2
|
Zietek BM, Still KBM, Jaschusch K, Bruyneel B, Ariese F, Brouwer TJF, Luger M, Limburg RJ, Rosier JC, V Iperen DJ, Casewell NR, Somsen GW, Kool J. Bioactivity Profiling of Small-Volume Samples by Nano Liquid Chromatography Coupled to Microarray Bioassaying Using High-Resolution Fractionation. Anal Chem 2019; 91:10458-10466. [PMID: 31373797 PMCID: PMC6706796 DOI: 10.1021/acs.analchem.9b01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
High-throughput
screening platforms for the identification of bioactive
compounds in mixtures have become important tools in the drug discovery
process. Miniaturization of such screening systems may overcome problems
associated with small sample volumes and enhance throughput and sensitivity.
Here we present a new screening platform, coined picofractionation
analytics, which encompasses microarray bioassays and mass spectrometry
(MS) of components from minute amounts of samples after their nano
liquid chromatographic (nanoLC) separation. Herein, nanoLC was coupled
to a low-volume liquid dispenser equipped with pressure-fed solenoid
valves, enabling 50-nL volumes of column effluent (300 nL/min) to
be discretely deposited on a glass slide. The resulting fractions
were dried and subsequently bioassayed by sequential printing of nL-volumes
of reagents on top of the spots. Unwanted evaporation of bioassay
liquids was circumvented by employing mineral oil droplets. A fluorescence
microscope was used for assay readout in kinetic mode. Bioassay data
were correlated to MS data obtained using the same nanoLC conditions
in order to assign bioactives. The platform provides the possibility
of freely choosing a wide diversity of bioassay formats, including
those requiring long incubation times. The new method was compared
to a standard bioassay approach, and its applicability was demonstrated
by screening plasmin inhibitors and fibrinolytic bioactives from mixtures
of standards and snake venoms, revealing active peptides and coagulopathic
proteases.
Collapse
Affiliation(s)
- Barbara M Zietek
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kristina B M Still
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Kevin Jaschusch
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Freek Ariese
- LaserLaB , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Tinco J F Brouwer
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Matthijs Luger
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Rob J Limburg
- Electronic Engineering , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Joost C Rosier
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Dick J V Iperen
- Fine Mechanics and Engineering Beta-VU , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K.,Centre for Drugs and Diagnostics , Liverpool School of Tropical Medicine , Pembroke Place , Liverpool L3 5QA , U.K
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , Amsterdam 1081 HZ , The Netherlands
| |
Collapse
|
4
|
The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice. PLoS One 2017; 12:e0181423. [PMID: 28738076 PMCID: PMC5524319 DOI: 10.1371/journal.pone.0181423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 01/16/2023] Open
Abstract
In nanoflow liquid chromatography-matrix-assisted laser desorption/ionization tandem time-of-flight (nanoLC-MALDI-TOF/TOF) approaches, it is critical to directly apply small amounts of the sample elutes on the sample target using a nanoLC system due to its low flow rate of 200 ~ 300 nl/min. It is recommended to apply a sheath liquid containing a matrix with a several μL/min flow rate at the end of the nanoLC column to ensure a larger co-eluted droplet for more reproducible sample spotting and avoid the laborious task of post-manual matrix spotting. In this study, to achieve a better nanoLC-MALDI performance on sample spotting, we first compared α-Cyano-4-hydroxycinnamic acid (CHCA) solvent composition for efficiently concentrating nanoLC elutes on an anchor chip. The solvent composition of isopropanol (IPA): acetonitrile (ACN):acetone:0.1% Trifluoroacetic acid (TFA) (2:7:7:2) provided strong and homogeneous signals with higher peptide ion yields than the other solvent compositions. Then, nanoLC-MALDI-TOF/TOF was applied to study the impact of aflatoxin B1 on the liver proteome from diabetes mellitus type 1 mice. Aflatoxin B1 (AFB1), produced by Aspergillus flavus and Aspergillus parasiticus is a carcinogen and a known causative agent of liver cancer. To evaluate the effects of long-term exposure to AFB1 on type 1 diabetes mellitus (TIDM), the livers of T1DM control mice and mice treated with AFB1 were analyzed using isotope-coded protein labeling (ICPL)-based quantitative proteomics. Our results showed that gluconeogenesis, lipid, and oxidative phosphorylation mechanisms, normally elevated in T1DM, were disordered following AFB1 treatment. In addition, major urinary protein 1 (MUP1), an indicator of increased insulin sensitivity, was significantly decreased in the T1DM/AFB1 group and may have resulted in higher blood glucose levels compared to the T1DM group. These results indicate that T1DM patients should avoid the AFB1 intake, as they could lead to increased blood glucose levels and disorders of energy-producing mechanisms.
Collapse
|
5
|
Chen X, Liu Y, Xu Q, Zhu J, Poget SF, Lyons AM. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10788-10799. [PMID: 27070413 DOI: 10.1021/acsami.6b02487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence microscopy or MALDI-TOF.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
| | - Yang Liu
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| | - QianFeng Xu
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Jing Zhu
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sébastien F Poget
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| | - Alan M Lyons
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| |
Collapse
|
7
|
He J, Yan H, Fan C. Optimization of ultrasound-assisted extraction of protein from egg white using response surface methodology (RSM) and its proteomic study by MALDI-TOF-MS. RSC Adv 2014. [DOI: 10.1039/c4ra07272c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|