1
|
Yang T, Duan H, Nian H, Wang P, Yan C, Cao F, Li Q, Cao L. Unraveling the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in aqueous host-guest complexation. Biosens Bioelectron 2024; 258:116342. [PMID: 38705071 DOI: 10.1016/j.bios.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In biological systems, nucleosides play crucial roles in various physiological processes. In this study, we designed and synthesized four achiral anthracene-based tetracationic nanotubes (1-4) as artificial hosts and chiroptical sensors for nucleosides in aqueous media. Notably, different nanotubes exhibit varied chirality sensing on circular dichroism (CD)/circularly polarized luminescence (CPL) spectra through the host-guest complexation, which prompted us to explore the factors influencing their chiroptical responses. Through systematic host-guest experiments, the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in the host-guest complexation was unraveled. Firstly, the CD response originates from the anthracene rings situated at the side-wall position, resulting from the right-handed (P)- or left-handed (M)-twisted conformation of the macrocyclic structure. Secondly, the CPL signal is influenced by the presence of anthracene rings at the linking-wall position, which results from intermolecular chiral twisted stacking between these anthracene rings. Therefore, these nanotubes can serve as chiroptical sensor arrays to enhance the accuracy of nucleotide recognition through principal component analysis (PCA) analysis based on the diversified CD spectra. This study provides insights for the construction of adaptive chirality from achiral nanotubes with dynamic conformational nature and might facilitate further design of chiral functional materials for several applications.
Collapse
Affiliation(s)
- Ting Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Xian North Qinghua Electrical Co., Ltd, Xi'an, 710054, China
| | - Hao Nian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fan Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Song G, Han H, Ma Z. Anti-Fouling Strategies of Electrochemical Sensors for Tumor Markers. SENSORS (BASEL, SWITZERLAND) 2023; 23:5202. [PMID: 37299929 PMCID: PMC10256055 DOI: 10.3390/s23115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
The early detection and prognosis of cancers require sensitive and accurate detection methods; with developments in medicine, electrochemical biosensors have been developed that can meet these clinical needs. However, the composition of biological samples represented by serum is complex; when substances undergo non-specific adsorption to an electrode and cause fouling, the sensitivity and accuracy of the electrochemical sensor are affected. In order to reduce the effects of fouling on electrochemical sensors, a variety of anti-fouling materials and methods have been developed, and enormous progress has been made over the past few decades. Herein, the recent advances in anti-fouling materials and strategies for using electrochemical sensors for tumor markers are reviewed; we focus on new anti-fouling methods that separate the immunorecognition and signal readout platforms.
Collapse
Affiliation(s)
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China;
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
3
|
Huang N, Yang D, Chen H, Xiao Y, Wen J, Long Y, Zheng H. Colorimetric detection of biothiols and Hg 2+ based on the peroxidase-like activity of GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122263. [PMID: 36571862 DOI: 10.1016/j.saa.2022.122263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Guanosine-5'-triphosphate (GTP) not only plays a key role in a majority of cellular processes but also be proposed as a peroxidase-like mimic. Compared with nanozymes, GTP shows good tolerance under harsh conditions, which can be used to construct an easy colorimetric analysis for the detection of biomolecules. Here, on the basis of the peroxidase-like activity of GTP which can catalyze the oxidation of 3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB), colorimetric sensing was established for biothiols and Hg2+. Biothiols reduced the oxTMB back to colorless TMB, and Hg2+ restored the formation of oxTMB, leading to the recovery of color. This method not only provides a platform for the detection of metal ions and biothiols, but also shows that GTP has great potential for analytical detection.
Collapse
Affiliation(s)
- Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Dan Yang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huanhuan Chen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
4
|
Hu C, Jiang K, Shao Z, Shi M, Meng HM. A DNAzyme-based label-free fluorescent probe for guanosine-5'-triphosphate detection. Analyst 2021; 145:6948-6954. [PMID: 32852000 DOI: 10.1039/d0an01334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Guanosine-5'-triphosphate (GTP) plays a key role in many important biological processes of cells. It is not only a primer for DNA replication and one of the four essential nucleoside triphosphates for mRNA synthesis, but also an energy source for translation and other important cellular processes. It can be converted to adenine nucleoside triphosphate (ATP), and the intracellular GTP level is closely related to the specific pathological state, so it is crucial to establish a simple and accurate method for the detection of GTP. Deoxyribozymes have unique catalytic and structural properties. One of the deoxyribozymes which is named DK2 with self-phosphorylation ability can transfer a phosphate from GTP to the 5' end in the presence of manganese(ii), while lambda exonuclease (λexo) catalyzes the gradual hydrolysis of double-stranded DNA molecules phosphorylated at the 5'-end from 5' to 3', but cannot cleave the 5'-OH end. The fluorescent dye SYBR Green I (SG I) can bind to dsDNA and produce significant fluorescence, but it can only give out weak fluorescence when it is mixed with a single strand. Here, we present a novel unlabeled fluorescence assay for GTP based on the self-phosphorylation of deoxyribozyme DK2 and the specific hydrolysis of λexo. Owing to the advantages of simple operation, high sensitivity, good specificity, low cost and without fluorophore (quenching group) labeling, this method has great potential in biological applications.
Collapse
Affiliation(s)
- Chengzhen Hu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | |
Collapse
|
5
|
Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Chen X, Liu Y, Dai Z, Zou X, Li Z. Sandwich immunoassay coupled with isothermal exponential amplification reaction: An ultrasensitive approach for determination of tumor marker MUC1. Talanta 2019; 204:248-254. [DOI: 10.1016/j.talanta.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
|
6
|
Qian C, Wang R, Wu H, Ji F, Wu J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta 2019; 1050:1-15. [DOI: 10.1016/j.aca.2018.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
|
7
|
Dual-reaction triggered sensitivity amplification for ultrasensitive peptide-cleavage based electrochemical detection of matrix metalloproteinase-7. Biosens Bioelectron 2018; 108:46-52. [DOI: 10.1016/j.bios.2018.02.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
|
8
|
Dong J, Wu T, Xiao Y, Chen L, Xu L, Li M, Zhao M. Target-triggered transcription machinery for ultra-selective and sensitive fluorescence detection of nucleoside triphosphates in one minute. Biosens Bioelectron 2017; 100:333-340. [PMID: 28942346 DOI: 10.1016/j.bios.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 01/02/2023]
Abstract
Nucleoside triphosphates (NTPs) play important roles in living organisms. However, no fluorescent assays are currently available to simply and rapidly detect multiple NTPs with satisfactory selectivity, sensitivity and low cost. Here we demonstrate for the first time a target-triggered in-vitro transcription machinery for ultra-selective, sensitive and instant fluorescence detection of multiple NTPs. The machinery assembles RNA polymerase, DNA template and non-target NTPs to convert the target NTP into equivalent RNA signal sequences which are monitored by the fluorescence enhancement of molecular beacon. The machinery offers excellent selectivity for the target NTP against NDP, NMP and dNTP. Notably, to accelerate the kinetics of the machinery while maintain its high specificity, we investigated the sequence of DNA templates systematically and established a set of guidelines for the design of the optimum DNA templates, which allowed for instant detection of the target NTP at fmol level in less than 1min. Furthermore, the machinery could be transformed into logic gates to study the coeffects of two NTPs in biosynthesis and real-time monitoring systems to reflect the distribution of NTP in nucleotide pools. These results provide very useful and low-cost tools for both biochemical tests and point-of-care analysis.
Collapse
Affiliation(s)
- Jiantong Dong
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Xiao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Zhou X, Guo S, Gao J, Zhao J, Xue S, Xu W. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens Bioelectron 2017; 98:83-90. [PMID: 28654887 DOI: 10.1016/j.bios.2017.06.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Based on cascade catalysis amplification driven by glucose oxidase (GOx), a sensitive electrochemical impedimetric aptasensor for protein (carcinoembryonic antigen, CEA as tested model) was proposed by using Cu-based metal-organic frameworks functionalized with Pt nanoparticles, aptamer, hemin and GOx (Pt@CuMOFs-hGq-GOx). CEA aptamer loaded onto Pt@CuMOFs was bound with hemin to form hemin@G-quadruplex (hGq) with mimicking peroxidase activity. Through sandwich-type reaction of target CEA and CEA aptamers (Apt1 and Apt2), the obtained Pt@CuMOFs-hGq-GOx as signal transduction probes (STPs) was captured to the modified electrode interface. When 3,3-diaminobenzidine (DAB) and glucose were introduced, the cascade reaction was initiated by GOx to catalyze the oxidation of glucose, in situ generating H2O2. Simultaneously, the decomposition of the generated H2O2 was greatly promoted by Pt@CuMOFs and hGq as synergistic peroxide catalysts, accompanying with the significant oxidation process of DAB and the formation of nonconductive insoluble precipitates (IPs). As a result, the electron transfer in the resultant sensing interface was effectively hindered and the electrochemical impedimetric signal (EIS) was efficiently amplified. Thus, the high sensitivity of the proposed CEA aptasensor was successfully improved with 0.023pgmL-1, which may be promising and potential in assaying certain clinical disease related to CEA.
Collapse
Affiliation(s)
- Xingxing Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shijing Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiaxi Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuyan Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Zhu H, Zhang M, Zou L, Li R, Ling L. Sequence specific recognition of HIV-1 dsDNA in the large amount of normal dsDNA based upon nicking enzyme signal amplification and triplex DNA. Talanta 2017; 173:9-13. [PMID: 28602196 DOI: 10.1016/j.talanta.2017.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 11/16/2022]
Abstract
A sensitive fluorescent strategy for sequence specific recognition of HIV dsDNA was established based upon Nicking Enzyme Signal Amplification (NESA) and triplex formation. dsDNA sequence from the site 7960 to site 7991 of the HIV1 dsDNA gene was designed as target dsDNA, which was composed of two complementary strands Oligonucleotide 1 with the sequence of 3'-CTT CCT TAT CTT CTT CTT CCA CCT CTC TCT CT-5' (Oligo-1) and Oligonucleotide 2 with the sequence of 5'-GAA GGA ATA GAA GAA GAA GGT GGA GAG AGA GA-3' (Oligo-2). As a proof of concept, Oligonucleotide 5'-6-FAM-GAG GTG GAG CTG CGC GAC TCC TCC TCT CTC TCT CTC CAC CTC-BHQ-1-3'(Oligo-4) acted as molecular beacon(MB) probe, Oligonucleotide 5'-CTT CCT TAT CTT CTT CTT CCA AAA GGA GTC GCG-3' (Oligo-7) acted as assistant probe. In the presence of target dsDNA, Oligo-4 and Oligo-7 hybridized with target dsDNA through triplex formation and formed Y-shaped structure, NESA occurred with further addition of Nt.BbvCI, accompanied with the release of fluorescent DNA fragment circularly, resulted in the increase of fluorescence intensity. Under the optimum conditions, the fluorescence intensity was linear with the concentration of target dsDNA over the range from 100pM to 200nM, the linear regression equation was I = 1.266 C + 84.3 (C: nmol/L, R2 = 0.991), with a detection limit of 65pM. Moreover, the effect of coexisted other dsDNA was investigated as well, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Houya Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manjun Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ruimin Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
11
|
Deng R, Zhang K, Li J. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Acc Chem Res 2017; 50:1059-1068. [PMID: 28355077 DOI: 10.1021/acs.accounts.7b00040] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as pivotal post-transcriptional regulators of gene expression, thus involving in many fundamental cellular processes such as cell proliferation, migration, and canceration. The detection of miRNAs has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Particularly, miRNAs in peripheral blood have recently been recognized as important biomarkers potential for liquid biopsy. Furthermore, as miRNAs are expressed heterogeneously in different cells, investigations into single-cell miRNA expression will be of great value for resolving miRNA-mediated regulatory circuits and the complexity and heterogeneity of miRNA-related diseases. Thus, the development of miRNA detection methods, especially for complex clinic samples and single cells is in great demand. In this Account, we will present recent progress in the design and application of isothermal amplification enabling miRNA detection transition from the test tube to the clinical sample and single cell, which will significantly advance our knowledge of miRNA functions and disease associations, as well as its translation in clinical diagnostics. miRNAs present a huge challenge in detection because of their extremely short length (∼22 nucleotides) and sequence homology (even with only single-nucleotide variation). The conventional golden method for nucleic acid detection, quantitative PCR (qPCR), is not amenable to directly detecting short RNAs and hardly enables distinguishing between miRNA family members with very similar sequences. Alternatively, isothermal amplification has emerged as a powerful method for quantification of nucleic acids and attracts broad interest for utilization in developing miRNA assays. Compared to PCR, isothermal amplification can be performed without precise control of temperature cycling and is well fit for detecting short RNA or DNA. We and other groups are seeking methods based on isothermal amplification for detecting miRNA with high specificity (single-nucleotide resolution) and sensitivity (detection limit reaching femtomolar or even attomolar level). These methods have recently been demonstrated to quantify miRNA in clinical samples (tissues, serum, and plasma). Remarkably, attributed to the mild reaction conditions, isothermal amplification can be performed inside cells, which has recently enabled miRNA detection in single cells. The localized in situ amplification even enables imaging of miRNA at the single-molecule level. The single-cell miRNA profiling data clearly shows that genetically identical cells exhibit significant cell-to-cell variation in miRNA expression. The leap of miRNA detection achievements will significantly contribute to its full clinical adoption and translation and give us new insights into miRNA cellular functions and disease associations.
Collapse
Affiliation(s)
- Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO 2 nanosheets. Talanta 2017; 165:136-142. [DOI: 10.1016/j.talanta.2016.11.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
|
13
|
Liu J, Xin X, Zhou H, Zhang S. Human serum biomarker detection based on a cascade signal amplification strategy by a DNA molecule machine. Chem Commun (Camb) 2016; 51:10843-6. [PMID: 26050749 DOI: 10.1039/c5cc03823e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method is presented that employs a DNA machine for protein biomarker detection. The detection limit is 400 times lower compared to the method without a DNA machine. This study provides a promising method that could realize most protein biomarker detections without the corresponding aptamers, using a DNA machine for signal amplification.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering of Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
14
|
Liu S, Gong H, Wang Y, Wang L. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification. Biosens Bioelectron 2016; 77:818-23. [DOI: 10.1016/j.bios.2015.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
|
15
|
Pan X, Smith CE, Zhang J, McCabe KA, Fu J, Bell CE. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers. Biochemistry 2016; 54:6139-48. [PMID: 26361255 DOI: 10.1021/acs.biochem.5b00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.
Collapse
Affiliation(s)
| | | | | | | | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | | |
Collapse
|
16
|
Wang L, Deng R, Li J. Target-fueled DNA walker for highly selective miRNA detection. Chem Sci 2015; 6:6777-6782. [PMID: 28757969 PMCID: PMC5508657 DOI: 10.1039/c5sc02784e] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
We report a DNA walking biosensor that can realize the detection of let-7a with a detection limit of 58 fM and high selectivity for resolving one nucleotide variation.
Artificial DNA motifs as architectural scaffolds have been widely used to assemble a variety of nanoscale devices. Synthetic DNA nanostructures have accomplished mechanical switching in response to external stimuli, suggesting the promise of constructing a walking device that is being used in the field of biosensors. Here, we design a novel miRNA-responsive DNA walker biosensor based on strand displacement cascades and an enzymatic recycling cleavage strategy. By using miRNA as a driving force, the DNA walkers can be activated to move along the track and generate specific signals for let-7a with a high signal-to-noise ratio. This biosensor exhibits excellent analytical performance toward the sensing of let-7a with great specificity for resolving one nucleotide variation and a detection limit of 58 fM. Such an ultraselective sensor shows that DNA nanostructures have great potential in providing platforms for applications in the fields of biosensing, clinical diagnostics and environmental sample analysis.
Collapse
Affiliation(s)
- Lida Wang
- Department of Chemistry , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Ruijie Deng
- Department of Chemistry , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Jinghong Li
- Department of Chemistry , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
17
|
Wen W, Hu R, Bao T, Zhang X, Wang S. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Biosens Bioelectron 2015; 71:13-17. [PMID: 25880833 DOI: 10.1016/j.bios.2015.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/17/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
In this work, a sensitive exonuclease-assisted amplification electrochemical aptasensor through insertion approach was developed for the detection of mucin 1 (MUC 1). In order to construct the aptasensor, 6-Mercapto-1-hexanol (MCH) was used to block partial sites of gold electrode (GE), followed by thiolated capture probe self-assembled on GE. Methylene blue (MB) labeled aptamer hybridized with capture probe at both ends to form double-strand DNA. For the MB labeled termini was close to GE, the electrochemical response was remarkable. The presence of MUC 1 caused the dissociation of the double-strand DNA owing to the specific recognition of aptamer to MUC 1. Then exonuclease I (Exo I) selectively digested the aptamer which bound with MUC 1, the released MUC 1 participated new binding with the rest aptamer. Insertion approach improved the reproducibility and Exo I-catalyzed target recycling improved the sensitivity of the aptasensor significantly. Under optimal experimental conditions, the proposed aptasensor had a good linear correlation ranged from 10 pM to 1 μM with a detection limit of 4 pM (Signal to Noise ratio, S/N=3). The strategy had great potential for the simple and sensitive detection of other cancer markers.
Collapse
Affiliation(s)
- Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Rong Hu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
18
|
Pan X, Yan J, Patel A, Wysocki VH, Bell CE. Mutant poisoning demonstrates a nonsequential mechanism for digestion of double-stranded DNA by λ exonuclease trimers. Biochemistry 2015; 54:942-51. [PMID: 25531139 DOI: 10.1021/bi501431w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
λ Exonuclease (λexo) is a highly processive 5'-3' exonuclease that binds double-stranded DNA (dsDNA) ends and digests the 5'-strand into mononucleotides. The enzyme forms a toroidal homotrimer with a central tapered channel for tracking along the DNA. During catalysis, dsDNA enters the open end of the channel, and the 5'-strand is digested at one of the three active sites. It is currently not known if λexo uses a sequential mechanism, in which the DNA moves from one active site to the next around the trimer for each round of catalysis or a nonsequential mechanism, in which the DNA locks onto a single active site for multiple rounds. To understand how λexo uses its three active sites, we used a mutant poisoning approach, in which a 6xHis-tagged K131A inactive mutant of λexo was mixed with untagged wild type (WT) to form hybrid trimers. Nickel-spin pull-down analysis confirmed complete subunit exchange after 1 h at 37 °C. Exonuclease assays revealed an approximately linear decrease in activity with increasing fraction of mutant, as expected for a nonsequential mechanism. By fitting the observed rates of digestion to a simple mathematical model, the individual rates of the two hybrid species of trimer were determined. This analysis showed that trimers containing only one or two WT subunits contribute significantly to the observed activity, in further agreement with a nonsequential mechanism. Finally, purification of hybrid trimer mixtures by Ni-spin chromatography, to remove the contribution from fully WT trimers, also resulted in significant levels of activity, again consistent with a nonsequential mechanism.
Collapse
Affiliation(s)
- Xinlei Pan
- Ohio State Biochemistry Program, ‡Department of Molecular and Cellular Biochemistry, and §Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | | | | | |
Collapse
|