1
|
Sun Q, Li H, Lin Z, Cao G, Yang D, Tang D, Chen X, Pan Y, Guo M. Mass-Spectrometry-Based Assay at Single-Base Resolution for Simultaneously Detecting m 6A and m 6Am in RNA. Anal Chem 2024; 96:11126-11136. [PMID: 38913599 DOI: 10.1021/acs.analchem.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The methylation modifications of adenosine, especially N6-methyladenosine (m6A) and N6, 2'-odimethyladenosine (m6Am), play vital roles in various biological, physiological, and pathological processes. However, current methods for detecting these modifications at single-base resolution have limitations. Mass spectrometry (MS), a highly accurate and sensitive technique, can be utilized to differentiate between m6A and m6Am by analyzing the molecular weight differences in their fragments during tandem MS analysis. In this study, we present an MS-based method that allows for the simultaneous determination of m6A and m6Am sites in targeted RNA fragments at single-nucleotide resolution. The approach involves the utilization of tandem MS in conjunction with targeted RNA enrichment and enzymatic digestion, eliminating the need for PCR amplification. By employing this strategy, we can accurately identify m6A and m6Am sites in targeted RNA fragments with high confidence. To evaluate the effectiveness of our method, we applied it to detect m6A and m6Am sites in cell and tissue samples. Furthermore, we verified the accuracy of our approach by performing CRISPR/Cas9-mediated knockout of the corresponding methyltransferases. Overall, our MS-based method offers a reliable and precise means for the simultaneous detection of m6A and m6Am modifications in targeted RNA fragments, providing valuable insights into the functional characterization of these modifications in various biological contexts.
Collapse
Affiliation(s)
- Qiang Sun
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine and Internation School of Medicine, Zhejiang University, Yiwu 310027, Zhejiang, China
| | - Haijuan Li
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ziwei Lin
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Dongzhi Yang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Daoquan Tang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xi Chen
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mengzhe Guo
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
2
|
Wells SS, Bain IJ, Valenta AC, Lenhart AE, Steyer DJ, Kennedy RT. Microdialysis coupled with droplet microfluidics and mass spectrometry for determination of neurotransmitters in vivo with high temporal resolution. Analyst 2024; 149:2328-2337. [PMID: 38488040 PMCID: PMC11018092 DOI: 10.1039/d4an00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Monitoring the concentration fluctuations of neurotransmitters in vivo is valuable for elucidating the chemical signals that underlie brain functions. Microdialysis sampling is a widely used tool for monitoring neurochemicals in vivo. The volume requirements of most techniques that have been coupled to microdialysis, such as HPLC, result in fraction collection times of minutes, thus limiting the temporal resolution possible. Further the time of analysis can become long for cases where many fractions are collected. Previously we have used direct analysis of dialysate by low-flow electrospray ionization-tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole mass spectrometer to monitor acetylcholine, glutamate, and γ-amino-butyric acid to achieve multiplexed in vivo monitoring with temporal resolution of seconds. Here, we have expanded this approach to adenosine, dopamine, and serotonin. The method achieved limits of detection down to 2 nM, enabling basal concentrations of all these compounds, except serotonin, to be measured in vivo. Comparative analysis with LC-MS/MS showed accurate results for all compounds except for glutamate, possibly due to interference for this compound in vivo. Pairing this analysis with droplet microfluidics yields 11 s temporal resolution and can generate dialysate fractions down to 3 nL at rates up to 3 fractions per s from a microdialysis probe. The system is applied to multiplexed monitoring of neurotransmitter dynamics in response to stimulation by 100 mM K+ and amphetamine. These applications demonstrate the suitability of the droplet ESI-MS/MS method for monitoring short-term dynamics of up to six neurotransmitters simultaneously.
Collapse
Affiliation(s)
- Shane S Wells
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Ian J Bain
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Alec C Valenta
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Ashley E Lenhart
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Daniel J Steyer
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
3
|
Alhusban AA, Hamadneh LA, Shallan AI, Tarawneh OA. Automated online monitoring of lactate and pyruvate in tamoxifen resistant MCF-7 cells using sequential-injection capillary electrophoresis with contactless conductivity detection (SI-CE-C 4D) and correlation with MCT1 and MCT4 genes expression. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2098760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ala A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Lama A. Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ola A. Tarawneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Li T, Li S, Shi J, Li X, Liu J, Yang H, Wu W, Zhao L, Zhao Z. Real-time analysis of metabolites in vivo by online extraction electrospray ionization mass spectrometry coupled to microdialysis. Anal Chim Acta 2022; 1205:339760. [DOI: 10.1016/j.aca.2022.339760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
5
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Goryainov SV, Esparza C, Kulikova LN, Borisova AR, Kumandin PA, Antonova AS, Rystsova EO, Oshakbaev MT, Omarova GT, Polovkov NY. DART Mass Spectrometry in the Analysis of Organometallic Complexes. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821130049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhang GL, Zhang M, Shi Q, Jiang Z, Tong L, Chen Z, Tang B. In Situ Construction of COF-Based Paper Serving as a Plasmonic Substrate for Enhanced PSI-MS Detection of Polycyclic Aromatic Hydrocarbons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43438-43448. [PMID: 34465082 DOI: 10.1021/acsami.1c13860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate detection, quantitation, and differentiation of polycyclic aromatic hydrocarbons (PAHs) and their isomers in diverse samples is elusive for paper spray ionization mass spectrometry (PSI-MS). To address these issues, herein, for the first time, we propose to fabricate a novel, flexible, and stable paper substrate based on covalent organic frameworks (COFs) via an in situ method under room temperature in air. After embedding gold nanoparticles (AuNPs), this paper substrate (COFs-paper) could further serve as a multifunctional plasmonic matrix (AuNPs-COFs-paper) for dual-wavelength laser-assisted PSI-MS detection of PAHs and feasible paper surface-enhanced Raman scattering (pSERS)-aided isomer discrimination. Taking advantage of the synergistic effect between the AuNPs and COFs present on the novel AuNP-embedded COFs-paper substrate, a satisfied LOD of 0.50 ng/μL for phenanthrene was realized, which improved almost 300 times compared with the naked-paper matrix, and the regression coefficient R2 was up to 0.999. Real sample corn oil-containing PAHs can be efficiently detected and identified using this technique. The established platform has promising potential for on-site chemical analysis with portable PSI-MS and pSERS instruments.
Collapse
Affiliation(s)
- Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Minmin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Qian Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
8
|
Abstract
Cell analysis is of great significance for the exploration of human diseases and health. However, there are not many techniques for high-throughput cell analysis in the simulated cell microenvironment. The high designability of the microfluidic chip enables multiple kinds of cells to be co-cultured on the chip, with other functions such as sample preprocessing and cell manipulation. Mass spectrometry (MS) can detect a large number of biomolecules without labelling. Therefore, the application of the microfluidic chip coupled with MS has represented a major branch of cell analysis over the past decades. Here, we concisely introduce various microfluidic devices coupled with MS used for cell analysis. The main functions of microfluidic devices are described first, followed by introductions of different interfaces with different types of MS. Then, their various applications in cell analysis are highlighted, with an emphasis on cell metabolism, drug screening, and signal transduction. Current limitations and prospective trends of microfluidics coupled with MS are discussed at the end.
Collapse
Affiliation(s)
- Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| |
Collapse
|
9
|
Zhang G, Ding T, Shi Q, Jiang Z, Niu Y, Zhang M, Tong L, Chen Z, Tang B. Covalent organic frameworks-based paper solid phase microextraction combined with paper spray mass spectrometry for highly enhanced analysis of tetrabromobisphenol A. Analyst 2020; 145:6357-6362. [DOI: 10.1039/d0an00759e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
COFs-based paper solid phase microextraction-paper spray mass spectrometry was developed for tetrabromobisphenol A detection with enhanced analysis performance.
Collapse
Affiliation(s)
- Guanglu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Tong Ding
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qian Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhongyao Jiang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yaxin Niu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Minmin Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lili Tong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhenzhen Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
10
|
Feng S, Mao S, Dou J, Li W, Li H, Lin JM. An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification. Chem Sci 2019; 10:8571-8576. [PMID: 31803431 PMCID: PMC6839512 DOI: 10.1039/c9sc02974e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
We report an open-space microfluidic chip with fluid walls, integrating functions of cell culture and online detection of secreted proteins controlled by the interfacial tension value.
Despite traditional poly-dimethyl siloxane (PDMS) microfluidic devices having great potential in various biological studies, they are limited by sophisticated fabrication processes and low utilization. An easily controlled microfluidic platform with high efficiency and low cost is desperately required. In this work, we present an open-space microfluidic chip with fluid walls, integrating cell culture and online semi-quantitative detection of vascular endothelial growth factor (VEGF) via rolling circle amplification (RCA) reaction. In comparison with conventional co-culture detecting platforms, this method features the prominent advantages of saving reagents and time, a simplified chip fabrication process, and avoiding additional assistance for online detection with the help of an interfacial tension valve. On such a multi-functional microfluidic chip, cells (human umbilical vein endothelial cells and malignant glioma cells) could maintain regular growth and cell viability. VEGF could be detected with excellent specificity and good linearity in the range of 10–250 pg mL–1. Meanwhile, VEGF secreted by malignant glioma cells was also detected online and obviously increased when cells were stimulated by deferoxamine (DFO) to mimic a hypoxic microenvironment. The designed biochip with fluid walls provides a new perspective for micro-total analysis and could be promisingly applied in future clinical diagnosis and drug analysis.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Sifeng Mao
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Jinxin Dou
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Weiwei Li
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Haifang Li
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Jin-Ming Lin
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
11
|
Santbergen MJ, van der Zande M, Bouwmeester H, Nielen MW. Online and in situ analysis of organs-on-a-chip. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
This paper focuses on one of the most commonly encountered materials in our society, namely paper. Paper is an inherently complex material, yet its use provides for chemical analysis approaches that are elegant in their simplicity of execution. In the first half of the previous century, paper in scientific research was used mainly for filtration and chromatographic separation. While its use decreased with the rise of modern elution chromatography, paper remains a versatile substrate for low-cost analytical tests. Recently, we have seen renewed interest to work with paper in (bio)analytical science, a result of the growing demand for inexpensive, portable analysis. Dried blood spotting, paper microfluidics, and paper spray ionization are areas in which paper is (re)establishing itself as an important material. These research areas all exploit several properties of paper, including stable sample storage, passive fluid movement and manipulation, chromatographic separation/extraction, modifiable surface and/or volume, easily altered shape, easy transport, and low cost. We propose that the real, and to date underexploited, potential of paper lies in utilizing its combined characteristics to add new dimensions to paper-based (bio)chemical analysis, expanding its applicability. This article provides the reader with a short historical perspective on the scientific use of paper and the developments that led to the establishment of the aforementioned research areas. We review important characteristics of paper and place them in a scientific context in this descriptive, yet critical, assessment of the achieved and the achievable in paper-based analysis. The ultimate goal is the exploration of integrative approaches at the interface between the different fields in which paper is or can be used.
Collapse
Affiliation(s)
- G Ij Salentijn
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands.,Laboratory of Organic Chemistry , Wageningen University and Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - M Grajewski
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - E Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|
13
|
|
14
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta 2018; 178:507-514. [DOI: 10.1016/j.talanta.2017.09.080] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022]
|
16
|
Teunissen SF, Fedick PW, Berendsen BJA, Nielen MWF, Eberlin MN, Graham Cooks R, van Asten AC. Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2665-2676. [PMID: 28879579 DOI: 10.1007/s13361-017-1790-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Paper spray tandem mass spectrometry is used to identify and quantify eight individual amphetamines in whole blood in 1.3 min. The method has been optimized and fully validated according to forensic toxicology guidelines, for the quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), and 4-fluoroamphetamine (4-FA). Additionally, a new concept of intrinsic and application-based selectivity is discussed, featuring increased confidence in the power to discriminate the amphetamines from other chemically similar compounds when applying an ambient mass spectrometric method without chromatographic separation. Accuracy was within ±15% and average precision was better than 15%, and better than 20% at the LLOQ. Detection limits between 15 and 50 ng/mL were obtained using only 12 μL of whole blood. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sebastiaan F Teunissen
- ThoMSon Mass Spectrometry Laboratory, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil
- Department of Chemistry and Center for Analytical Instrumentation, Purdue University, West Lafayette, IN, 47907, USA
| | - Patrick W Fedick
- Department of Chemistry and Center for Analytical Instrumentation, Purdue University, West Lafayette, IN, 47907, USA
| | - Bjorn J A Berendsen
- RIKILT, Wageningen Research, Akkermaalsbos 2, 6708 WB, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Michel W F Nielen
- RIKILT, Wageningen Research, Akkermaalsbos 2, 6708 WB, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation, Purdue University, West Lafayette, IN, 47907, USA
| | - Arian C van Asten
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, The Netherlands.
- Faculty of Science, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
- CLHC, Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Li X, Ma W, Li H, Ai W, Bai Y, Liu H. Sampling and analyte enrichment strategies for ambient mass spectrometry. Anal Bioanal Chem 2017; 410:715-724. [DOI: 10.1007/s00216-017-0658-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/03/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022]
|
18
|
Liu J, Deng W, Yu M, Wen R, Yao S, Chen B. Rapid analysis of benzalkonium chloride using paper spray mass spectrometry. J Pharm Biomed Anal 2017; 145:151-157. [DOI: 10.1016/j.jpba.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
19
|
Time-Resolved Pharmacological Studies using Automated, On-line Monitoring of Five Parallel Suspension Cultures. Sci Rep 2017; 7:10337. [PMID: 28871151 PMCID: PMC5583285 DOI: 10.1038/s41598-017-10472-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Early stage pharmacological studies rely on in vitro methodologies for screening and testing compounds. Conventional assays based on endpoint measurements provide limited information because the lack in temporal resolution may not determine the pharmacological effect at its maximum. We developed an on-line, automated system for near real-time monitoring of extracellular content from five parallel suspension cultures, combining cell density measurements with a high-resolution separations every 12 minutes for 4 days. Selector and switching valves provide the fluidic control required to sample from one culture during the analysis of the previous sample from another culture, a time-saving measure that is fundamental to the throughput of the presented system. The system was applied to study the metabolic effects of the drugs rotenone, β-lapachone and clioquinol using lactate as metabolic indicator. For each drug, 96 assays were executed on the extracellular matrix at three concentrations with two controls in parallel, consuming only 5.78 mL of media from each culture over four days, less than 60 μL per analysis. The automated system provides high sample throughput, good temporal resolution and low sample consumption combined with a rugged analytical method with adequate sensitivity, providing a promising new platform for pharmacological and biotechnological studies.
Collapse
|
20
|
|
21
|
Liu H, Jie M, He Z, Li HF, Lin JM. Study of antioxidant effects on malignant glioma cells by constructing a tumor-microvascular structure on microchip. Anal Chim Acta 2017; 978:1-9. [DOI: 10.1016/j.aca.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
|
22
|
New urea-modified paper substrate for enhanced analytical performance of negative ion mode paper spray mass spectrometry. Talanta 2017; 166:306-314. [DOI: 10.1016/j.talanta.2017.01.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
|
23
|
Liu JY, Chen PC, Liou YW, Chang KY, Lin CH. Development and Application of a Brush-Spray Derived from a Calligraphy-Brush-Style Synthetic Hair Pen for Use in ESI/MS. Mass Spectrom (Tokyo) 2017; 6:S0058. [PMID: 28337397 PMCID: PMC5358408 DOI: 10.5702/massspectrometry.s0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
The development of a novel type of a sampling/ionization kit for use in electrospray ionization/mass spectrometry is reported. Using a small calligraphy-brush-style synthetic hair pen (nylon-brush), and analogous to paper-spray mass spectrometry, the analytes can be collected, elution/desorption and then ionized from the surface of the nylon-brush. The body of the kit was produced by means of a commercial 3D-printer, in which ABS (acrylonitrile butadiene styrene) was used as the starting material. Meanwhile, a small nylon-brush was embedded inside a 3D-printed plastic cell, in which a solvent was supplied to rinse the brush by means of capillary action. The size and weight of the kit were 1 g and 4 cm, respectively. The kit is disposable and it has various functions, including non-invasive sampling, sample-evaporation and ionization. As a result, when a type of pesticide was selected as the test sample (dimethoate; C5H12NO3PS2), the limit of detection was determined to be 0.1 μg/mL. Collecting the pesticide from a leaf-surface (lettuce) was also successful. The process for fabricating the nylon-brush kit and the optimized experimental conditions are reported herein.
Collapse
Affiliation(s)
- Jen-Ying Liu
- Department of Chemistry, National Taiwan Normal University
| | - Pei-Chun Chen
- Department of Chemistry, National Taiwan Normal University
| | - Yea-Wenn Liou
- Department of Chemistry, National Taiwan Normal University
| | - Kai-Yin Chang
- Department of Chemistry, National Taiwan Normal University
| | | |
Collapse
|
24
|
Colletes TC, Garcia PT, Campanha RB, Abdelnur PV, Romão W, Coltro WKT, Vaz BG. A new insert sample approach to paper spray mass spectrometry: a paper substrate with paraffin barriers. Analyst 2017; 141:1707-13. [PMID: 26817814 DOI: 10.1039/c5an01954k] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The analytical performance for paper spray (PS) using a new insert sample approach based on paper with paraffin barriers (PS-PB) is presented. The paraffin barrier is made using a simple, fast and cheap method based on the stamping of paraffin onto a paper surface. Typical operation conditions of paper spray such as the solvent volume applied on the paper surface, and the paper substrate type are evaluated. A paper substrate with paraffin barriers shows better performance on analysis of a range of typical analytes when compared to the conventional PS-MS using normal paper (PS-NP) and PS-MS using paper with two rounded corners (PS-RC). PS-PB was applied to detect sugars and their inhibitors in sugarcane bagasse liquors from a second generation ethanol process. Moreover, the PS-PB proved to be excellent, showing results for the quantification of glucose in hydrolysis liquors with excellent linearity (R(2) = 0.99), limits of detection (2.77 mmol L(-1)) and quantification (9.27 mmol L(-1)). The results are better than for PS-NP and PS-RC. The PS-PB was also excellent in performance when compared with the HPLC-UV method for glucose quantification on hydrolysis of liquor samples.
Collapse
Affiliation(s)
- T C Colletes
- Chemistry Institute, Federal University of Goiás, 74001-970, Goiânia, GO, Brazil.
| | - P T Garcia
- Chemistry Institute, Federal University of Goiás, 74001-970, Goiânia, GO, Brazil.
| | | | | | - W Romão
- Federal Institute of Education, Science and Technology of Espírito Santo, 29106-010, Vila Velha, ES, Brazil and Petroleomic and Forensic Laboratory, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil
| | - W K T Coltro
- Chemistry Institute, Federal University of Goiás, 74001-970, Goiânia, GO, Brazil.
| | - B G Vaz
- Chemistry Institute, Federal University of Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
25
|
Zhou Y, Wang P, Xiong J, Yue H, He Y, Ouyang H, Wang L, Fu Z. A label-free strategy for measuring the affinity between monoclonal antibody and hapten using microdialysis sampling combined with chemiluminescent detection. Biosens Bioelectron 2017; 87:404-409. [DOI: 10.1016/j.bios.2016.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
|
26
|
Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2017; 162:474-478. [DOI: 10.1016/j.talanta.2016.10.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
|
27
|
Zhang Y, Ge S, Yu J. Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Wang L, Wang Y, Jiang S, Ye M, Su P, Xiong B. Microfluidic nitrogen-assisted nanoelectrospray emitter: A monolithic interface for accurate mass measurements based on a single nozzle. J Chromatogr A 2016; 1470:1-8. [DOI: 10.1016/j.chroma.2016.09.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
|
29
|
Wang X, Zheng Y, Wang T, Yang H, Bai Z, Zhang Z. Catalyst Coated Paper Substrate Strategy: Development and Its Application for Copper-Catalysts Screening and Activity Studies. ChemistrySelect 2016. [DOI: 10.1002/slct.201600518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Wang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Teng Wang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Haijun Yang
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Zongquan Bai
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| |
Collapse
|
30
|
Zhang H, Li N, Li XD, Jiang J, Zhao DD, You H. Characterization and application of droplet spray ionization for real-time reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:51-55. [PMID: 27539415 DOI: 10.1002/rcm.7642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. METHODS Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. RESULTS The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. CONCLUSIONS DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Weihai, China
| | - Na Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xiao-di Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Dan-Dan Zhao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
31
|
Shao X, Gao D, Wang Y, Jin F, Wu Q, Liu H. Application of metabolomics to investigate the antitumor mechanism of flavopiridol in MCF-7 breast cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:40-7. [DOI: 10.1016/j.jchromb.2016.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
|
32
|
|
33
|
Chen F, Lin L, Zhang J, He Z, Uchiyama K, Lin JM. Single-Cell Analysis Using Drop-on-Demand Inkjet Printing and Probe Electrospray Ionization Mass Spectrometry. Anal Chem 2016; 88:4354-60. [DOI: 10.1021/acs.analchem.5b04749] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fengming Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Luyao Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ziyi He
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Katsumi Uchiyama
- Department
of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
University of Shandong, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
34
|
Vega C, Spence C, Zhang C, Bills BJ, Manicke NE. Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:726-34. [PMID: 26729455 DOI: 10.1007/s13361-015-1322-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 05/28/2023]
Abstract
Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Carolina Vega
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Corina Spence
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Chengsen Zhang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Brandon J Bills
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
35
|
ZHUANG QC, NING RZ, MA Y, LIN JM. Recent Developments in Microfluidic Chip for in vitro Cell-based Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60919-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Abstract
Paper spray MS is part of a cohort of ambient ionization or direct analysis methods that seek to analyze complex samples without prior sample preparation. Extraction and electrospray ionization occur directly from the paper substrate upon which a dried matrix spot is stored. Paper spray MS is capable of detecting drugs directly from dried blood, plasma and urine spots at the low ng/ml to pg/ml levels without sample preparation. No front end separation is performed, so MS/MS or high-resolution MS is required. Here, we discuss paper spray methodology, give a comprehensive literature review of the use of paper spray MS for bioanalysis, discuss technological advancements and variations on this technique and discuss some of its limitations.
Collapse
|
37
|
Liu W, Lin JM. Online Monitoring of Lactate Efflux by Multi-Channel Microfluidic Chip-Mass Spectrometry for Rapid Drug Evaluation. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00221] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wu Liu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
38
|
Jie M, Li HF, Lin L, Zhang J, Lin JM. Integrated microfluidic system for cell co-culture and simulation of drug metabolism. RSC Adv 2016. [DOI: 10.1039/c6ra10407j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We present a microfluidic integrator for cell cocultivation and simulation of pharmaceutical kinetic processes of oral drugs including intestinal absorption, liver metabolism, and anticancer activity.
Collapse
Affiliation(s)
- Mingsha Jie
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Department of Chemistry
| | - Hai-Fang Li
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Luyao Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jie Zhang
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
39
|
Murray I, Walker G, Bereman MS. Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics. Analyst 2016; 141:4065-73. [DOI: 10.1039/c6an00649c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Paper-based microfluidic techniques were explored to increase paper spray mass spectrometry's performance and versatility.
Collapse
Affiliation(s)
- Ian Murray
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Glenn Walker
- Department of Biomedical Engineering
- North Carolina State University
- Raleigh
- USA
| | - Michael S. Bereman
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
- Department of Biological Sciences
| |
Collapse
|
40
|
Yang Y, Han F, Ouyang J, Zhao Y, Han J, Na N. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions. Anal Chim Acta 2016; 902:135-141. [DOI: 10.1016/j.aca.2015.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
|
41
|
Hu L, Liang J, Chingin K, Hang Y, Wu X, Chen H. Early release of 1-pyrroline by Pseudomonas aeruginosa cultures discovered using ambient corona discharge ionization mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c5ra24594j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1-Pyrroline detected by ambient mass spectrometry is suggested as a potential volatile biomarker for early identification of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Longhua Hu
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yaping Hang
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Xiaoping Wu
- Department of Infections
- The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
42
|
Lin L, Lin JM. Development of cell metabolite analysis on microfluidic platform. J Pharm Anal 2015; 5:337-347. [PMID: 29403948 PMCID: PMC5762437 DOI: 10.1016/j.jpha.2015.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A high-throughput and sensitive method for drug metabolite analysis will largely promote the drug discovery industry. The basic barrier of metabolite analysis comes from the interference of complex components in cell biological system and low abundance of target substances. As a powerful tool in biosample analysis, microfluidic chip enhances the sensitivity and throughput by integrating multiple functional units into one chip. In this review, we discussed three critical steps of establishing functional microfluidic platform for cellular metabolism study. Cell in vitro culture model, on chip sample pretreatment, and microchip combined detectors were described in details and demonstrated by works in five years. And a brief summary was given to discuss the advantages as well as challenges of applying microchip method in cell metabolite and biosample analysis.
Collapse
Affiliation(s)
- Luyao Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Cell-patterned glass spray for direct drug assay using mass spectrometry. Anal Chim Acta 2015; 892:132-9. [PMID: 26388483 DOI: 10.1016/j.aca.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/03/2015] [Accepted: 08/08/2015] [Indexed: 01/22/2023]
Abstract
In this work, the establishment of a glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was described. Cell co-culture, drug-induced cell apoptosis, proliferation analysis and intracellular drug absorption measurement were performed simultaneously on this specifically designed platform. Two groups of co-cultured cells (NIH-3T3/HepG2 and HepG2/MCF-7) were cultivated and they showed high viability within 3 days. The biocompatibility of the platform facilitated the subsequent bioassays, in which, cyclophosphamide (CPA) and genistein were used as the model drugs. The distinctions of cell apoptosis and proliferation between the mono-cultured and co-cultured cells were clearly observed and well explained by in situ GS-MS measurements. A satisfactory linearity of the calibration curve between the relative MS intensity and CPA concentrations was obtained using stable isotope labeling method (y = 0.16545 + 0.0985x, R(2) = 0.9937). The variations in the quantity of absorbed drug were detected and the results were consistent with the concentration-dependence of cell apoptosis. All the results demonstrated that direct cell-based drug assay could be performed on the stable isotope labeling assisted GS-MS platform in a facile and quantitative manner.
Collapse
|
44
|
Klampfl CW, Himmelsbach M. Direct ionization methods in mass spectrometry: An overview. Anal Chim Acta 2015; 890:44-59. [DOI: 10.1016/j.aca.2015.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
|
45
|
Zhang C, Manicke NE. Development of a Paper Spray Mass Spectrometry Cartridge with Integrated Solid Phase Extraction for Bioanalysis. Anal Chem 2015; 87:6212-9. [DOI: 10.1021/acs.analchem.5b00884] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chengsen Zhang
- Department of Chemistry and
Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nicholas E. Manicke
- Department of Chemistry and
Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
46
|
Liu W, Chen Q, Lin X, Lin JM. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions. Analyst 2015; 140:1551-4. [PMID: 25597452 DOI: 10.1039/c4an02370f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To establish an automatic and online microfluidic chip-mass spectrometry (chip-MS) system, a device was designed and fabricated for microsampling by a hybrid capillary. The movement of the capillary was programmed by a computer to aspirate samples from different microfluidic channels in the form of microdroplets (typically tens of nanoliters in volume), which were separated by air plugs. The droplets were then directly analyzed by MS via paper spray ionization without any pretreatment. The feasibility and performance were demonstrated by a concentration gradient experiment. Furthermore, after eliminating the effect of nonuniform response factors by an internal standard method, determination of the association constant within a noncovalent protein-protein complex was successfully accomplished with the MS-based titration indicating the versatility and the potential of this novel platform for widespread applications.
Collapse
Affiliation(s)
- Wu Liu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | |
Collapse
|
47
|
Chingin K, Liang J, Hang Y, Hu L, Chen H. Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood cultures. RSC Adv 2015. [DOI: 10.1039/c4ra16502k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human bacteremia is rapidly diagnosed by direct atmospheric pressure chemical ionization mass spectrometry analysis of blood culture volatiles.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China Institute of Technology
- Nanchang 330013
- P.R. China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China Institute of Technology
- Nanchang 330013
- P.R. China
| | - Yaping Hang
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- P.R China
| | - Longhua Hu
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- P.R China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China Institute of Technology
- Nanchang 330013
- P.R. China
| |
Collapse
|
48
|
Kim P, Cha S. Paper cone spray ionization mass spectrometry (PCSI MS) for simple and rapid analysis of raw solid samples. Analyst 2015. [DOI: 10.1039/c5an01062d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel paper spray ionization platform utilizing a three-dimensional paper cone tip for rapid chemical fingerprinting of raw solid materials.
Collapse
Affiliation(s)
- Purum Kim
- Department of Chemistry
- Hankuk University of Foreign Studies
- Yongin
- Korea
| | - Sangwon Cha
- Department of Chemistry
- Hankuk University of Foreign Studies
- Yongin
- Korea
| |
Collapse
|