the conformation of the C4AC4T sequence: hybridization with the S2C complement and coordination by the cluster adduct. Spectroscopic and chromatographic studies show that the single-stranded C4AC4T is folded by its blue-green cluster adduct. We propose a structural model in which the two C4X motifs within C4AC4T are cross-linked by the encapsulated cluster. These studies suggest that the structures of the DNA host and the cluster adduct are interdependent.
Collapse
Affiliation(s)
- Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Cara Bradsher
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Peter Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
34
|
Petty JT, Sergev OO, Kantor AG, Rankine IJ, Ganguly M, David FD, Wheeler SK, Wheeler JF. Ten-atom silver cluster signaling and tempering DNA hybridization. Anal Chem 2015; 87:5302-9. [PMID: 25923963 DOI: 10.1021/acs.analchem.5b01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Silver clusters with ∼10 atoms are molecules, and specific species develop within DNA strands. These molecular metals have sparsely organized electronic states with distinctive visible and near-infrared spectra that vary with cluster size, oxidation, and shape. These small molecules also act as DNA adducts and coordinate with their DNA hosts. We investigated these characteristics using a specific cluster-DNA conjugate with the goal of developing a sensitive and selective biosensor. The silver cluster has a single violet absorption band (λ(max) = 400 nm), and its single-stranded DNA host has two domains that stabilize this cluster and hybridize with target oligonucleotides. These target analytes transform the weakly emissive violet cluster to a new chromophore with blue-green absorption (λ(max) = 490 nm) and strong green emission (λ(max) = 550 nm). Our studies consider the synthesis, cluster size, and DNA structure of the precursor violet cluster-DNA complex. This species preferentially forms with relatively low amounts of Ag(+), high concentrations of the oxidizing agent O2, and DNA strands with ≳20 nucleotides. The resulting aqueous and gaseous forms of this chromophore have 10 silvers that coalesce into a single cluster. This molecule is not only a chromophore but also an adduct that coordinates multiple nucleobases. Large-scale DNA conformational changes are manifested in a 20% smaller hydrodynamic radius and disrupted nucleobase stacking. Multidentate coordination also stabilizes the single-stranded DNA and thereby inhibits hybridization with target complements. These observations suggest that the silver cluster-DNA conjugate acts like a molecular beacon but is distinguished because the cluster chromophore not only sensitively signals target analytes but also stringently discriminates against analogous competing analytes.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Orlin O Sergev
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Andrew G Kantor
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Ian J Rankine
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Frederic D David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sandra K Wheeler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - John F Wheeler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
35
|
Gwinn E, Schultz D, Copp SM, Swasey S. DNA-Protected Silver Clusters for Nanophotonics. NANOMATERIALS 2015; 5:180-207. [PMID: 28347005 PMCID: PMC5312861 DOI: 10.3390/nano5010180] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
DNA-protected silver clusters (AgN-DNA) possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.
Collapse
Affiliation(s)
- Elisabeth Gwinn
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Danielle Schultz
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Stacy M Copp
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Steven Swasey
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
36
|
Obliosca JM, Babin MC, Liu C, Liu YL, Chen YA, Batson RA, Ganguly M, Petty JT, Yeh HC. A complementary palette of NanoCluster Beacons. ACS NANO 2014; 8:10150-60. [PMID: 25299363 PMCID: PMC4212725 DOI: 10.1021/nn505338e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
NanoCluster Beacons (NCBs), which use few-atom DNA-templated silver clusters as reporters, are a type of activatable molecular probes that are low-cost and easy to prepare. While NCBs provide a high fluorescence enhancement ratio upon activation, their activation colors are currently limited. Here we report a simple method to design NCBs with complementary emission colors, creating a set of multicolor probes for homogeneous, separation-free detection. By systematically altering the position and the number of cytosines in the cluster-nucleation sequence, we have tuned the activation colors of NCBs to green (C8-8, 460 nm/555 nm); yellow (C5-5, 525 nm/585 nm); red (C3-4, 580 nm/635 nm); and near-infrared (C3-3, 645 nm/695 nm). At the same NCB concentration, the activated yellow NCB (C5-5) was found to be 1.3 times brighter than the traditional red NCB (C3-4). Three of the four colors (green, yellow, and red) were relatively spectrally pure. We also found that subtle changes in the linker sequence (down to the single-nucleotide level) could significantly alter the emission spectrum pattern of an NCB. When the length of linker sequences was increased, the emission peaks were found to migrate in a periodic fashion, suggesting short-range interactions between silver clusters and nucleobases. Size exclusion chromatography results indicated that the activated NCBs are more compact than their native duplex forms. Our findings demonstrate the unique photophysical properties and environmental sensitivities of few-atom DNA-templated silver clusters, which are not seen before in common organic dyes or luminescent crystals.
Collapse
Affiliation(s)
- Judy M. Obliosca
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark C. Babin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yen-Liang Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert A. Batson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mainak Ganguly
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
- Address correspondence to ,
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Address correspondence to ,
| |
Collapse
|
37
|
Petty JT, Nicholson D, Sergev OO, Graham SK. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts. Anal Chem 2014; 86:9220-8. [PMID: 25157472 PMCID: PMC4165452 DOI: 10.1021/ac502192w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.
Collapse
Affiliation(s)
| | - David
A. Nicholson
- Department of Chemistry, Furman
University, Greenville, South Carolina 29613, United States
| | - Orlin O. Sergev
- Department of Chemistry, Furman
University, Greenville, South Carolina 29613, United States
| | - Stuart K. Graham
- Department of Chemistry, Furman
University, Greenville, South Carolina 29613, United States
| |
Collapse
|
38
|
Swasey SM, Karimova N, Aikens CM, Schultz DE, Simon AJ, Gwinn EG. Chiral electronic transitions in fluorescent silver clusters stabilized by DNA. ACS NANO 2014; 8:6883-92. [PMID: 24897004 DOI: 10.1021/nn5016067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluorescent, DNA-stabilized silver clusters are receiving much attention for sequence-selected colors and high quantum yields. However, limited knowledge of cluster structure is constraining further development of these "AgN-DNA" nanomaterials. We report the structurally sensitive, chiroptical activity of four pure AgN-DNA with wide ranging colors. Ubiquitous features in circular dichroism (CD) spectra include a positive dichroic peak overlying the lowest energy absorbance peak and highly anisotropic, negative dichroic peaks at energies well below DNA transitions. Quantum chemical calculations for bare chains of silver atoms with nonplanar curvature also exhibit these striking features, indicating electron flow along a chiral, filamentary metallic path as the origin for low-energy AgN-DNA transitions. Relative to the bare DNA, marked UV changes in CD spectra of AgN-DNA and silver cation-DNA solutions indicate that ionic silver content constrains nucleobase conformation. Changes in solvent composition alone can reorganize cluster structure, reconfiguring chiroptical properties and fluorescence.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
39
|
Berdakin M, Féraud G, Dedonder-Lardeux C, Jouvet C, Pino GA. Effect of Ag(+) on the Excited-State Properties of a Gas-Phase (Cytosine)2Ag(+) Complex: Electronic Transition and Estimated Lifetime. J Phys Chem Lett 2014; 5:2295-2301. [PMID: 26279549 DOI: 10.1021/jz5009455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, DNA molecules have received great attention because of their potential applications in material science. One interesting example is the production of highly fluorescent and tunable DNA-Agn clusters with cytosine (C)-rich DNA strands. Here, we report the UV photofragmentation spectra of gas-phase cytosine···Ag(+)···cytosine (C2Ag(+)) and cytosine···H(+)···cytosine (C2H(+)) complexes together with theoretical calculations. In both cases, the excitation energy does not differ significantly from that of isolated cytosine or protonated cytosine, indicating that the excitation takes place on the DNA base. However, the excited-state lifetime of the C2H(+) (τ = 85 fs), estimated from the bandwidth of the spectrum, is at least 2 orders of magnitude shorter than that of the C2Ag(+) (τ > 5000 fs). The increased excited-state lifetime upon silver complexation is quite unexpected, and it clearly opens the question about what factors are controlling the nonradiative decay in pyrimidine DNA bases. This is an important result for the expanding field of metal-mediated base pairing and may also be important to the photophysical properties of DNA-templated fluorescent silver clusters.
Collapse
Affiliation(s)
- Matias Berdakin
- †INFIQC (CONICET - UNC), Departamento de Fisicoquı́mica, Facultad de Ciencias Quı́micas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Géraldine Féraud
- ‡Physique des Interactions Ioniques et Moléculaires (PIIM), CNRS, Aix Marseille Université: UMR-7345, 13397 Marseille, France
| | - Claude Dedonder-Lardeux
- ‡Physique des Interactions Ioniques et Moléculaires (PIIM), CNRS, Aix Marseille Université: UMR-7345, 13397 Marseille, France
| | - Christophe Jouvet
- ‡Physique des Interactions Ioniques et Moléculaires (PIIM), CNRS, Aix Marseille Université: UMR-7345, 13397 Marseille, France
| | - Gustavo A Pino
- †INFIQC (CONICET - UNC), Departamento de Fisicoquı́mica, Facultad de Ciencias Quı́micas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
40
|
Berdakin M, Steinmetz V, Maitre P, Pino GA. Gas Phase Structure of Metal Mediated (Cytosine)2Ag+ Mimics the Hemiprotonated (Cytosine)2H+ Dimer in i-Motif Folding. J Phys Chem A 2014; 118:3804-3809. [DOI: 10.1021/jp5038969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matias Berdakin
- INFIQC (CONICET
− Universidad Nacional de Córdoba), Departamento de
Fisicoquímica, Facultad de Ciencias Químicas, Centro
Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Córdoba, Argentina
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique, Université Paris Sud, UMR8000 CNRS, Faculté des Sciences, 91405 Orsay Cedex, France
| | - Philippe Maitre
- Laboratoire de Chimie Physique, Université Paris Sud, UMR8000 CNRS, Faculté des Sciences, 91405 Orsay Cedex, France
| | - Gustavo A. Pino
- INFIQC (CONICET
− Universidad Nacional de Córdoba), Departamento de
Fisicoquímica, Facultad de Ciencias Químicas, Centro
Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Córdoba, Argentina
| |
Collapse
|
41
|
Shah P, Thulstrup PW, Cho SK, Bjerrum MJ, Yang SW. DNA–RNA chimera indicates the flexibility of the backbone influences the encapsulation of fluorescent AgNC emitters. Chem Commun (Camb) 2014; 50:13592-5. [DOI: 10.1039/c4cc06439a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many DNA scaffolds efficiently encapsulate highly emissive silver nanoclusters (AgNCs).
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology
- University of Copenhagen
- Copenhagen, Denmark
| | | | - Seok Keun Cho
- UNIK Center for Synthetic Biology
- University of Copenhagen
- Copenhagen, Denmark
| | | | - Seong Wook Yang
- UNIK Center for Synthetic Biology
- University of Copenhagen
- Copenhagen, Denmark
| |
Collapse
|