1
|
Han Z, Ding H, Jiang D. Recent Advances in Luminophores for Enhanced Electrochemiluminescence Analysis. Molecules 2024; 29:4857. [PMID: 39459225 PMCID: PMC11510724 DOI: 10.3390/molecules29204857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Electrochemiluminescence (ECL) detection is widely applied in many fields, including chemical measurement, biological analysis, and clinic tests, due to its high sensitivity. Currently, the fast development of many new electrochemical luminophores is continuously improving the ECL-based detection ability. Besides the enhancement of luminescence emission for a high detection sensitivity, minimizing the effect of co-reactants on ECL detection and achieving multiple analysis in one sample are also the main directions in this field. This review focuses on a summary of recently prepared new luminophores to achieve the three aims mentioned above. Especially, the review is composed by three parts, focusing on the luminophores or materials with high ECL efficiency, self-enhancing properties, and multi-color ECL luminophores. The fabrication of biosensors using these molecules is also reviewed to exhibit the advances in biological applications.
Collapse
Affiliation(s)
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
2
|
Doeven EH, Connell TU, Sinha N, Wenger OS, Francis PS. Electrochemiluminescence of a First-Row d 6 Transition Metal Complex. Angew Chem Int Ed Engl 2024; 63:e202319047. [PMID: 38519420 DOI: 10.1002/anie.202319047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
We report the electrochemiluminescence (ECL) of a 3d6 Cr(0) complex ([Cr(LMes)3]; λem=735 nm) with comparable photophysical properties to those of ECL-active complexes of 4d6 or 5d6 precious metal ions. The electrochemical potentials of [Cr(LMes)3] are more negative than those of [Ir(ppy)3] and render the [Cr(LMes)3]* excited state inaccessible through conventional co-reactant ECL with tri-n-propylamine or oxalate. ECL can be obtained, however, through the annihilation route in which potentials sufficient to oxidise and reduce the luminophore are alternately applied. When combined with [Ir(ppy)3] (λem=520 nm), the annihilation ECL of [Cr(LMes)3] was greatly enhanced whereas that of [Ir(ppy)3] was diminished. Under appropriate conditions, the relative intensities of the two spectrally distinct emissions can be controlled through the applied potentials. From this starting point for ECL with 3d6 metal complexes, we discuss some directions for future development.
Collapse
Affiliation(s)
- Egan H Doeven
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Timothy U Connell
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul S Francis
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
3
|
Qu W, Yang X, Huang X, Guo W, Dai Z. Electrochemiluminescence of iridium(III)/ruthenium(II) complexes with naphthyl tags in solutions and host-guest thin films. Dalton Trans 2024; 53:5284-5290. [PMID: 38410928 DOI: 10.1039/d3dt03922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we report electrochemiluminescence (ECL) generation from three new iridium(III)/ruthenium(II) (Ir(III)/Ru(II)) complexes with naphthyl (nap) tags in solutions and host-guest thin films. In comparison with its parent structure, the addition of a nap tag to [4-(2-naphthalenyl)-1,10-phenanthroline]bis(2,2'-bipyridine)ruthenium(II) results in a 6.1-fold enhancement in the ECL efficiency. Moreover, the nap tag enables the non-covalent immobilization of Ir(III)/Ru(II) complexes via host-guest interactions. Therefore, a molecular thin film was constructed by hydrophobic effects between the cavity of β-cyclodextrin and the nap tags, which emits stable and strong ECL emission in the presence of tri-n-propylamine (TPrA). These results give a mechanistic insight into ECL generation from (Ir(III)/Ru(II)) complexes with host-guest recognition tags and may help in the development of host-guest thin film-based ECL sensors.
Collapse
Affiliation(s)
- Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Xu Y, Huang X, Wang Y, Qu W, Guo W, Su B, Dai Z. Controllable and Low-Loss Electrochemiluminescence Waveguide Supported by a Micropipette Electrode. J Am Chem Soc 2024; 146:5423-5432. [PMID: 38354221 DOI: 10.1021/jacs.3c12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
One-dimensional molecular crystal waveguide (MCW) can transmit self-generated electrochemiluminescence (ECL), but heavy optical loss occurs because of the small difference in the refractive index between the crystal and its surroundings. Herein, we report a micropipette electrode-supported MCW (MPE/MCW) for precisely controlling the far-field transmission of ECL in air with a low optical loss. ECL is generated from one terminal of the MCW positioned inside the MPE, which is transmitted along the MCW to the other terminal in air. In comparison with conventional waveguides on solid substrates or in solutions, the MPE/MCW is propitious to the total internal reflection of light at the MCW/air interface, thus confining the ECL efficiently in MCW and improving the waveguide performance with an extremely low-loss coefficient of 4.49 × 10-3 dB μm-1. Moreover, by regulation of the gas atmosphere, active and passive waveguides can be resolved simultaneously inside MPE and in air. This MPE/MCW offers a unique advantage of spatially controlling and separating ECL signal readout from its generation, thus holding great promise in biosensing without or with less electrical/chemical disturbance.
Collapse
Affiliation(s)
- Yingying Xu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yulan Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Bin Su
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Li S, Qin Z, Fu J, Gao Q. Nanobiosensing Based on Electro-Optically Modulated Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2400. [PMID: 37686908 PMCID: PMC10489767 DOI: 10.3390/nano13172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
At the nanoscale, metals exhibit special electrochemical and optical properties, which play an important role in nanobiosensing. In particular, surface plasmon resonance (SPR) based on precious metal nanoparticles, as a kind of tag-free biosensor technology, has brought high sensitivity, high reliability, and convenient operation to sensor detection. By applying an electrochemical excitation signal to the nanoplasma device, modulating its surface electron density, and realizing electrochemical coupling SPR, it can effectively complete the joint transmission of electrical and optical signals, increase the resonance shift of the spectrum, and further improve the sensitivity of the designed biosensor. In addition, smartphones are playing an increasingly important role in portable mobile sensor detection systems. These systems typically connect sensing devices to smartphones to perceive different types of information, from optical signals to electrochemical signals, providing ideas for the portability and low-cost design of these sensing systems. Among them, electrochemiluminescence (ECL), as a special electrochemically coupled optical technology, has good application prospects in mobile sensing detection due to its strong anti-interference ability, which is not affected by background light. In this review, the SPR is introduced using nanoparticles, and its response process is analyzed theoretically. Then, the mechanism and sensing application of electrochemistry coupled with SPR and ECL are emphatically introduced. Finally, it extends to the relevant research on electrochemically coupled optical sensing on mobile detection platforms.
Collapse
Affiliation(s)
- Shuang Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.F.); (Q.G.)
| | | | | | | |
Collapse
|
6
|
Yang X, Hang J, Qu W, Wang Y, Wang L, Zhou P, Ding H, Su B, Lei J, Guo W, Dai Z. Gold Microbeads Enabled Proximity Electrochemiluminescence for Highly Sensitive and Size-Encoded Multiplex Immunoassays. J Am Chem Soc 2023; 145:16026-16036. [PMID: 37458419 DOI: 10.1021/jacs.3c04250] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing highly sensitive multiplex immunoassays is urgently needed to guide medical research and improve clinical diagnosis. Here, we report the proximity electrochemiluminescence (ECL) generation enabled by gold microbeads (GMBs) for improving the detection sensitivity and multiplexing capacity of ECL immunoassays (ECLIAs). As demonstrated by microscopy and finite element simulation, GMBs can function as spherical ultramicroelectrodes for triggering ECL reactions in solutions. Employing GMBs as solid carriers in the bead-based ECLIA, the electrochemical oxidation of a coreactant can occur at both the GMB surface and the substrate electrode, allowing the coreactant radicals to diffuse only a short distance of ∼100 nm to react with ECL luminophores that are labeled on the GMB surface. The ECL generation via this proximity low oxidation potential (LOP) route results in a 21.7-fold increase in the turnover frequency of ECL generation compared with the non-conductive microbeads that rely exclusively on the conventional LOP route. Moreover, the proximity ECL generation is not restricted by the diffusion distance of short-lived coreactant radicals, which enables the simultaneous determination of multiple acute myocardial infarction biomarkers using size-encoded GMB-based multiplex ECLIAs. This work brings new insight into the understanding of ECL mechanisms and may advance the practical use of multiplex ECLIAs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yulan Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lei Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Knežević S, Kerr E, Goudeau B, Valenti G, Paolucci F, Francis PS, Kanoufi F, Sojic N. Bimodal Electrochemiluminescence Microscopy of Single Cells. Anal Chem 2023; 95:7372-7378. [PMID: 37098243 DOI: 10.1021/acs.analchem.3c00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (λmax = 620 nm) and [Ir(sppy)3]3- (λmax = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.
Collapse
Affiliation(s)
- Sara Knežević
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Bertrand Goudeau
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | | | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| |
Collapse
|
8
|
Jia YL, Xu CH, Li XQ, Chen HY, Xu JJ. Visual analysis of Alzheimer disease biomarker via low-potential driven bipolar electrode. Anal Chim Acta 2023; 1251:340980. [PMID: 36925305 DOI: 10.1016/j.aca.2023.340980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Developing a simple, economical, and accurate diagnostic method has positive practical significance for the early prevention and intervention of Alzheimer's disease (AD). Herein, combining a closed bipolar electrode (BPE) chip with multicolor electrochemiluminescence (ECL) imaging technology, we constructed a low-voltage driven portable visualized ECL device for the early screening of AD. By introducing parallel resistance, the total resistance of the circuit was greatly reduced. A classical mixture of Ir(ppy)3 and Ru(bpy)32+ was used as multicolor emitters of the anode with TPrA as the co-reactant. Capture of amyloid-β (Aβ) through antigen-antibody recognition, and signal amplification by electroactive covalent organic frameworks (COF) probe at the cathode of BPE caused the significantly increased faradaic current. The electrical balance of the BPE system resulted in the change of the emission color from green to red at the anode. The ECL-BPE sensor shows good reproducibility and high sensitivity with detection limit of 1 pM by naked eye. The driving voltage is 3.0 V, which means the chip could be driven by two fifth batteries. The visualized ECL-BPE sensor provides a promising point-of-care testing (POCT) tool for the screening of Alzheimer's-related diseases in the early stage.
Collapse
Affiliation(s)
- Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Yang X, Xu Y, Huang X, Hang J, Guo W, Dai Z. Multicolor Iridium(III) Complexes with Host-Guest Recognition Motifs for Enhanced Electrochemiluminescence and Modular Labeling. Anal Chem 2023; 95:4543-4549. [PMID: 36820622 DOI: 10.1021/acs.analchem.2c05698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cyclometalated Ir(III) complexes with high electrochemiluminescence (ECL) efficiency and appropriate bioconjugation sites are urgently needed in ECL immunoassays (ECLIA). Herein, we report the synthesis, photophysics, electrochemistry, and ECL of six new Ir(III) complexes bearing naphthyl (nap) or adamantane phenyl (adap) substitutions, four of which emit cyan, green, or red light and display 1.7- to 7.5-fold increases in ECL intensity. In combination with DFT/TDDFT calculations, this enhancement is rationalized to the augmented radiative rate that arises from both the strengthened spin-orbit coupling (SOC) and the increased transition dipole moment. In addition, the adap-based Ir(III) complex shows high binding affinity with β-cyclodextrin (β-CD) due to the strong hydrophobic interaction, which enables us to develop a modular strategy for the labeling of Ir(III) complexes with biomolecules and to use hydrophobic luminophores in the aqueous-phase detection. As demonstrated, a novel ECLIA is built up and exhibits a wide linear range from 1 ng/mL to 10 μg/mL and a detection limit of 72 pg/mL for the determination of C-reactive protein (CRP). These findings provide new insights into the design, synthesis, and bio-labeling of highly emissive Ir(III) complexes and pave the way for the development of novel ECLIA based on host-guest recognition motifs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yingying Xu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Peng L, Li P, Chen J, Deng A, Li J. Recent progress in assembly strategies of nanomaterials-based ultrasensitive electrochemiluminescence biosensors for food safety and disease diagnosis. Talanta 2023; 253:123906. [PMID: 36122432 DOI: 10.1016/j.talanta.2022.123906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
The Electrochemiluminescence (ECL)-based biosensors have received considerable attention in food contaminants and disease diagnosis, due to their fascinating advantages such as low cost, fast analysis speed, wide linear range, high sensitivity, and excellent anti-interference ability. Meanwhile, with the vigorous development and improvement of nanotechnology, biosensor assembly strategies tend to diversify and be multifunctional. This review focuses on the representative ECL biosensors in food safety and disease diagnosis reported by our research group and other research groups based on nanomaterials assembly strategies in recent years. According to the different roles of nanomaterials played in the constitution of ECL biosensors, nanomaterials would be divided into the following two categories to be summarized: (1) Nanomaterials for signal amplification. (2) Nanomaterials as ECL emitters. Finally, this review prospects the perspectives on the future development direction of ECL biosensor in food safety and disease diagnosis.
Collapse
Affiliation(s)
- Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jia Chen
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Abstract
Wireless chemical sensors have been developed as a result of advances in chemical sensing and wireless communication technology. Because of their mobility and widespread availability, smartphones have been extensively combined with sensors such as hand-held detectors, sensor chips, and test strips for biochemical detection. Smartphones are frequently used as controllers, analyzers, and displayers for quick, authentic, and point-of-care monitoring, which may considerably streamline the design and lower the cost of sensing systems. This study looks at the most recent wireless and smartphone-supported chemical sensors. The review is divided into four different topics that emphasize the basic types of wireless smartphone-operated chemical sensors. According to a study of 114 original research publications published during recent years, market opportunities for wireless and smartphone-supported chemical sensor systems include environmental monitoring, healthcare and medicine, food quality, sport, and fitness. The issues and illustrations for each of the primary chemical sensors relevant to many application areas are covered. In terms of performance, the advancement of technologies related to chemical sensors will result in smaller and more lightweight, cost-effective, versatile, and durable devices. Given the limitations, we suggest that wireless and smartphone-supported chemical sensor systems play a significant role in the sensor Internet of Things.
Collapse
|
12
|
Kerr E, Hayne DJ, Soulsby LC, Bawden JC, Blom SJ, Doeven EH, Henderson LC, Hogan CF, Francis PS. A redox-mediator pathway for enhanced multi-colour electrochemiluminescence in aqueous solution. Chem Sci 2022; 13:469-477. [PMID: 35126979 PMCID: PMC8729815 DOI: 10.1039/d1sc05609c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
The classic and most widely used co-reactant electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) and tri-n-propylamine is enhanced by an order of magnitude by fac-[Ir(sppy)3]3- (where sppy = 5'-sulfo-2-phenylpyridinato-C 2,N), through a novel 'redox mediator' pathway. Moreover, the concomitant green emission of [Ir(sppy)3]3-* enables internal standardisation of the co-reactant ECL of [Ru(bpy)3]2+. This can be applied using a digital camera as the photodetector by exploiting the ratio of R and B values of the RGB colour data, providing superior sensitivity and precision for the development of low-cost, portable ECL-based analytical devices.
Collapse
Affiliation(s)
- Emily Kerr
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - David J Hayne
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Lachlan C Soulsby
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Geelong Victoria 3220 Australia
| | - Joseph C Bawden
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Geelong Victoria 3220 Australia
| | - Steven J Blom
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Geelong Victoria 3220 Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Geelong Victoria 3220 Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Geelong Victoria 3220 Australia
| |
Collapse
|
13
|
Yang L, Wu T, Du Y, Zhang N, Feng R, Ma H, Wei Q. PEGylation Improved Electrochemiluminescence Supramolecular Assembly of Iridium(III) Complexes in Apoferritin for Immunoassays Using 2D/2D MXene/TiO 2 Hybrids as Signal Amplifiers. Anal Chem 2021; 93:16906-16914. [PMID: 34872250 DOI: 10.1021/acs.analchem.1c04006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic self-assembly of iridium complexes in water-soluble nanocontainers is an important bottom-up process for fabricating electrochemiluminescence (ECL) bioprobes. PEGylated apoferritin (PEG-apoHSF) as the host offers a confined space to alter and modify the self-assembly of trans-bis(2-phenylpyridine)(acetylacetonate)iridium(III) [Ir(ppy)2(acac)] based on a pH-dependent depolymerization/reassembly pathway, allowing the formation of ECL-active iridium cores in PEG-apoHSF cavities (Ir@PEG-apoHSF). With an improved encapsulation ratio in PEG-apoHSF, the coreactant ECL behavior of the fabricated Ir@PEG-apoHSF nanodots with tri-n-propylamine (TPrA) was further demonstrated, exhibiting maximum ECL emission at 530 nm that was theoretically dominated by the band gap transition. The application of Ir@PEG-apoHSF as a bioprobe in a "signal-on" ECL immunosensing system was developed based on electroactive Ti3C2Tx MXenes/TiO2 nanosheet (Ti3C2Tx/TiO2) hybrids. Combining with the efficiently catalyzed electro-oxidation of TPrA and Ir(ppy)2(acac) by Ti3C2Tx/TiO2 hybrids, the developed immunosensor showed dramatically amplified ECL responses toward the target analyte of neuron-specific enolase (NSE). Under experimental conditions, linear quantification of NSE from 100 fg/mL to 50 ng/mL was well established by this assay, achieving a limit of detection (LOD) of 35 fg/mL. The results showcased the capability of PEGylated apoHSF to host and stabilize water-insoluble iridium complexes as ECL emitters for aqueous biosensing and immunoassays.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ruiqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
[Applications of microfluidic paper-based chips in environmental analysis and detection]. Se Pu 2021; 39:802-815. [PMID: 34212581 PMCID: PMC9404056 DOI: 10.3724/sp.j.1123.2020.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。
Collapse
|
15
|
Adamson NS, Theakstone AG, Soulsby LC, Doeven EH, Kerr E, Hogan CF, Francis PS, Dennany L. Emission from the working and counter electrodes under co-reactant electrochemiluminescence conditions. Chem Sci 2021; 12:9770-9777. [PMID: 34349950 PMCID: PMC8293983 DOI: 10.1039/d1sc01236c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant. Exploration of potential-dependent, multi-colour co-reactant electrochemiluminescence from multiple luminophores at the working and counter electrodes reveals new pathways to emission.![]()
Collapse
Affiliation(s)
- Natasha S Adamson
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia
| | - Ashton G Theakstone
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia
| | - Lachlan C Soulsby
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia .,Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University Waurn Ponds 3216 Australia
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds 3216 Australia
| | - Lynn Dennany
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street Glasgow G1 1RD UK
| |
Collapse
|
16
|
Merazzo KJ, Totoricaguena-Gorriño J, Fernández-Martín E, del Campo FJ, Baldrich E. Smartphone-Enabled Personalized Diagnostics: Current Status and Future Prospects. Diagnostics (Basel) 2021; 11:diagnostics11061067. [PMID: 34207908 PMCID: PMC8230325 DOI: 10.3390/diagnostics11061067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Smartphones are becoming increasingly versatile thanks to the wide variety of sensor and actuator systems packed in them. Mobile devices today go well beyond their original purpose as communication devices, and this enables important new applications, ranging from augmented reality to the Internet of Things. Personalized diagnostics is one of the areas where mobile devices can have the greatest impact. Hitherto, the camera and communication abilities of these devices have been barely exploited for point of care (POC) purposes. This short review covers the recent evolution of mobile devices in the area of POC diagnostics and puts forward some ideas that may facilitate the development of more advanced applications and devices in the area of personalized diagnostics. With this purpose, the potential exploitation of wireless power and actuation of sensors and biosensors using near field communication (NFC), the use of the screen as a light source for actuation and spectroscopic analysis, using the haptic module to enhance mass transport in micro volumes, and the use of magnetic sensors are discussed.
Collapse
Affiliation(s)
- Karla Jaimes Merazzo
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (K.J.M.); (J.T.-G.); (E.F.-M.)
| | - Joseba Totoricaguena-Gorriño
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (K.J.M.); (J.T.-G.); (E.F.-M.)
| | - Eduardo Fernández-Martín
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (K.J.M.); (J.T.-G.); (E.F.-M.)
| | - F. Javier del Campo
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (K.J.M.); (J.T.-G.); (E.F.-M.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence: (F.J.d.C.); (E.B)
| | - Eva Baldrich
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Correspondence: (F.J.d.C.); (E.B)
| |
Collapse
|
17
|
Zhang HJ, Zhu J, Bao N, Ding SN. Enhanced electrochemiluminescence of CdS quantum dots capped with mercaptopropionic acid activated by EDC for Zika virus detection. Analyst 2021; 146:2928-2935. [PMID: 33949387 DOI: 10.1039/d0an02437f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enhanced electrochemiluminescence (ECL) signals of CdS quantum dots capped with 3-mercaptopropionic acid (MPA@CdS QDs) have been observed after using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) to activate the carboxyl groups. The generated ECL signals are strong enough that their images can be captured using a Huawei mobile phone. A possible mechanism for the generation of enhanced ECL signals has been proposed. Then, a sandwich immunosensor platform for detecting Zika virus (ZIKV) was fabricated with silica microspheres as the carrier and MPA@CdS QDs as ECL signal labels. Due to the dual signal amplification of EDC activation and microsphere enrichment, good linearity from 1.0 fg mL-1 to 1.0 ng mL-1 was exhibited by the QD-based ECL immunosensor for ZIKV detection. The detection limit was 0.3 fg mL-1.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Ning Bao
- School of Public Health, Nantong University, 226019 Nantong, Jiangsu, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
18
|
Real time detection of 3-nitrotyrosine using smartphone-based electrochemiluminescence. Biosens Bioelectron 2021; 187:113284. [PMID: 34022499 DOI: 10.1016/j.bios.2021.113284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/31/2023]
Abstract
As an oxidase stress biomarker, 3-nitrotyrosine is closely associated with many cardiovascular diseases. Thus, early diagnosis and real time detection of 3-nitrotyrosine at bedside are highly important. Herein, we developed a handheld electrochemiluminescence (ECL) analysis device, which integrates printed circuit board (PCB) for electrical stimulation and smartphone for optical signals readout. Fast and accurate determination of 3-nitrotyrosine was achieved with Antibody/Ru(dcpy)32+@AuNPs/MoS2 modified Au electrode (Ab/Ru@AuNPs/MoS2) for ECL analysis. The linear range of 3-nitrotyrosine detection was from 10-8 mol/L to 10-6 mol/L with a detection limit of 8.4 × 10-9 mol/L. In addition, an Android application was developed to realize real time analysis of ECL emissions and results readout for detection. To confirm the usage of the device, spiked serum with different concentrations was tested and the results indicated the practical reliability and stability of this device. The operating procedure for ECL analysis in this device is extremely easy and electrical stimulation was adjustable from 0 V to 5 V for general ECL systems. Thus, we believe this handheld device for ECL analysis has extensive prospects for application in Point-of-care testing and health caring.
Collapse
|
19
|
Ding J, Zhou P, Guo W, Su B. Confined Electrochemiluminescence Generation at Ultra-High-Density Gold Microwell Electrodes. Front Chem 2021; 8:630246. [PMID: 33575249 PMCID: PMC7870482 DOI: 10.3389/fchem.2020.630246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Electrochemiluminescence (ECL) imaging analysis based on the ultra-high-density microwell electrode array (UMEA) has been successfully used in biosensing and diagnostics, while the studies of ECL generation mechanisms with spatial resolution remain scarce. Herein we fabricate a gold-coated polydimethylsiloxane (PDMS) UMEA using electroless deposition method for the visualization of ECL reaction process at the single microwell level in conjunction with using microscopic ECL imaging technique, demonstrating that the microwell gold walls are indeed capable of enhancing the ECL generation. For the classical ECL system involving tris(2,2′-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA), the ECL image of a single microwell appears as a surface-confined ring, indicating the ECL intensity generated inside the well is much stronger than that on the top surface of UMEA. Moreover, at a low concentration of Ru(bpy)32+, the ECL image remains to be ring-shaped with the increase of exposure time, because of the limited lifetime of TPrA radical cations TPrA+•. In combination with the theoretical simulation, the ring-shaped ECL image is resolved to originate from the superposition effect of the mass diffusion fields at both microwell wall and bottom surfaces.
Collapse
Affiliation(s)
- Jialian Ding
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Ping Zhou
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Weiliang Guo
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Shahvar A, Shamsaei D, Saraji M, Arab N, Alijani S. Microfluidic-based liquid-liquid microextraction in combination with smartphone-based on-chip detection for the determination of copper in biological, environmental, and food samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Smartphone-based on-cell detection in combination with emulsification microextraction for the trace level determination of phenol index. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Soulsby LC, Agugiaro J, Wilson DJD, Hayne DJ, Doeven EH, Chen L, Pham TT, Connell TU, Driscoll AJ, Henderson LC, Francis PS. Co‐Reactant and Annihilation Electrogenerated Chemiluminescence of [Ir(df‐ppy)
2
(ptb)]
+
Derivatives. ChemElectroChem 2020. [DOI: 10.1002/celc.202000001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lachlan C. Soulsby
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
| | - Johnny Agugiaro
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne, Victoria 3086 Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne, Victoria 3086 Australia
| | - David J. Hayne
- Institute for Frontier Materials, Deakin University Geelong, Victoria 3220 Australia
| | - Egan H. Doeven
- Centre for Regional and Rural Futures Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
| | - Lifen Chen
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
- Current affiliation: College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P.R. China
| | - Tien T. Pham
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
| | - Timothy U. Connell
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
- Current affiliation: RMIT University Melbourne, Victoria 3001 Australia
| | - Aaron J. Driscoll
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
| | - Luke C. Henderson
- Institute for Frontier Materials, Deakin University Geelong, Victoria 3220 Australia
| | - Paul S. Francis
- School of Life and Environmental Sciences Faculty of Science, Engineering and Built Environment Deakin University Geelong, Victoria 3220 Australia
| |
Collapse
|
23
|
Metallopolymers as Nanostructured Solid‐State Platforms for Electrochemiluminescence Applications. ChemElectroChem 2019. [DOI: 10.1002/celc.201901729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Chen L, Hayne DJ, Doeven EH, Agugiaro J, Wilson DJD, Henderson LC, Connell TU, Nai YH, Alexander R, Carrara S, Hogan CF, Donnelly PS, Francis PS. A conceptual framework for the development of iridium(iii) complex-based electrogenerated chemiluminescence labels. Chem Sci 2019; 10:8654-8667. [PMID: 31803440 PMCID: PMC6849491 DOI: 10.1039/c9sc01391a] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 01/29/2023] Open
Abstract
Translation of the highly promising electrogenerated chemiluminescence (ECL) properties of Ir(iii) complexes (with tri-n-propylamine (TPrA) as a co-reactant) into a new generation of ECL labels for ligand binding assays necessitates the introduction of functionality suitable for bioconjugation. Modification of the ligands, however, can affect not only the photophysical and electrochemical properties of the complex, but also the reaction pathways available to generate light. Through a combined theoretical and experimental study, we reveal the limitations of conventional approaches to the design of electrochemiluminophores and introduce a new class of ECL label, [Ir(C^N)2(pt-TOxT-Sq)]+ (where C^N is a range of possible cyclometalating ligands, and pt-TOxT-Sq is a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester), which outperformed commercial Ir(iii) complex labels in two commonly used assay formats. Predicted limits on the redox potentials and emission wavelengths of Ir(iii) complexes capable of generating ECL via the dominant pathway applicable in microbead supported ECL assays were experimentally verified by measuring the ECL intensities of the parent luminophores at different applied potentials, and comparing the ECL responses for the corresponding labels under assay conditions. This study provides a framework to tailor ECL labels for specific assay conditions and a fundamental understanding of the ECL pathways that will underpin exploration of new luminophores and co-reactants.
Collapse
Affiliation(s)
- Lifen Chen
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - David J Hayne
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Egan H Doeven
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Johnny Agugiaro
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - David J D Wilson
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Luke C Henderson
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Timothy U Connell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Yi Heng Nai
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Richard Alexander
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Serena Carrara
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Conor F Hogan
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Paul S Donnelly
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Victoria 3010 , Australia
| | - Paul S Francis
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| |
Collapse
|
25
|
Dauphin AL, Akchach A, Voci S, Kuhn A, Xu G, Bouffier L, Sojic N. Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. J Phys Chem Lett 2019; 10:5318-5324. [PMID: 31436997 DOI: 10.1021/acs.jpclett.9b02188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There has been a very rapid development of original systems that can be remotely controlled or addressed by playing with chemical and physical concepts. Here, we present the synergetic combination of external magnetic and electric fields to promote, in a double contactless mode, the rotational motion and the concomitant generation of light emission at the level of a gold-coated iron wire. The latter can be moved by rotating magnetic fields. Simultaneously, an electric field induces its remote polarization, which triggers the local generation of electrochemiluminescence (ECL) by bipolar electrochemistry. During rotation, the motion is tracked by changes in ECL intensity as a function of the orientation of the conducting wire in the electric field. The ECL behavior of the rotating bipolar wire is rationalized by considering the angular dependence of the polarization. Unlike previously reported systems, the rotation induces enhanced ECL emission due to the convective flow produced by the motion. This demonstrates that ECL emission can be coupled to magnetically controlled rotating bipolar objects. Such dual magnetically and electrically addressable dynamic systems open exciting prospects for integrating new functions such as imaging and sensing capabilities.
Collapse
Affiliation(s)
- Alice L Dauphin
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| | - Abdelmounaim Akchach
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| | - Silvia Voci
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| | - Alexander Kuhn
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P.R. China
- University of Science and Technology of China , Hefei , China
| | - Laurent Bouffier
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| | - Neso Sojic
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac , France
| |
Collapse
|
26
|
Soulsby LC, Doeven EH, Pham TT, Eyckens DJ, Henderson LC, Long BM, Guijt RM, Francis PS. Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes. Chem Commun (Camb) 2019; 55:11474-11477. [PMID: 31490486 DOI: 10.1039/c9cc05031k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining luminophores in ratios that compensate for energy transfer provides a readily selectable range of new emission colours for gel-based electrochemiluminescence devices (ECLDs). A novel blue ECLD luminophore is also introduced and shown to enhance the intensity of the conventional green emitter through a mixed annihilation ECL mechanism. Peak-to-peak voltages were minimised using asymmetric potential pulse sequences, which increased the longevity of the ECLD emission.
Collapse
Affiliation(s)
- Lachlan C Soulsby
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| | - Egan H Doeven
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Tien T Pham
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| | - Daniel J Eyckens
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Benjamin M Long
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
27
|
Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Spectrophotometric system based on a device created by 3D printing for the accommodation of a webcam chamber as a detection system. Talanta 2019; 206:120250. [PMID: 31514846 DOI: 10.1016/j.talanta.2019.120250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The development of a simple and economical spectrophotometric system based on the use of a device created by 3D printing and the electronics necessary to control the intensity of the radiation source was described. The measurements are made with a low-cost digital webcam. The entire system is only powered through the USB outputs of a computer, which makes the portable and really practical system for the measurements in the field. This method was applied to determine iron (II) in waters using o-phenanthroline as chromogenic reagent giving a red complex, and also to hypochlorite determination using tetramethylbenzidine as the reagent providing a yellow color. The calibration curves were built using a mathematical algorithm making a RGB deconvolution. The intense of colors obtained from a webcam in each concentration of analyte had a relationship with the absorbance values. In order to confirm the accuracy and precision of this method, a traditional spectrophotometer was used for validation.
Collapse
|
29
|
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:275-295. [PMID: 30939032 DOI: 10.1146/annurev-anchem-061318-115226] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| | - Stéphane Arbault
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| |
Collapse
|
30
|
Damirchi S, Maliheh AKK, Heidari T, Es'haghi Z, Chamsaz M. A comparison between digital camera and spectrophotometer for sensitive and selective kinetic determination of brilliant green in wastewaters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:232-239. [PMID: 30119003 DOI: 10.1016/j.saa.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/29/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, a simple and novel kinetic spectrophotometric method has been proposed for the sensitive and highly selective determination of Brilliant Green. The method is based on the interaction of Brilliant Green with Triton X-100 in micellar media at room temperature. As a result of this interaction, the peak wavelength (625 nm) is gradually shifted toward longer wavelength region (634 nm) and more intensive hyper chromic effect has been seen. As well as, variations in the red, blue and green (RGB) components of the images as a function of time were observed. The kinetic interaction of Brilliant Green with Triton X-100 was recorded, using UV-Vis Spectrophotometer-diode array detector and a digital camera. The fixed-time method was used for the construction of a calibration curves. Brilliant Green can be measured in the range of 1.0 to 12.0 mg L-1 and 1.0 to 10.0 mg L-1with the detection limit of 0.047 mg L-1 and 0.037 mg L-1 using spectrophotometer and digital camera, respectively. The proposed method has been successfully used to determine Brilliant Green in some wastewaters such as textile dye effluent and goldfish farming water in the presence of some triphenylmethan dyes as the interferences.
Collapse
Affiliation(s)
- Saeed Damirchi
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Tahereh Heidari
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Zarrin Es'haghi
- Department of Chemistry, Faculty of Sciences, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Mahmoud Chamsaz
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
31
|
Moghaddam MR, Carrara S, Hogan CF. Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chem Commun (Camb) 2019; 55:1024-1027. [DOI: 10.1039/c8cc08472f] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a new approach to heavy metal ion detection based on bipolar electrochemiluminescence (BP-ECL), which is simple and low cost yet highly sensitive.
Collapse
Affiliation(s)
- Mohammad Reza Moghaddam
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Serena Carrara
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Conor F. Hogan
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
32
|
Theakstone AG, Doeven EH, Conlan XA, Dennany L, Francis PS. ‘Cathodic’ electrochemiluminescence of [Ru(bpy)3]2+ and tri-n-propylamine confirmed as emission at the counter electrode. Chem Commun (Camb) 2019; 55:7081-7084. [DOI: 10.1039/c9cc03201k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monitoring emission and potentials at both the working and counter electrodes provides new insight into a proposed cathodic electrochemiluminescence system.
Collapse
Affiliation(s)
| | - Egan H. Doeven
- Deakin University
- Centre for Regional and Rural Futures
- Waurn Ponds
- Australia
| | - Xavier A. Conlan
- Deakin University
- School of Life and Environmental Sciences
- Waurn Ponds
- Australia
| | - Lynn Dennany
- WestCHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
| | - Paul S. Francis
- Deakin University
- School of Life and Environmental Sciences
- Waurn Ponds
- Australia
| |
Collapse
|
33
|
Guo W, Ding H, Gu C, Liu Y, Jiang X, Su B, Shao Y. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. J Am Chem Soc 2018; 140:15904-15915. [DOI: 10.1021/jacs.8b09422] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanhuan Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xuecheng Jiang
- Hangzhou Genesea Biotechnology Limited Company, Hangzhou 315000, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Soulsby LC, Hayne DJ, Doeven EH, Wilson DJD, Agugiaro J, Connell TU, Chen L, Hogan CF, Kerr E, Adcock JL, Donnelly PS, White JM, Francis PS. Mixed annihilation electrogenerated chemiluminescence of iridium(iii) complexes. Phys Chem Chem Phys 2018; 20:18995-19006. [PMID: 29971279 DOI: 10.1039/c8cp01737a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously reported annihilation ECL of mixtures of metal complexes have generally comprised Ir(ppy)3 or a close analogue as a higher energy donor/emitter (green/blue light) and [Ru(bpy)3]2+ or its derivative as a lower energy acceptor/emitter (red light). In contrast, here we examine Ir(ppy)3 as the lower energy acceptor/emitter, by combining it with a second Ir(iii) complex: [Ir(df-ppy)2(ptb)]+ (where ptb = 1-benzyl-1,2,3-triazol-4-ylpyridine). The application of potentials sufficient to attain the first single-electron oxidation and reduction products can be exploited to detect Ir(ppy)3 at orders of magnitude lower concentration, or enhance its maximum emission intensity at high concentration far beyond that achievable through conventional annihilation ECL of Ir(ppy)3 involving comproportionation. Moreover, under certain conditions, the colour of the emission can be selected through the applied electrochemical potentials. We have also prepared a novel Ir(iii) complex with a sufficiently low reduction potential that the reaction between its reduced form and Ir(ppy)3+ cannot populate the excited state of either luminophore. This enabled, for the first time, the exclusive formation of either excited state through the application of higher cathodic or anodic potentials, but in both cases, the ECL was greatly diminished by parasitic dark reactions.
Collapse
Affiliation(s)
- Lachlan C Soulsby
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Damirchi S, Heidari T. Evaluation of digital camera as a portable colorimetric sensor for low-cost determination of inorganic arsenic (III) in industrial wastewaters by chemical hydride generation assisted-Fe(III) − 1, 10-phenanthroline as a green color agent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1443-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Wang N, Feng Y, Wang Y, Ju H, Yan F. Electrochemiluminescent Imaging for Multi-immunoassay Sensitized by Dual DNA Amplification of Polymer Dot Signal. Anal Chem 2018; 90:7708-7714. [DOI: 10.1021/acs.analchem.8b01610] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yaqiang Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P. R. China
| |
Collapse
|
37
|
Soulsby LC, Hayne DJ, Doeven EH, Chen L, Hogan CF, Kerr E, Adcock JL, Francis PS. Electrochemically, Spectrally, and Spatially Resolved Annihilation‐Electrogenerated Chemiluminescence of Mixed‐Metal Complexes at Working and Counter Electrodes. ChemElectroChem 2018. [DOI: 10.1002/celc.201800312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lachlan C. Soulsby
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| | - David J. Hayne
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| | - Egan H. Doeven
- Centre for Regional and Rural Futures, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| | - Lifen Chen
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| | - Conor F. Hogan
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria 3086 Australia
| | - Emily Kerr
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
- Current affiliation: Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Jacqui L. Adcock
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| | - Paul S. Francis
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment Deakin University Geelong Victoria 3220 Australia
| |
Collapse
|
38
|
Liu Q, Yuan H, Liu Y, Wang J, Jing Z, Peng W. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-6. [PMID: 29704329 PMCID: PMC5920152 DOI: 10.1117/1.jbo.23.4.047003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/30/2018] [Indexed: 06/01/2023]
Abstract
We proposed a compact and cost-effective red-green dual-color fiber optic surface plasmon resonance (SPR) sensor based on the smartphone. Inherent color selectivity of phone cameras was utilized for real-time monitoring of red and green color channels simultaneously, which can reduce the chance of false detection and improve the sensitivity. Because there are no external prisms, complex optical lenses, or diffraction grating, simple optical configuration is realized. It has a linear response in a refractive index range of 1.326 to 1.351 (R2 = 0.991) with a resolution of 2.3 × 10 - 4 RIU. We apply it for immunoglobulin G (IgG) concentration measurement. Experimental results demonstrate that a linear SPR response was achieved for IgG concentrations varying from 0.02 to 0.30 mg / ml with good repeatability. It may find promising applications in the fields of public health and environment monitoring owing to its simple optics design and applicability in real-time, label-free biodetection.
Collapse
Affiliation(s)
- Qiang Liu
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| | - Huizhen Yuan
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| | - Yun Liu
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| | - Jiabin Wang
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| | - Zhenguo Jing
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| | - Wei Peng
- Dalian University of Technology, College of Physics and Optoelectronic Engineering, Dalian, China
| |
Collapse
|
39
|
Kudruk S, Villani E, Polo F, Lamping S, Körsgen M, Arlinghaus HF, Paolucci F, Ravoo BJ, Valenti G, Rizzo F. Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chem Commun (Camb) 2018; 54:4999-5002. [DOI: 10.1039/c8cc02066c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemiluminescence (ECL) from self-assembled monolayers of a spirobifluorene dye covalently linked to a transparent ITO surface is reported.
Collapse
Affiliation(s)
- Sergej Kudruk
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Elena Villani
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Federico Polo
- National Cancer Institute-CRO Aviano
- 33081 Aviano
- Italy
| | - Sebastian Lamping
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Martin Körsgen
- Physics Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | | | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Bart Jan Ravoo
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Fabio Rizzo
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
- Institute of Molecular Science and Technologies (ISTM)
| |
Collapse
|
40
|
Mohamed AA, Shalaby AA, Salem A. The Yxy colour space parameters as novel signalling tools for digital imaging sensors in the analytical laboratory. RSC Adv 2018; 8:10673-10679. [PMID: 35540446 PMCID: PMC9078916 DOI: 10.1039/c8ra00209f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/10/2018] [Indexed: 01/15/2023] Open
Abstract
Digital imaging devices can be promising, sensitive, and cost-effective chemical sensors for resource-limited settings and locally deprived communities.
Collapse
Affiliation(s)
- Ashraf A. Mohamed
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Cairo-11566
- Egypt
| | - Ahmed A. Shalaby
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Cairo-11566
- Egypt
| | - Abdelnaby M. Salem
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Cairo-11566
- Egypt
| |
Collapse
|
41
|
Ma C, Wu W, Peng Y, Wang MX, Chen G, Chen Z, Zhu JJ. A Spectral Shift-Based Electrochemiluminescence Sensor for Hydrogen Sulfide. Anal Chem 2017; 90:1334-1339. [DOI: 10.1021/acs.analchem.7b04229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wanwan Wu
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yujiao Peng
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Min-Xuan Wang
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Gang Chen
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry
for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
42
|
Shu J, Han Z, Zheng T, Du D, Zou G, Cui H. Potential-Resolved Multicolor Electrochemiluminescence of N-(4-Aminobutyl)-N-ethylisoluminol/tetra(4-carboxyphenyl)porphyrin/TiO2 Nanoluminophores. Anal Chem 2017; 89:12636-12640. [DOI: 10.1021/acs.analchem.7b04175] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiangnan Shu
- CAS
Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Department of
Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhili Han
- CAS
Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Department of
Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianhua Zheng
- CAS
Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Department of
Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dexin Du
- CAS
Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Department of
Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guizheng Zou
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hua Cui
- CAS
Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Department of
Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
43
|
Sun W, Sun S, Jiang N, Gao L, Zheng G. Study of highly efficient heterodinuclear Ir-Os ECL complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Paper and Fiber-Based Bio-Diagnostic Platforms: Current Challenges and Future Needs. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Wang YZ, Xu CH, Zhao W, Guan QY, Chen HY, Xu JJ. Bipolar Electrode Based Multicolor Electrochemiluminescence Biosensor. Anal Chem 2017; 89:8050-8056. [DOI: 10.1021/acs.analchem.7b01494] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yin-Zhu Wang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi-Yuan Guan
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Gross EM, Durant HE, Hipp KN, Lai RY. Electrochemiluminescence Detection in Paper-Based and Other Inexpensive Microfluidic Devices. ChemElectroChem 2017. [DOI: 10.1002/celc.201700426] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Erin M. Gross
- Department of Chemistry; Creighton University; Omaha NE 68178 USA
| | - Hannah E. Durant
- Department of Chemistry; Creighton University; Omaha NE 68178 USA
| | - Kenneth N. Hipp
- Department of Chemistry; University of Nebraska-Lincoln; Lincoln NE 68588-0304 USA
| | - Rebecca Y. Lai
- Department of Chemistry; University of Nebraska-Lincoln; Lincoln NE 68588-0304 USA
| |
Collapse
|
47
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Chen L, Doeven EH, Wilson DJD, Kerr E, Hayne DJ, Hogan CF, Yang W, Pham TT, Francis PS. Co‐reactant Electrogenerated Chemiluminescence of Iridium(III) Complexes Containing an Acetylacetonate Ligand. ChemElectroChem 2017. [DOI: 10.1002/celc.201700222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lifen Chen
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - Egan H. Doeven
- Centre for Regional and Rural Futures (CeRRF), Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science La Trobe University Melbourne, Victoria 3086 Australia
| | - Emily Kerr
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - David J. Hayne
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - Conor F. Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science La Trobe University Melbourne, Victoria 3086 Australia
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - Tien T. Pham
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| | - Paul S. Francis
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
49
|
Kesarkar S, Rampazzo E, Valenti G, Marcaccio M, Bossi A, Prodi L, Paolucci F. Iridium(III)-Doped Core-Shell Silica Nanoparticles: Near-IR Electrogenerated Chemiluminescence in Water. ChemElectroChem 2017. [DOI: 10.1002/celc.201700071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sagar Kesarkar
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
- Istituto di Scienze e Tecnologie Molecolari-CNR and SmartMatLab; Center; Via C. Golgi 19 20133 Milano Italy
| | - Enrico Rampazzo
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Molecolari-CNR and SmartMatLab; Center; Via C. Golgi 19 20133 Milano Italy
| | - Luca Prodi
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
50
|
Zhang P, Lin Z, Zhuo Y, Yuan R, Chai Y. Dual microRNAs-Fueled DNA Nanogears: A Case of Regenerated Strategy for Multiple Electrochemiluminescence Detection of microRNAs with Single Luminophore. Anal Chem 2017; 89:1338-1345. [DOI: 10.1021/acs.analchem.6b04402] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pu Zhang
- Key Laboratory
of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zongfan Lin
- Key Laboratory
of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key Laboratory
of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory
of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory
of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|