1
|
Todd BP, Downard KM. Structural Phylogenetics with Protein Mass Spectrometry: A Proof-of-Concept. Protein J 2024; 43:997-1008. [PMID: 39078529 DOI: 10.1007/s10930-024-10227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
It is demonstrated, for the first time, that a mass spectrometry approach (known as phylonumerics) can be successfully implemented for structural phylogenetics investigations to chart the evolution of a protein's structure and function. Illustrated for the compact globular protein myoglobin, peptide masses produced from the proteolytic digestion of the protein across animal species generate trees congruent to the sequence tree counterparts. Single point mutations calculated during the same mass tree building step can be followed along interconnected branches of the tree and represent a viable structural metric. A mass tree built for 15 diverse animal species, easily resolve the birds from mammal species, and the ruminant mammals from the remainder of the animals. Mutations within helix-spanning peptide segments alter both the mass and structure of the protein in these segments. Greater evolution is found in the B-helix over the A, E, F, G and H helices. A further mass tree study, of six more closely related primate species, resolves gorilla from the other primates based on a P22S mutation within the B-helix. The remaining five primates are resolved into two groups based on whether they contain a glycine or serine at position 23 in the same helix. The orangutan is resolved from the gibbon and siamang by its G-helix C110S mutation, while homo sapiens are resolved from chimpanzee based on the Q116H mutation. All are associated with structural perturbations in such helices. These structure altering mutations can be tracked along interconnecting branches of a mass tree, to follow the protein's structure and evolution, and ultimately the evolution of the species in which the proteins are expressed. Those that have the greatest impact on a protein's structure, its function, and ultimately the evolution of the species, can be selectively tracked or monitored.
Collapse
Affiliation(s)
- Benjamin P Todd
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Shang LL, Zhong ZJ, Cheng LP. Discovery of novel polyheterocyclic neuraminidase inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone. Eur J Med Chem 2024; 269:116305. [PMID: 38518525 DOI: 10.1016/j.ejmech.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 μM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 μM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 μM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 μM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.
Collapse
Affiliation(s)
- Lin Lin Shang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhi Jian Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Ping Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
3
|
Downard KM. 25 Years Responding to Respiratory and Other Viruses with Mass Spectrometry. Mass Spectrom (Tokyo) 2023; 12:A0136. [PMID: 38053835 PMCID: PMC10694638 DOI: 10.5702/massspectrometry.a0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
This review article presents the development and application of mass spectrometry (MS) approaches, developed in the author's laboratory over the past 25 years, to detect; characterise, type and subtype; and distinguish major variants and subvariants of respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All features make use of matrix-assisted laser desorption ionisation (MALDI) mass maps, recorded for individual viral proteins or whole virus digests. A MALDI-based immunoassay in which antibody-peptide complexes were preserved on conventional MALDI targets without their immobilisation led to an approach that enabled their indirect detection. The site of binding, and thus the molecular antigenicity of viruses, could be determined. The same approach was employed to study antivirals bound to their target viral protein, the nature of the binding residues, and relative binding affinities. The benefits of high-resolution MS were exploited to detect sequence-conserved signature peptides of unique mass within whole virus and single protein digests. These enabled viruses to be typed, subtyped, their lineage determined, and variants and subvariants to be distinguished. Their detection using selected ion monitoring improved analytical sensitivity limits to aid the identification of viruses in clinical specimens. The same high-resolution mass map data, for a wide range of viral strains, were input into a purpose-built algorithm (MassTree) in order to both chart and interrogate viral evolution. Without the need for gene or protein sequences, or any sequence alignment, this phylonumerics approach also determines and displays single-point mutations associated with viral protein evolution in a single-tree building step.
Collapse
Affiliation(s)
- Kevin M. Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| |
Collapse
|
4
|
Mann C, Downard KM. Analysis of bacterial biotyping datasets with a mass-based phylonumerics approach. Anal Bioanal Chem 2022; 414:3411-3417. [DOI: 10.1007/s00216-022-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/01/2022]
|
5
|
Downard KM. SEQUENCE-FREE PHYLOGENETICS WITH MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:3-14. [PMID: 33169385 DOI: 10.1002/mas.21658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
An alternative, more rapid, sequence-free approach to build phylogenetic trees has been conceived and implemented. Molecular phylogenetics has continued to mostly focus on improvement in tree construction based on gene sequence alignments. Here protein-based phylogenies are constructed using numerical data sets ("phylonumerics") representing the masses of peptide segments recorded in a mass mapping experiment. This truly sequence-free method requires no gene sequences, nor their alignment, to build the trees affording a considerable time and cost-saving to conventional phylogenetics methods. The approach also calculates single point amino acid mutations from a comparison of mass pairs from different maps in the data set and displays these at branch nodes across the tree together with their frequency. Studies of the consecutive, and near-consecutive, ancestral and descendant mutations across interconnected branches of a mass tree allow putative adaptive, epistatic, and compensatory mutations to be identified in order to investigate mechanisms associated with evolutionary processes and pathways. A side-by-side comparison of this sequence-free approach and conventional gene sequence phylogenetics is discussed.
Collapse
Affiliation(s)
- Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Sciences, Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Mann C, Downard KM. Evolution of SARS CoV-2 Coronavirus Surface Protein Investigated with Mass Spectrometry Based Phylogenetics. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1928685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Mann
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| | - Kevin M. Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, Australia
| |
Collapse
|
7
|
Downard KM. Protein phylogenetics with mass spectrometry. A comparison of methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1442-1454. [PMID: 33725067 DOI: 10.1039/d1ay00153a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in protein mass spectrometry have provided the ability to identify and sequence proteins with unprecedented speed, sensitivity and accuracy. These benefits now offer advantages for studies of protein evolution and phylogeny avoiding the need to generate and align DNA sequences which can prove time consuming, costly and difficult in the case of large genomes and for highly diverse organisms. The methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by multiple sequence alignment for classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using expressed protein mass profiles exploited in microbial biotyping applications, and (3) the construction of trees using proteolytic peptide mass map or fingerprint data. This review describes the three approaches together with the relevant tools and algorithms required to implement them. It also compares each of these alternative protein based methods alongside conventional gene sequence based phylogenetics.
Collapse
Affiliation(s)
- Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW 2031, Australia.
| |
Collapse
|
8
|
Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evol Biol 2021. [DOI: 10.1007/s11692-021-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
|
10
|
|
11
|
Akand EH, Downard KM. Mechanisms of antiviral resistance in influenza neuraminidase revealed by a mass spectrometry based phylonumerics approach. Mol Phylogenet Evol 2019; 135:286-296. [DOI: 10.1016/j.ympev.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/11/2019] [Accepted: 03/17/2019] [Indexed: 12/01/2022]
|
12
|
Ancestral and Compensatory Mutations that Promote Antiviral Resistance in Influenza N1 Neuraminidase Revealed by a Phylonumerics Approach. J Mol Evol 2018; 86:546-553. [DOI: 10.1007/s00239-018-9866-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
|
13
|
Akand EH, Downard KM. Identification of epistatic mutations and insights into the evolution of the influenza virus using a mass-based protein phylogenetic approach. Mol Phylogenet Evol 2018; 121:132-138. [PMID: 29337273 DOI: 10.1016/j.ympev.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022]
Abstract
A mass-based protein phylogenetic approach developed in this laboratory has been applied to study mutation trends and identify consecutive or near-consecutive mutations typically associated with positive epistasis. While epistasis is thought to occur commonly during the evolution of viruses, the extent of epistasis in influenza, and its role in the evolution of immune escape and drug resistant mutants, remains to be systematically investigated. Here putative epistatic mutations within H3 hemagglutinin in type A influenza are identified where leading parent mutations were found to predominate within reported antigenic sites of the protein. Frequent subsequent mutations resided exclusively in different antigenic regions, providing the virus with a possible immune escape mechanism, or at other remote sites that drive beneficial protein structural and functional change. The results also enable a "small steps" evolutionary model to be proposed where the more frequent consecutive, or near-consecutive, non-conservative mutations exhibited less structural, and thus functional, change. This favours the evolutionary survival of the virus over mutations associated with more substantive change that may cause or risk its own extinction.
Collapse
Affiliation(s)
- Elma H Akand
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia.
| |
Collapse
|
14
|
Akand EH, Downard KM. Mutational analysis employing a phylogenetic mass tree approach in a study of the evolution of the influenza virus. Mol Phylogenet Evol 2017; 112:209-217. [DOI: 10.1016/j.ympev.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 11/28/2022]
|
15
|
Abstract
Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.
Collapse
Affiliation(s)
- Shiyong Ma
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia
| | - Kevin M Downard
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, 2052, Australia.
- Lowy Cancer Research Centre, UNSW, Corner of High and Botany St, Kensington, NSW, 2033, Australia.
| |
Collapse
|
16
|
Ma S, Downard KM, Wong JW. FluClass: A novel algorithm and approach to score and visualize the phylogeny of the influenza virus using mass spectrometry. Anal Chim Acta 2015; 895:54-61. [DOI: 10.1016/j.aca.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|