1
|
Wang Y, Yan T, Mei K, Rao D, Wu W, Chen Y, Peng Y, Wang J, Wu S, Zhang Q. Nanomechanical assay for ultrasensitive and rapid detection of SARS-CoV-2 based on peptide nucleic acid. NANO RESEARCH 2023; 16:1183-1195. [PMID: 35610981 PMCID: PMC9118818 DOI: 10.1007/s12274-022-4333-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED The massive global spread of the COVID-19 pandemic makes the development of more effective and easily popularized assays critical. Here, we developed an ultrasensitive nanomechanical method based on microcantilever array and peptide nucleic acid (PNA) for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) RNA. The method has an extremely low detection limit of 0.1 fM (105 copies/mL) for N-gene specific sequence (20 bp). Interestingly, it was further found that the detection limit of N gene (pharyngeal swab sample) was even lower, reaching 50 copies/mL. The large size of the N gene dramatically enhances the sensitivity of the nanomechanical sensor by up to three orders of magnitude. The detection limit of this amplification-free assay method is an order of magnitude lower than RT-PCR (500 copies/mL) that requires amplification. The non-specific signal in the assay is eliminated by the in-situ comparison of the array, reducing the false-positive misdiagnosis rate. The method is amplification-free and label-free, allowing for accurate diagnosis within 1 h. The strong specificity and ultra-sensitivity allow single base mutations in viruses to be distinguished even at very low concentrations. Also, the method remains sensitive to fM magnitude lung cancer marker (miRNA-155). Therefore, this ultrasensitive, amplification-free and inexpensive assay is expected to be used for the early diagnosis of COVID-19 patients and to be extended as a broad detection tool. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section, N gene sequences and all nucleic acid sequences used in the study, Figs. S1-S6, and Tables S1-S3) is available in the online version of this article at 10.1007/s12274-022-4333-3.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
2
|
Rao D, Yan T, Qiao Z, Wang Y, Peng Y, Tu H, Wu S, Zhang Q. Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever. NANO RESEARCH 2022; 16:3231-3239. [PMID: 36405983 PMCID: PMC9661467 DOI: 10.1007/s12274-022-5049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Ultrasensitive molecular detection and quantization are crucial for many applications including clinical diagnostics, functional proteomics, and drug discovery; however, conventional biochemical sensors cannot satisfy the stringent requirements, and this has resulted in a long-standing dilemma regarding sensitivity improvement. To this end, we have developed an ultrasensitive relay-type nanomechanical sensor based on a magneto lever. By establishing the link between very weak molecular interaction and five orders of magnitude larger magnetic force, analytes at ultratrace level can produce a clearly observable mechanical response. Initially, proof-of-concept studies showed an improved detection limit up to five orders of magnitude when employing the magneto lever, as compared with direct detection using probe alone. In this study, we subsequently demonstrated that the relay-type sensing mode was universal in application ranging from micromolecule to macromolecule detection, which can be easily extended to detect enzymes, DNA, proteins, cells, viruses, bacteria, chemicals, etc. Importantly, we found that, sensitivity was no longer subject to probe affinity when the magneto lever was sufficiently high, theoretically, even reaching single-molecule resolution. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section) is available in the online version of this article at 10.1007/s12274-022-5049-0.
Collapse
Affiliation(s)
- Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Han Tu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
3
|
Huang TX, Yang M, Giang H, Dong B, Fang N. Resolving the Heterogeneous Adsorption of Antibody Fragment on a 2D Layered Molybdenum Disulfide by Super-Resolution Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7455-7461. [PMID: 35676767 DOI: 10.1021/acs.langmuir.2c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials such as two-dimensional (2D) layered materials advanced applications in many fields, including biosensors format based on field-effect transistors. The unique physical and chemical properties of 2D layered materials enable the detection limit of biomolecules as low as ∼1 pg/mL. The majority of 2D layered materials contain different structural features and defects introduced in chemical synthesis and fabrication processing. These structural features have different physicochemical properties, causing heterogeneous adsorption of bioreceptors like antibodies, enzymes, etc. Understanding the correlation between the adsorption of bioreceptors and properties of structural features is essential for building highly efficient, sensitive biosensors based on 2D layered materials. Here, we utilize a single-molecule localization-based super-resolved fluorescence imaging method to unveil the inhomogeneous adsorption of antibody fragments on 2D layered molybdenum disulfide (MoS2). The surface coverage of antibody fragments on MoS2 thin flakes is quantitatively measured and compared at different structural features and different layer thicknesses. The methodology in the current work can be extended to study bioreceptor adsorption on other types of 2D layered materials and pave a way to improve biosensors' sensitivity based on defect engineering 2D layered materials.
Collapse
Affiliation(s)
- Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hannah Giang
- Department of Chemistry, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United Stated
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ning Fang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
5
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
6
|
Rao D, Mei K, Yan T, Wang Y, Wu W, Chen Y, Wang J, Zhang Q, Wu S. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. NANO RESEARCH 2021; 15:1003-1012. [PMID: 34221250 PMCID: PMC8240779 DOI: 10.1007/s12274-021-3588-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 05/27/2023]
Abstract
UNLABELLED Early cancer diagnosis requires ultrasensitive detection of tumor markers in blood. To this end, we develop a novel microcantilever immunosensor using nanobodies (Nbs) as receptors. As the smallest antibody (Ab) entity comprising an intact antigen-binding site, Nbs achieve dense receptor layers and short distances between antigen-binding regions and sensor surfaces, which significantly elevate the generation and transmission of surface stress. Owing to the inherent thiol group at the C-terminus, Nbs are covalently immobilized on microcantilever surfaces in directed orientation via one-step reaction, which further enhances the stress generation. For microcantilever-based nanomechanical sensor, these advantages dramatically increase the sensor sensitivity. Thus, Nb-functionalized microcantilevers can detect picomolar concentrations of tumor markers with three orders of magnitude higher sensitivity, when compared with conventional Ab-functionalized microcantilevers. This proof-of-concept study demonstrates an ultrasensitive, label-free, rapid, and low-cost method for tumor marker detection. Moreover, interestingly, we find Nb inactivation on sensor interfaces when using macromolecule blocking reagents. The adsorption-induced inactivation is presumably caused by the change of interfacial properties, due to binding site occlusion upon complex coimmobilization formations. Our findings are generalized to any coimmobilization methodology for Nbs and, thus, for the construction of high-performance immuno-surfaces. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section, HER2 detection using anti-HER2-mAb-functionalized microcantilevers) is available in the online version of this article at 10.1007/s12274-021-3588-4.
Collapse
Affiliation(s)
- Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
7
|
Arslan FB, Ozturk Atar K, Calis S. Antibody-mediated drug delivery. Int J Pharm 2021; 596:120268. [PMID: 33486037 DOI: 10.1016/j.ijpharm.2021.120268] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Passive and active targeted nanoparticulate delivery systems show promise to compensate for lacking properties of conventional therapy such as side effects, insufficient efficiency and accumulation of the drug at target site, poor pharmacokinetic properties etc. For active targeting, physically or covalently conjugated ligands, including monoclonal antibodies and their fragments, are consistently used and researched for targeting delivery systems or drugs to their target site. Currently, there are several FDA approved actively targeted antibody-drug conjugates, whereas no active targeted delivery system is in clinical use at present. However, efforts to successfully formulate actively targeted delivery systems continue. The scope of this review will be the use of monoclonal antibodies and their fragments as targeting ligands. General information about targeted delivery and antibodies will be given at the first half of the review. As for the second half, fragmentation of antibodies and conjugation approaches will be explained. Monoclonal antibodies and their fragments as targeting ligands and approaches for conjugating these ligands to nanoparticulate delivery systems and drugs will be the main focus of this review, polyclonal antibodies will not be included.
Collapse
Affiliation(s)
- Fatma Betul Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kivilcim Ozturk Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Calis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Palla G, Malecka K, Dehaen W, Radecki J, Radecka H. Immunosensor incorporating half-antibody fragment for electrochemical monitoring of amyloid-β fibrils in artificial blood plasma. Bioelectrochemistry 2020; 137:107643. [PMID: 32891964 DOI: 10.1016/j.bioelechem.2020.107643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
In this report, an electrochemical immunosensor for the selective and sensitive monitoring of Aβ1-42 fibrils is presented. The sensing platform was prepared by the formation of a 4,4'-thiobisbenzenethiol (TBBT) self-assembled monolayer on a clean gold surface followed by the covalent entrapment of gold nanoparticles (AuNPs). The half-antibody fragments of the Anti-Amyloid Fibrils antibody were immobilized on AuNPs via S-Au covalent bonds. Each step of immunosensor fabrication was characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was successfully used for the sensing of Aβ1-42 fibrils in both phosphate saline buffer (PBS) and artificial blood plasma (ABP). The immunosensor sensitivity estimated based on calibration slopes was better in the presence of APP in the comparison to PBS. The LOD values obtained for both measuring media were of 0.6 pM level. The moderate response towards Aβ1-42 oligomers demonstrated the immunosensor selectivity.
Collapse
Affiliation(s)
- Gopal Palla
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Wim Dehaen
- University of Leuven, Department of Chemistry, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
9
|
Della Ventura B, Banchelli M, Funari R, Illiano A, De Angelis M, Taroni P, Amoresano A, Matteini P, Velotta R. Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst 2020; 144:6871-6880. [PMID: 31686068 DOI: 10.1039/c9an00443b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface functionalization is a key step in biosensing since it is the basis of an effective analyte recognition. Among all the bioreceptors, antibodies (Abs) play a key role thanks to their superior specificity, although the available immobilization strategies suffer from several drawbacks. When gold is the interacting surface, the recently introduced Photochemical Immobilization Technique (PIT) has been shown to be a quick, easy-to-use and very effective method to tether Abs oriented upright by means of thiols produced via tryptophan mediated disulphide bridge reduction. Although the molecular mechanism of this process is quite well identified, the detailed morphology of the immobilized antibodies is still elusive due to inherent difficulties related to the microscopy imaging of Abs. The combination of Mass Spectrometry, Surface-Enhanced Raman Spectroscopy and Ellman's assay demonstrates that Abs irradiated under the conditions in which PIT is realized show only two effective disulphide bridges available for binding. They are located in the constant region of the immunoglobulin light chain so that the most likely position Ab assumes is side-on, i.e. with one Fab (i.e. the antigen binding portion of the antibody) exposed to the solution. This is not a limitation of the recognition efficiency in view of the intrinsic flexibility of the Ab structure, which makes the free Fab able to sway in the solution, a feature of great importance in many biosensing applications.
Collapse
Affiliation(s)
- Bartolomeo Della Ventura
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Avvakumova S, Pandolfi L, Soprano E, Moretto L, Bellini M, Galbiati E, Rizzuto MA, Colombo M, Allevi R, Corsi F, Sánchez Iglesias A, Prosperi D. Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. NANOSCALE ADVANCES 2019; 1:3626-3638. [PMID: 36133537 PMCID: PMC9419579 DOI: 10.1039/c9na00241c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 06/01/2023]
Abstract
The efficient targeting of cancer cells depends on the success of obtaining the active targeting of overexpressed receptors. A very accurate design of nanoconjugates should be done via the selection of the conjugation strategy to achieve effective targeted nanoconjugates. Here, we present a detailed study of cetuximab-conjugated nonspherical gold nanocages for the active targeting of triple-negative breast cancer cells, including MDA-MB-231 and MDA-MB-468. A few different general strategies were selected for monoclonal antibody conjugation to the nanoparticle surface. By varying the bioconjugation conditions, including antibody orientation or the presence of a polymeric spacer or recombinant protein biolinker, we demonstrate the importance of a rational design of nanoconjugates. A quantitative study of gold content via ICP-AES allowed us to compare the effectiveness of cellular uptake as a function of the conjugation strategy and confirmed the active nature of nanoparticle internalization in cancer cells via epidermal growth factor receptor recognition, corroborating the importance of the rational design of nanomaterials for nanomedicine.
Collapse
Affiliation(s)
- S Avvakumova
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Pandolfi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Fondazione Policlinico San Matteo Pavia Italy
| | - E Soprano
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Moretto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Bellini
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - E Galbiati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M A Rizzuto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - R Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| | - A Sánchez Iglesias
- Bionanoplasmonics Laboratory, CICbiomaGUNE Paseo de Miramón 182 20014 Donostia-San Sebastián Spain
| | - D Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| |
Collapse
|
11
|
Lv D, Dong H, Su A, Qin Y, Dong J, Ma L, Li J, Jiao H, Zhang M, Pang D, Liu J, Ouyang H. Magnetic Multiarm Scaffold for the One-Step Purification of Epitope-Specific Neutralizing Antibodies. Anal Chem 2019; 91:6172-6179. [DOI: 10.1021/acs.analchem.9b00769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dongmei Lv
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Haisi Dong
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Ang Su
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Ying Qin
- The First Hospital of Jilin University, Changchun 130021, China
| | - Jianwei Dong
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lerong Ma
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jianing Li
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Mingjun Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Daxin Pang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongsheng Ouyang
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
12
|
Duran B, Castañeda E, Armijo F. Development of an electrochemical impedimetric immunosensor for Corticotropin Releasing Hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosens Bioelectron 2019; 131:171-177. [DOI: 10.1016/j.bios.2019.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
|
13
|
Gupta J, Hoque M, Ahmad MF, Khan RH, Saleemuddin M. Acid pH promotes bispecific antibody formation by the redox procedure. Int J Biol Macromol 2019; 125:469-477. [DOI: 10.1016/j.ijbiomac.2018.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022]
|
14
|
Wu S, Guo Y, Wang W, Zhou J, Zhang Q. Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:035004. [PMID: 30927803 DOI: 10.1063/1.5074134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Microring resonators have shown promising potential for highly sensitive, label-free, real-time detection of biomolecules. Accurate quantitative detection of target molecules through use of photonic integrated circuits has been demonstrated for environmental monitoring and medical diagnostics. Here, we described the design, fabrication, and characterization of a highly sensitive, label-free microring optical resonator integrated with poly-(dimethylsiloxane) microfluidic channels, which consumes only 30 µl of sample solution. The resonance wavelength shifts resulting from the change in the effective refraction index can be measured in situ, and thus the binding events on the resonator surface, including antibody immobilization, blocking of the resonator surface, and the specific binding of antibody and antigen, can be recorded throughout the entire experimental process in real time. We measured the binding events for the detection of human immunoglobulin G. The system had a detection limit of 0.5 µg/ml, a value substantially (14 times) lower than that of a previously reported microring resonator. To verify the usefulness and adaptability of this technique, human epidermal growth factor receptor 2 was used for the detection. The microring optical resonator was able to monitor reactions between biological molecules in real time and thus can be used in quantitative detection and biological sensing with little sample consumption.
Collapse
Affiliation(s)
- Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yingying Guo
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Wanjun Wang
- China Electronics Technology Group Corporation No. 38 Research Institute, Anhui 230001, China
| | - Jie Zhou
- China Electronics Technology Group Corporation No. 38 Research Institute, Anhui 230001, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Alonso R, Jiménez-Meneses P, García-Rupérez J, Bañuls MJ, Maquieira Á. Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chem Commun (Camb) 2018; 54:6144-6147. [DOI: 10.1039/c8cc01369a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UV light catalyses in a few seconds the thiol–ene coupling reaction between half-antibodies and vinyl functionalized surfaces, providing high performance microarrays.
Collapse
Affiliation(s)
- Rafael Alonso
- Departamento de Química
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València
- Universitat de València
- Valencia
| | - Pilar Jiménez-Meneses
- Departamento de Química
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València
- Universitat de València
- Valencia
| | | | - María-José Bañuls
- Departamento de Química
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València
- Universitat de València
- Valencia
| | - Ángel Maquieira
- Departamento de Química
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València
- Universitat de València
- Valencia
| |
Collapse
|
16
|
Wu S, Zhang Z, Zhou X, Liu H, Xue C, Zhao G, Cao Y, Zhang Q, Wu X. Nanomechanical sensors for direct and rapid characterization of sperm motility based on nanoscale vibrations. NANOSCALE 2017; 9:18258-18267. [PMID: 28890972 DOI: 10.1039/c7nr03688d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Infertility, whether of male or female origin, is a critical challenge facing the low birth rate and aging population throughout the world, and semen analysis is a cornerstone of the diagnostic evaluation of the male contribution to infertility. This means that tools which can characterize sperm properties in an effective manner are very much needed. The conventional approaches are essentially image-based, which have a limited value for analyzing sperm properties. Here, we show that an assay using nanomechanical sensors can detect sperm motility based on nanomotion. We use microcantilever sensors to directly characterize the mechanical response of the sperm based on the fluctuations of microcantilevers. We applied this methodology to sperms exposed to different chemical or physical agents. Real-time nanomechanical fluctuations showed that living sperms produced smaller fluctuations after treatment with inhibitory chemicals, and larger fluctuations after treatment with stimulatory chemicals. Our preliminary experiments suggest that the frequency of fluctuation is associated with sperm motility. This technique offers a brand-new perspective in the characterization of the sperm. By combining conventional measurements, reproductive medicine doctors and researchers should now be able to achieve unprecedented depth in the sperm properties.
Collapse
Affiliation(s)
- Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Raghuwanshi Y, Etayash H, Soudy R, Paiva I, Lavasanifar A, Kaur K. Proteolytically Stable Cyclic Decapeptide for Breast Cancer Cell Targeting. J Med Chem 2017; 60:4893-4903. [PMID: 28520410 DOI: 10.1021/acs.jmedchem.7b00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Starting with a previously reported linear breast cancer targeting decapeptide WxEAAYQkFL, here we report the synthesis of a novel cyclic peptide analogue cyclic WXEAAYQkFL. The N- to C-terminus amide cyclized peptide with one d-amino acid (k) displayed higher uptake by breast cancer cells, with minimal uptake by the noncancerous cells compared to the linear peptide with two d-amino acids (x and k), and was stable toward proteolytic degradation. When immobilized on gold microcantilever surface, the cyclic peptide was able to capture breast cancer cells specifically and sense samples with ≥25 cancer cells/mL. Animal studies using mice carrying orthotopic breast MDA-MB-231 tumors showed that the cyclic peptide preferentially accumulates in tumor (2 h after injection) and is rapidly cleared from all other organs except kidneys and liver. The study highlights the discovery of a novel proteolytically stable cyclic peptide that can be used for targeted drug delivery or for enumerating circulating breast tumor cells.
Collapse
Affiliation(s)
- Yogita Raghuwanshi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University , Irvine, California 92618-1908, United States
| |
Collapse
|
18
|
Direct immobilization of antibodies on Zn-doped Fe 3 O 4 nanoclusters for detection of pathogenic bacteria. Anal Chim Acta 2017; 952:81-87. [DOI: 10.1016/j.aca.2016.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
19
|
Yang ZH, Zhuo Y, Yuan R, Chai YQ. Highly Effective Protein Converting Strategy for Ultrasensitive Electrochemical Assay of Cystatin C. Anal Chem 2016; 88:5189-96. [DOI: 10.1021/acs.analchem.6b00210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhe-Han Yang
- Key Laboratory of Luminescence
and Real-Time Analytic Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescence
and Real-Time Analytic Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence
and Real-Time Analytic Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence
and Real-Time Analytic Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Considerations in producing preferentially reduced half-antibody fragments. J Immunol Methods 2016; 429:50-6. [DOI: 10.1016/j.jim.2016.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
|
21
|
Wu S, Liu X, Zhou X, Liang XM, Gao D, Liu H, Zhao G, Zhang Q, Wu X. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosens Bioelectron 2015; 77:164-73. [PMID: 26406457 DOI: 10.1016/j.bios.2015.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs.
Collapse
Affiliation(s)
- Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China; Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China; Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiarong Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Xin M Liang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hong Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China; Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China; Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoping Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
22
|
Sun Y, Du H, Feng C, Lan Y. Oriented immobilization of antibody through carbodiimide reaction and controlling electric field. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Li H, Mu Y, Yan J, Cui D, Ou W, Wan Y, Liu S. Label-Free Photoelectrochemical Immunosensor for Neutrophil Gelatinase-Associated Lipocalin Based on the Use of Nanobodies. Anal Chem 2015; 87:2007-15. [DOI: 10.1021/ac504589d] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Henan Li
- School of Chemistry
and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yawen Mu
- The Key Laboratory
of Developmental Genes and Human Disease, Ministry of Education, Institute
of Life Sciences, Southeast University, Nanjing 210000, People’s Republic of China
| | - Junrong Yan
- The Key Laboratory
of Developmental Genes and Human Disease, Ministry of Education, Institute
of Life Sciences, Southeast University, Nanjing 210000, People’s Republic of China
| | - Dongmei Cui
- School of Chemistry
and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Weijun Ou
- Jiangsu Nanobody Engineering and Research
Center, Nantong 226010, People’s Republic of China
| | - Yakun Wan
- The Key Laboratory
of Developmental Genes and Human Disease, Ministry of Education, Institute
of Life Sciences, Southeast University, Nanjing 210000, People’s Republic of China
- Jiangsu Nanobody Engineering and Research
Center, Nantong 226010, People’s Republic of China
| | - Songqin Liu
- School of Chemistry
and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|